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Lecture 13: Singular value decomposition

Recap
Last time we reviewed some basics of linear algebra and eigenvalue problems, and we finished

up with a classic eigenvalue equation for a rank 2 matrix with 2 modes. We finished up with an
eigenvalue decomposition of the form:

A−1 = PD−1PT (1)

where A is a square matrix, P is an orthonormal matrix containing a set of basis vectors that span
the space defined by A, and D is a diagonal matrix with the eigenvalues on the diagonal.

The condition number of the matrix A is the ratio of the largest to the smallest eigenvalue and
is an indication of the stability of the inversion to numerical error.

Representing matrices that are not square
Standard eigenvalue calculations make sense for square matrices, but what happens for a

matrix G that is not square? Let a linear transformation be defined by the N ×M matrix G, so
that Gm is a transformation of m into d. Define N ×N and M ×M orthogonal matrices U and
V by some basis vectors ui and vi as

U =
[
u1 u2 · · ·uN

]
(2)

V =
[
v1 v2 · · ·vN

]
. (3)

The vector m is transformed into m̃ through a matrix rotation operation.

m̃ = VTm. (4)

That is, m̃ is the coordinates of m with respect to the basis vectors vi. Because V is orthogonal,
the inverse transform is

m = Vm̃. (5)

Similarly for vector d

d̃ = UTd (6)
d = Ud̃. (7)

Consider the misfit vector
e = Gm− d (8)

Using (5) and (7)
e = GVm̃−Ud̃ (9)

Premultiplying by UT :
UTe = UTGVm̃− d̃. (10)

So that the transformed misfit vector is

ẽ = UTGVm̃− d̃. (11)

The linear transformation G is represented in the new basis by

G̃ = UTGV. (12)
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Everything we’ve done so far has been hypothetical. We haven’t relied on any special knowledge
of G, or any unusual requirements for U or V.

Our goal is to find two orthogonal matrices U and V such that G̃ is as simple as possible.
Let’s assume that G̃ = S where

S =

[
SK 0
0 0

]
(13)

where SK is a K ×K diagonal matrix

SK =


s1 0

s2
. . .

0 K

 . (14)

Such a representation for G̃ would certainly be very simple.
Now we show that such a representation is always possible. From (12)

G = USVT . (15)

So the symmetric matrix GTG is

GTG = VSTUTUSVT = V(STS)VT , (16)

where STS is diagonal. Since V is orthogonal, we know that the diagonal elements of STS are the
eigenvalues of GTG. Because GTG is symmetric, we know that such an eigenvalue decomposi-
tion is always possible. Similarly

GGT = U(SST )UT , (17)

where SST is diagonal, and the diagonal elements are the eigenvalues of GGT . The elements
along the diagonal of S are called the singular values of G. It may be surprising (but true) that
the singular value decomposition (15) is possible for any matrix G. The number K of non-zero
singular values is the rank of G.

We are now in the position to prove a few things about the general inverse problem. First, we
define the transformed vectors as being separated into two parts

UTd = d̃ =

[
d̃K

d̃0

]
(18)

VTm = m̃ =

[
m̃K

m̃0

]
(19)

(20)

consisting of the first K components, and the remaining components. All solutions to the problem
of minimizing ||Gm− d||2 are of the form

m = Vm̃ = V

[
m̃K

m̃0

]
(21)

where m̃0 is arbitrary. Prove this by considering (dropping the 2 subscript from here on)

||Gm− d||22 = ||USVTm− d||2 (22)
= ||SVTm−UTd||2 (23)
= ||Sm̃− d̃||2 (24)
= ||SKm̃K − d̃K ||2 + ||d̃0||2. (25)
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The minimum misfit is for
SKm̃K = d̃K , (26)

and the misfit is then ||d̃0||2. Apparently m̃0 has no effect on the misfit. Thus it is in the null space.
For the full rank underdetermined problem, there is no d̃0, and therefore no misfit. For the full rank
overdetermined problem, there is no m̃0 and therefore no null space. The solution with minimum
model size as measured by ||m|| is clearly the one with m̃0 = 0.

Generalized inverse
We can define the generalized inverse (or pseudoinverse, or Moore-Penrose inverse). The

unique minimum length solution to the inverse problem of minimizing ||Gm− d|| is

m = G+d, (27)

where

G+ = VS+UT (28)

S+ =

[
S−1K 0
0 0

]
(29)

Note that SK is easy to invert as it is a diagonal matrix. This is a suitable inverse for you if your
idea of the best model is the one with minimum length as measured by the L2 norm of m.

Practical use of the singular value decomposition

Figure 1: Singular values of a matrix of rank K.

Singular value decompositions have some powerful uses for data analysis, both for carrying
out matrix inversion and also for assessing variability in general. Here are some things to consider.

1. Rank. The singular value decomposition is used primarily because it tells us immediately
about the rank of the problem. Typically, one plots the singular values against their index
numbers (Figure 1). This is often called the “spectrum” of the data kernel. The first K
singular values are nonzero, but some of the nonzero singular values are very small. In
practice, some of these small singular values are set to zero, increasing misfit, but reducing
model size. This sounds similar to the procedure we used in simultaneously minimizing
misfit and model size, because it is essentially the same thing.
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2. Minimizing the model size. Consider the generalized inverse (27), for which the model size
is

||m̃K ||2 = ||S−1K d̃K ||2 =
K∑
i=1

(
s−1i d̃i

)−2
(30)

3. Characterizing misfit. The misfit is contained within the null space of the matrix and is

||d̃0||2 =
N∑

i=K+1

d2i (31)

As small singular values are set to zero, the model size will decrease, while the misfit in-
creases.

4. Assessing the solution covariance. Recall the model covariance matrix, which for the gener-
alized inverse is

〈m′m′T 〉 = G+〈d′d′T 〉G+T . (32)

Substituting the identity matrix for the data covariance matrix yields the unit covariance
matrix:

〈m′m′T 〉u = G+G+T . (33)

Using (28-29) the unit covariance matrix can be written

〈m′m′T 〉u = VS+UTUS+TVT (34)

= V

[
S−1K 0
0 0

] [
S−1K 0
0 0

]
VT (35)

= V

[
S−2K 0
0 0

]
VT (36)

= VKS
−2
K VT

K , (37)

where VK is the matrix made of the first K columns of V. The model variance is domi-
nated by the smallest singular values. The fact that the small singular values dominate the
covariance of m tells us that small, erroneous singular values could corrupt our estimates of
model paramters. This is one more reason to zero out the small singular values, and move
those components of the solution to the null space.

Using singular values to assess dominate modes of variability
The singular value decomposition provides us with a framework for assessing the dominant

patterns of variability in any data set, provided that we can represent the data in a matrix form—
typically with time in one matrix dimension and space in the other dimension. In class, we looked
at examples of checkerboard patterns to gain insight about compact representation of data with a
singular value decomposition.
Example 1: What will the singular value decomposition look like for a checkerboard pattern, as
shown in Figure 2?

A checkerboard has clear alternating patterns. Every row is easily represented by as either +1
or -1 times the other rows. Such as system has one non-zero singular value, one meaningful vector
u1, and one meaningful vector v1.
Example 2: What happens when the pattern is more complicated, as in Figure 3?
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Figure 2: Checkerboard pattern. You could imagine this as a data set consising of alternating
values of +1 and -1.

Figure 3: Structured pattern of variability.

In this case, although the patterns are not predictability repeated, each row can be represented
as either +1 or -1 times the other rows, and each column is +1 or -1 times the other columns. Again
the system has one non-zero singular value, one meaningful vector u1, and one meaningful vector
v1.
Example 3: What happens for a propagating signal, as in Figure 4?

In this case, the rows and columns are not all identical. There are effectively two types of
rows and two types of columns, so 2 non-zero singular values. This is our reminder that propa-
gating patterns necessarily are represented by a singular value decomposition as paired orthogonal
patterns (a sine mode and a cosine mode).
Example 4: What happens for a a highly unstructured signal, as in Figure 5?

In this case, rows and columns are not trivially represented as linear combinations of each
other, and the singular value decomposition will have a high rank (and little compactness in repre-
senting observed variability).
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Figure 4: Propagating signal. You can imagine this to consist of values of +1, 0, and -1, depending
on color.

Figure 5: Unstructured signal.


