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Lecture 15: Generalized matrix inversion and the singular value decomposition

Recap
We’ve been using the singular value decomposition (SVD) to extract the leading modes of

variability in a data set, using an empirical orthogonal function analysis. We represented our
matrix G as

G = USVT , (1)

and we noted that the leading order variability in the data could be represented by the leading
column vecotors of the orthogonal matrices U and V, scaled by the singular values. Today we’re
going to return to one of the primary uses of the SVD, which is to invert a matrix.

To do this, we’ll examine a classic oceanographic problem, determining reference velocities
for to reference geostrophic velocity determined from the thermal wind equations.

Determination of the geostrophic reference velocity using a control volume
Consider the time-honored oceanographic problem of determining a reference velocity for a

geostrophic velocity calculation. Suppose hydrographic stations were made in the form of sections
that enclose a volume of water (Figure 1). Define a coordinate system where x is horizontal
distance along the section enclosing the control volume, and z is vertical. The section can then
be unfolded and visualized in the x–z plane (Figure 2). Using the thermal wind equation, the
geostrophic velocity is

v(x, z) = v0(x)− g

fρ0

∫ z

z0

∂ρ

∂x
(x, z′) dz′ (2)

Here v0 is the reference velocity normal to the section at depth z0, ρ is density, g is gravitational
acceleration, f is the Coriolis parameter, and ρ0 is reference density. In a classic oceanographic
scenario, we measure density as a function of x and z, but we do not know the reference veocity
v0, so our challenge will be to find the best possible estimate of v0. We also want to impose a set
of constraints on the system:

1. The system is in geostrophic balance.

2. Mass is conserved in the closed domain.

3. Water properties are conserved in the closed domain. For example, there is no net heat gain
within the box.

4. The system is in steady state.

5. The level of no motion (or alternatively “known motion”) is relatively siple, and reference
velocities do not oscillate wildly between adjacent stations.

When this question first arose, decades ago, oceanographers questioned whether all of these con-
straints could be met simultaneously. Work guided by Carl Wunsch and his students and collabo-
rators formulated a framework for finding an optimal solution based on these constraints.

We start by discretize for horizontal location m, and vertical location n. Velocity is then

vnm = v0m + v′nm (3)
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where v0m is the unknown depth-independent reference velocity, and v′nm is the known depth-
dependent relative velocity from thermal wind. Conservation of a property Cnm in a vertical range
∆znm implies

M∑
m=1

Cnm(v0m + v′nm)∆znm∆xm = 0 (4)

We suppose there are N such conservation statements for different properties and layers. Then the
components of the data vector, model parameter vector, and data kernel matrix are

dn =
M∑

m=1

Cnmv
′
nm∆znm∆xm (5)

mm = v0m (6)
Gnm = Cnm∆znm∆xnm (7)

We can write conservation statements for mass (Cnm = 1), for temperature or heat, for salt, for
O2, for nutrients and for potential vorticity. We can also require conservation in an arbitrarily large
number of potential density layers. Thus you might suppose that you could set this problem up to
be formally overdetermined so that you could solve for the reference velocities. Unfortunately, this
is easier said than done, for several reasons. First, if you force the problem to have more equations
than unknowns, the rows of G might turn out to be highly correlated, perhaps because the different
variables are highly correlated (e.g. variations in temperature mirror variations in salinity), or
perhaps because adjacent density layers are highly correlated. This will lead to an ill-conditioned
matrix that will not invert. You could run into further problems because you might conclude that
properties are not completely conserved within density layers and that you need to account for
an unknown background diffusivity (or perhaps a vertical advection term) that connects adjacent
layers.

In essence, there are usually more stations in a section (and more unknown reference velocities
vo) than sensible conservation statements. We’ll start by treating this as an underdetermined
problem. It might be argued that all oceanographic inverse problems are underdetermined, as we
never have enough data to determine the complete state of the ocean.

Figure 1: Hydrographic sections extending from the coast and enclosing a volume of water.

Solution 1: Treat as an underdetermined problem
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If we have more unknowns than equations, we can treat this as an underdetermined problem.
We talked about this earlier, and we’ll refresh details now. (See Dan Rudnick’s notes entitled
“reference velocity.pdf” for a continuous version of this problem.) The overall size of the reference
velocities are measured by the size of m:

mTm (8)

In discrete form, we can define a cost function that minimizes the size of the reference velocities
subject to the model requirements:

L =
∑
| =∞Mm∈| ·§〉 − ∈

N∑
〉=∞

λ〉

 M∑
|=∞

G\mm|·§| − d〉

 (9)

Minimizing (9) is a problem in variational calculus. Taking the variation with respect to m, and
setting the result to zero yields

δL =
M∑
|=∞

∈m| − ∈ N∑
〉=∞

λ〉G〉|

 δm|d§ = ′ (10)

Thus, to reach a minimum, the expression in parentheses must be zero:

mj =
N∑
i=1

λiGij (11)

So the smallest model is a linear combination of layer thicknesses. If N = 1, that is we conserve
mass in only one layer, then the best model is simply a scaling of the layer thickness. Substitute
(11) into the constraints (7) to find the Lagrange multipliers λi.

M∑
j=1

N∑
k=1

GijGikλj dx = di (12)

Figure 2: The section of Figure1, unfolded as a function of depth and distance.

Define the N ×N matrix H whose elements are the inner products of the layer thicknesses

Hij =
N∑
k=1

GkiGkj (13)



UCSD—SIOC 221B: (Davis, Rudnick, Gille) 4

or in matrix form
H = GGT (14)

Then (12) can be written as the matrix equation:

Ha = d (15)

where a is the vector of Lagrange multipliers λi and d is the vector of data di. The Lagrange
multipliers are found by solving (15)

a = H−1d (16)

Combining (16) with (11) is the solution we seek.

m = GT (GGT )−1d, (17)

which is referred to as the Moore-Penrose inverse.
In setting up this problem, we choose layer depths consistent with observed potential temper-

ature, or potential density. So, what would be the properties of a good set of layers in the sense
that they improve the determination of the reference velocity? If the layer thicknesses are orthog-
onal, then H would be diagonal, and all N constraints would provide useful information. On the
other hand if some of the layer thicknesses are similar, then H would have small eigenvalues, and
the solution would be unstable with large values in the regions where there are small differences
between layer thicknesses.

Referring back to the formulation of this problem lecture, the matrix H is approximated by
GGT . The singular values of G correspond to the square roots of the eigenvalues of H. The
simplest form of this problem considers only mass conservation within each layer. When we
include tracers in this problem, assuming that heat and salt are conserved within layers, how does
the solution improve? For a tracer ci, the conservation statement is expressed in (5).

If Cnm is a constant, that is it does not vary along a section, then adding the tracer would
add no information. To add information, the tracer should be linearly independent of the layer
thicknesses. An “ideal” tracer would be one for which:

N∑
i=1

CijGijGik = 0 (18)

for all combinations of j and k.
In mathematical terms, this is the reason why oceanographers spend so much time looking at

tracers.
The null space of our inverse problem consists of all vectors q for which

N∑
i=1

qiGij = 0 (19)

for all i. Any solution of the form
m̂ = m + q (20)

would satisfy the constraints (5-7), but would be larger than m by the measure defined by (8).
When we solve this problem, we build the station spacing (the width of each cell, ∆xi) into

the matrix G. That could influence the relative the final solution, since our minimizationof mTm
places equal weight on eqch velocity, while our solution to Gm− d will assign less cost to nar-
rower boxes. We could tune this by defining a weight matrix Wm to account for varying column
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widths, so that we minimized the width-weighted reference velocity m′ = W
1/2
m m. In this case,

the column-weighted solution becomes

m = W−1/2
m (W−1/2

m GT )(GW−1
m GT )−1d. (21)

Solution 2: Row weight and column weight
Once we introduce to this problem the possibility of column weighting by data uncertainty as

well as row weighting, you might conclude that we should be able to manage the overdetermined
version of this problem, using the column weighting to prefernt the matrix from being singular.
This could potentially help us out. In this case, we’d look for a solution of the form:

m = (GTW−1
e G + λW−1

m )−1GTW−1
e d (22)

In this case adding W−1
m to the diagonal of the matrix that we invert will stabilize the inversion.

Low uncertainties or small covariances imply large weights, which will stabilize the inversion (and
force it to deviate less from a prior guess of zero).

Solution 3: Solve using SVD
Our final strategy for this inversion problem is to compute the singular value decomposition.

In this case
G = USVT , (23)

and the solution becomes

m =
K∑
l=1

αlvl =
K∑
l=1

uT
l d

sl
vl, (24)

where αl are coefficients for the lth singular vector vl, taken from the lth column of the orthonormal
matrix V. Likewise ul represents the lth singular vector taken as the lth column of the orthonormal
matrix U. The singular value sl is the lth value from the diagonal of S.

This solution is sensitive to the number of singular values that we decide to use. If the matrix
G is full rank, we would have K = M , where M is the number of columns in G. But assuming
the matrix is singular or near singular, we should truncate the solution to avoid using the zero or
near-zero singualr values. In matrix form the equation becomes

m = VKS
−1
K UT

Kd (25)

By choosing K we control the size of the solution and the size of the null space. Smaller values of
K imply smaller m—smaller reference velocities. And the K + 1 to M or K + 1 to N define the
null space.

Synopsis: How to infer reference velocities
Here’s a quick synopsis of the approach to inverting to find reference velocieies.

1. Use the measured data to set up a system of equations of the form Gm = d. Guess the
unknown initial reference velocity. You will solve for anomalies relative to this initial guess.

2. When you set up the system of equations, sort the data by isopycnal (or isotherm) and assume
conservation of mass, heat, salt, and other properties within each layer.

3. Column weight the matrix G by height and width. Row weight based on data uncertainties.
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4. Solve for reference velocities. Since the problem is intrinsically underdetermined, constrain
the solution to be as small as possible.

Resolution matrices
A sensible question given an inverse solution is how well the data and the model parameters

are resolved. This question is addressed through the resolution matrices.

Data resolution matrix
Assume that an estimate of the model parameter vector m is

m̂ = G−gd (26)

So, how well does our estimated data d̂ match our measured data d? Answer this question as
follows:

d̂ = Gm̂ = GG−gd (27)

We define an N ×N matrix
N = GG−g, (28)

which is called the data resolution matrix. If N = I then the predicted and measured data are
equal. If the data possess a natural ordering, the rows of N are an approximation to a delta function
(Figure 3). That is, the rows tell how well the data are resolved. An identity matrix infers perfect
resolution. Off diagonal elements imply smoothing.

Figure 3: The data resolution matrix represented graphically. The rows are the approximation to
the delta function implied by the inverse solution.

Consider the pseudoinverse
G+ = VS+UT (29)

The data resolution matrix in this case is

N = GG+ (30)
= USVTVS+U (31)
= USS+UT (32)

= U

[
I 0
0 0

]
UT (33)

= UKU
T
K (34)
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where UK is the N ×K matrix made of the first K columns of U, and K is the rank of G.

Model resolution matrix
How well does our estimate of the model parameters m̂ match the true model parameters m0?

Address this question as follows

m̂ = G−gd = G−gGm0 (35)

The M ×M matrix
R = G−gG (36)

is called the model resolution matrix. The rows of R are approximations to the delta function, in
direct analogy with the data resolution matrix. For the pseudoinverse

R = G+G = VKV
T
K (37)

where VK is the M ×K matrix made of the first K columns of V, and K is the rank of G.
Having good resolution of data and model parameters is a reasonable goal for an inverse. In

fact, one can optimize resolution, by minimizing some measure of the difference between N, R,
and the identity matrix. If a suitable measure is chosen, the solutions are identical to some we have
already derived by minimizing L2 norms of misfit and model size.
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