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Lecture 12: Linear algebra review

Recap
In recent lectures, we’ve been looking at least-squares fitting problems, all of which reqire

inversion of a matrix. We know that a matrix with repeated rows or columns does not have an
inverse, but there are of course more details to this. You’ve likely seen some of this in a previous
linear algebra class, but we’ll take a moment to review key concepts.

A brief review of linear vector spaces
We began with the inverse problem of minimizing ||Gm− d||2, in which our primary concern

is the matrix G. The matrix G told us about the model but had no information about the data. We
will use the language of linear algebra to discuss how G is a transformation of the vector m into
the vector d.

By the time we are done with this review, we will have the tools to determine which combina-
tion of model parameters are most important to fit data, and which data contribute most to misfit.
Notions of resolution in model parameters and data will be forthcoming. These same tools will
help to understand empirical orthogonal functions, which we will cover later.

Linear vector spaces
You probably already have a feeling for what a vector space is simply be considering three-

dimensional physical space. The nifty thing about vector spaces is that the allow us to “see”
abstract relations in geometrical terms. It is worth remembering what a physicist thinks of a “vec-
tor”. To a physicist, a vector is a quantity with a magnitude and a direction that combines with
other vectors according to a specific rule. Velocity, force, and displacement are examples of quan-
tities conveniently expressed as vectors. A sum of two vectors is obtained by putting the second
vector’s tail to the first vector’s head (Figure 1). If we change the coordinate system (for example,
by rotation, as we did earlier when we considered variance ellipses) from which we are observing
a vector, a physicist would say that the essential vector quantity stays the same, but the expression
of the vector in the new coordinate system would be different.

Figure 1: Example summed vectors.

We are about to embark on a review of linear vector spaces, in which such a change of coor-
dinate systems, which we will call a transformation, results in a “new” vector. Rotation, reflection,
and rescaling are ways of changing a coordinate system, and will be described as transformations.
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Another kind of transformation is projection. An example is the projection of a two-dimensional
vector onto the horizontal axis. The formalism of linear vector spaces allows compact description
of these transformations, which we will use to understand the matrix G.

Definition of a linear vector space
A linear vector space consists of:

1. A field F of scalars (for example, real numbers).

2. A set V of entities called vectors.

3. An operation called vector addition such that

a. Addition is commutative and associative: x+ y = y + x, x+ (y + z) = (x+ y) + z.
b. There exists a null vector 0 such that x+ 0 = x.

4. An operation called scalar multiplication such that for α in F , x in V , then αx ∈ V and

a. Scalar multiplication is associative, and distributive with respect to scalar addition:
α(βx) = (αβ)x, (α + β)x = αx+ βx

b. Scalar multiplication is distributive with respect to vector addition: α(x+ y) = αx +
βy

c. 1 · x = x.

Examples of vector spaces
The space RN of ordered sequences of N real numbers is an example of a linear vector space.

The data vector d is an element of RN , and m is an element of RM . Addition is defined as

x+ y = (x1 + y1, x2 + y2, . . . , xN + yN) (1)

Scalar multiplication is defined as

αx = (αx1, αx2, . . . , αxN) (2)

R3 is the Cartesian representation of three-dimensional space. R is the set of real numbers, and is
a perfectly valid vector space.

Linear combination, linear independence, linear dependence
A linear combination of vectors f1, f2, . . . , fK is a vector of the form

g =
K∑
i=1

αifi. (3)

If for some choice of αi (where not all the αi are zero) g = 0, then the vectors fi are linearly
dependent. When a set of vectors is linearly dependent it is possible to express one of the vectors
as a linear combination of the others. The vectors f1, f2, . . . , fK are linearly independent if g = 0
if and only if αi = 0.

Subspace, basis, dimension, rank
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The set of all linear combinations formed from a fixed collection of vectors is a subspace of
the original space. The fixed vectors are said to span the subspace. A basis for a vector space is
a linearly independent set of vectors that spans the space. If the number of vectors in the space
is finite then the space is finite-dimensional. For a given finite-dimensional space, there may be
more than one basis, but all such bases contain the same number of vectors. This number is called
the dimension of the space.

Consider these ideas in physical space. Valid bases are created by arbitrary rotations, reflec-
tions, and scalings of the Cartesian coordinate system. However, it is intuitively obvious that 3
basis vectors are required in any case.

The row space of an N×M matrix G is that subspace of RM spanned by the rows of G. The
column space of G is that subspace of RN spanned by the columns of G. The row and column
spaces of G have the same dimension. This integer is called the rank of G. If the rank of G is
equal to the smaller of N and M , then G is said to be full rank.

Matrices and linear transformations
A linear transformation takes a vector from one vector space to another. In particular, we

are concerned with the transformation of a vector from RM to RN . The N ×M matrix G defines
such a transformation. The null space of G is the subspace of RM consisting of all solutions to

Gm = 0. (4)

The set of all vectors in RN that are the result of Gm for any m is called the range space. The
dimension theorem is stated as follows: If K is the rank of G, then the null space of G has the
dimension M −K.

Inner products, norms, and orthogonality
The inner product of vectors x and y is the scalar quantity denoted in general as (x,y). In

RN , a sensible inner product is

(x,y) =
N∑
i=1

xiyi = xTy. (5)

Given an inner product, a norm can be defined as

||x|| = (x,x)1/2, (6)

which is interpreted as the length of the vector. Given the inner product (5), the norm would be

||x|| = (xTx)1/2, (7)

which is recognized as the L2 norm. A vector space which has an inner product defined for every
pair of vectors is an inner product space. (Formally, an inner product space is a Hilbert space if
the space is complete. If you want to explore this further, you can look up what complete means.)

Two vectors x and y are said to be orthogonal if

(x,y) = 0 (8)

A set of vectors is orthogonal if every pair of vectors in the set is orthogonal.
If each vector in an orthogonal set satisfies

x = 1, (9)
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then the set is said to be orthonormal. The notion of an inner product is important as it leads to
expressions for the length of a vector, and the angle between vectors.

Orthogonal matrices
Consider the orthonormal basis

{p1,p2, . . . ,pN} (10)

where
(pi,pj) = δij. (11)

Now consider the matrix P whose columns are the vectors in the orthonormal basis (10):

P = [p1,p2, . . . ,pN ] . (12)

It follows that
PTP = PPT = I, (13)

and
P−1 = PT . (14)

A matrix with the properties (13-14) is said to be an orthogonal matrix.
Some properties of orthogonal matrices:

1. Both the rows and columns of an orthogonal matrix form an orthonormal set.

2. If P is orthogonal then |detP| = 1.

3. If P and Q are orthogonal, then so is PQ.

4. If P is orthogonal, then for all vectors x, y, we have (Px,Py) = (x,y) and ||Px|| =
||x||; interpreted geometrically this means that P preserves both angles and lengths when
considered as a linear transformation.

Linear transformations by orthogonal matrices behave like rotations or reflections. There is no
change in length of the transformed vector.

Exercises:
In class we considered a series of exercises to look at matrices. For each example, we asked,

What is the rank of each of these matrices? Are the rows independent? Are the columns indepen-
dent

1. 1 0
0 1
0 0.01

 (15)

This is a 3× 2 matrix, so in principle it could be rank 2 at most. The second and third rows
are not independent, but the columns are independent, which means that it is rank 2.
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2. 1 0 1
0 1 1
0 0.01 0

 (16)

This is a 3×3 matrix, so in principle could be rank 3. The rows and columns are independent,
which means that it is rank 3.

3. 1 0 0
0 1 1
0 0.01 0.01

 (17)

This is a 3 × 3 matrix, so in principle could be rank 3. However the last 2 rows are not
independent, and the last 2 columns are not independent, meaning that the matrix is rank 2.

4. 1 1 0 0
0 0 1 1
0 0 0 0

 (18)

This is a 3× 4 matrix, so in principle could be rank 3. However the last 2 rows are not inde-
pendent, the first 2 columns are not independent, and the last 2 columns are not independent.
The matrix is rank 2.

We can test any of these using software function. For example, in Matlab

% The rank of the matrix A is
rank(A)

% If a square matrix is not full rank, it won’t invert
% in which case the inverse will produce warning messages
inv(A)

Eigensystems
Now let’s take our matrix fundamentals and think about eigensystems. An eigensystem is

defined by the equation
Ax = λx (19)

where A is a square matrix, x is a vector, and λ is a scalar. In other words, the transformation Ax
results in a simple scaling of x. Given a normal matrix A (a class of matrix that includes sym-
metric and orthogonal matrices), we can always find a set of λ’s (eigenvalues) and a corresponding
set of x’s (eigenvectors).

The eigenvectors are equivalent to modes of physical systems. Consider the transverse oscil-
lations of beads on a string (Figure 2). The two beads have mass m, and are separated by flexible
strings of length l when at equilibrium. Suppose displacements xn of the beads are so small that
the tension T in the strings can be taken to be constant. The angle of each string to the horizontal
is θn as illustrated in the figure. The equation of motion for the displacement x1 of the first bead is

m
d2x1
dt2

= −T sin θ1 + T sin θ2. (20)
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Under the assumption that the displacements are small, sin θn may be approximated as tan θn, so

m
d2x1
dt2

= −T x1
l
+ T

x2 − x1
l

. (21)

Rearranging produces

m
d2x1
dt2

=
T

l
(x2 − 2x1) . (22)

Similarly, the equation of motion for the second bead is

m
d2x2
dt2

=
T

l
(x1 − 2x2) . (23)

Proceed by assuming a solution of the form

xn = Xne
iωt (24)

Figure 2: Beads on a string at equilibrium (top) and displaced (bottom).

Then the pair of equations to be solved are

(2− λ)X1 −X2 = 0 (25)
−X1 + (2− λ)X2 = 0 (26)

where λ = ω2ml/T are eigenvalues. For a nontrivial solution to this problem, we must have

det
[
2− λ −1
−1 2− λ

]
= 0 (27)

So
(2− λ)2 − 1 = 0 (28)

which has the two solutions: λ = 1, 3. For λ = 1,

X1 −X2 = 0 (29)

which says simply that X1 = X2. Writing this solution as a normalized vector

x =
1√
2

[
1
1

]
(30)



UCSD—SIOC 221B: (Davis, Rudnick, Gille) 7

Figure 3: Modes of a two-beaded string. Mode 1 (top) has both beads moving in phase, and mode
2 (bottom) has the beads out of phase.

which is the eigenvector for the eigenvalue λ = 1. For λ = 3,

−X1 −X2 = 0 (31)

with the normalized solution

x =
1√
2

[
1
−1

]
(32)

The two solutions, commonly referred to as modes, are shown in Figure 3.
Given an initial specification of bead positions in terms of modes we can predict the evolution

of the system. While equations of motion of the beads (22-23) are coupled, the equations for the
modes are uncoupled. That is, the modes evolve independently of each other, and the evolution of
the system is a linear combination of the two modes.

Note that the equation we solve was in the form (19) with

A =

[
2 −1
−1 2

]
(33)

So what we were doing in solving the the problem of beads on a string, was precisely the solution
of an eigensystem. In linear vector space language, the modes are the most convenient coordinates.
The eigensystem can be written

AP = PD (34)

where D is diagonal with the eigenvalues along the diagonal, and the columns of the orthogonal
matrix P are the eigenvectors.

A few standard relations are

D = PTAP (35)
A = PDPT (36)

A−1 = PD−1PT (37)

Given the eigenvalue decomposition of a matrix, (37) gives an easy way of determining invertibility
simply by determining whether any of the eigenvalues are zero. The ratio of the smallest to largest
eigenvalue, referred to as the condition number, is an indication of the stability of the inversion to
numerical error.


