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I. Why statistics? 

This course addresses the analysis of oceanographic observations and, as they become 
more complex, ocean models. Much of the material involves statistical procedures, which may 
appear foreign to students raised on a diet of deterministic, mathematical problems. The purpose 
of this lecture is to explain why a statistical perspective is appropriate in oceanography.  Many of 
you have already taken a quarter of data analysis, and you’ve begun to think about these data and 
statistics in a variety of ways.  Nonetheless, to start off this quarter, we still want to take a step 
back and think about the big picture issues. 

Even if we accept the proposition that the ocean can be exactly described by deterministic 
equations, there are three reasons why a statistical approach is practical. 

1. The ocean is complex, requiring the specification of many variables, in fact, 
many more than can be observed. 

2. The ocean is nonlinear, so that groups of variables cannot be studied in 
isolation. 

3. Ocean observations are not controlled; all variables change as the system 
evolves. 

Example of reason 1. 

Suppose we could write Newton’s law applied to molecules to provide a complete, 
deterministic description of the ocean, 

 , (1) 

where  is the mass of the molecule at , t is time, and  is the force on molecule i depending 
on all other molecules. Writing these equations would be a challenge, to say the least. To get an 
idea of the magnitude of the challenge, we calculate the number of molecules of water in the 
ocean, given that the mass of the ocean is 1.4×1024 g, 

 . (2) 

Putting aside the question of how we determine the force on each molecule, initial conditions 
would be the position and velocity in three dimensions of each molecule. A complete initial 
specification would then require 2.8×1047 numbers. That this is a practically large number, 
consider the memory in a typical laptop computer, for example, with 32 GB RAM. If we were to 
store these numbers in single precision format requiring 4 bytes, we would need 3.5×1037 
laptops. 
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It is impractical to study the ocean by following the motion of molecules, so the approach 
is to treat the ocean as a continuous medium. We define a volume that is large enough to contain 
many molecules, and then a continuum velocity would be 

  (3) 

where the sum is over the volume. This is a mass weighted average over the volume, and is thus 
a statistical quantity. The volume must be defined so that it has many particles, and so that the 
smallest motions in the ocean are much larger than the volume. This is the case for a volume of 
about 1 mm on a side. There are 

  (4) 

such volumes in the ocean, which is still a large number. Clearly, there are more variables than 
can practically be observed or specified, so the ocean is complex. 

Example of reason 2. 

The equation governing the momentum of a viscous fluid is the Navier-Stokes equation 

  (5) 

which can be derived by application of (3) (Salmon 1998). The terms on the rhs are pressure 
gradient, gravity, and viscous friction. We have already concluded that it is impractical to apply 
this equation to the small volume used to define the continuum velocity in (3). The way forward 
is to do some more averaging until we finally get to a problem with few enough variables to 
specify that we can use our computer to solve it. 

Imagine an average that separates the “large-scale” features that we plan to treat as 
deterministic from the “small-scale” stuff that we will consider random. Denoting the average as 

,  is 
  (6) 
where  (7) 
which makes explicit the separation into “large-scale” , and “small-scale” . In the 
following we assume incompressibility 
  (8) 
Applying the averaging operator demonstrates that both large and small scale flow obey (8). 
Now consider the lhs of (5) for one component of the velocity  

  (8) 

Applying the average to this expression, and assuming that partial derivatives and averaging can 
be done in any order, produces  

  (9) 
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The small-scale velocity unfortunately appears in the expression for the time rate of change of 
large-scale velocity. So our planned separation is not as simple as we might have hoped. In fact, 
we need to know the statistics of the small-scale in order to describe the large-scale. This last 
term in the expression is called the Reynolds stress, and its specification is one of the great 
unsolved problems in fluid mechanics. 

“I am an old man now, and when I die and go to Heaven there are two matters on which I 
hope enlightenment. One is quantum electro-dynamics and the other is turbulence of fluids. 
About the former, I am really rather optimistic.” Sir Horace Lamb, 1932. 

“There is a physical problem that is common to many fields, that is very old, and that has 
not been solved. It is the analysis of turbulent fluids.” Richard Feynman, 1963. 

The Reynolds stress appears because advection is nonlinear, making it so that the large-
scale flow cannot be studied in isolation of the small-scale flow. In general, parts of a nonlinear 
system cannot be studied in isolation. This is in marked contrast to linear systems, where, for 
example, waves of a single frequency can be studied in isolation of waves of all other 
frequencies. Acoustic waves in the ocean approach the ideal of linearity. Most other processes in 
the ocean are intrinsically nonlinear. Processes in the ocean that we may not wish to address then 
affect what does interest us in ways that are difficult to predict, and may appear to us to be 
random. Thus, a statistical approach is reasonable. 

Example of reason 3. 

An oceanographer attempting to observe the ocean is doing something much different 
from a physicist doing an experiment in a laboratory. The quality of the physicist’s experiment is 
often determined by how well extraneous factors are controlled so that the desired variable is 
measured with high accuracy. The best experimentalists are distinguished by their skill in 
devising effective controls. In contrast, oceanographers control almost nothing of what goes on 
in the ocean. An oceanographer interested in studying the general circulation will encounter 
tides, internal waves, eddies, turbulence, etc. which will confound observations. These 
uncontrolled processes may sometimes be usefully thought of as random, and statistical 
approaches are useful. 

Suppose we want to calculate the mean ocean surface temperature at the Scripps pier. We 
could get all the data over the past 100 years and calculate the mean, but is that really what is 
desired? Should we account for the four seasons, and have a mean value for each? What about El 
Niños, which have a clear effect on temperature? In the end, we have to define over what data we 
average, and then our mean will reflect that choice. 

This example requires us to define what we intent to be “signal” (mean temperature), and 
what processes are “noise” (seasons, El Niños, internal waves, etc.). By defining an average, we 
make explicit the separation between signal and noise we will get. Finally, there are a number of 
statistical tools we can use once we have defined the average. Defining signal and noise, and 
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determining an ensemble over which to average are challenging; doing this intelligently is what 
makes a great observational scientist. Learning the statistical tools is easier, and is the subject of 
this class. 

Lorenz model (demo) 

In 1963, Ed Lorenz devised a model that encapsulates some of the complex issues laid 
out so far.  This simple, deterministic model has only 3 variables and 3 equations, but its 
evolution appears to have random elements: 

  (10) 

We solve these equations using σ=10, ρ=30, β=8/3, from t=0 to 100. Consider the plot of X 
against Z, a plot of the phase plane (Figure 1). As you watch the phase plane fill in as a function 
of time, you can see that it is essentially impossible to predict where the trajectory is going. X 
takes on values in either one of the “butterfly wings” in a detailed pattern (Figure 2). The reason 
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Figure 1. Phase plot of X and Z for the Lorenz model (10).
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this may appear random is that we don’t see Y in this plot. As the set of equations is 
deterministic, given values of all three variables the trajectory is exactly determined. One feature 
of apparent randomness is the crossings of trajectories. Given only X and Z at these points, it is 
impossible to know which branch the trajectory will take. 
 The results of this profoundly shape what we do. The Lorenz equations underscore the 
complexity of the ocean, the impact of nonlinearities, and the ways in which variables change as 
a system evolves. In the realm of prediction and predictability, the Lorenz equations tell us that 
model results are sensitive to boundary conditions, is we want to make accurate predictions, we 
need well constrained estimates of our initial conditions, that small anomalies (whether noise or 
just unusual features) can have big impacts on simulations.  

Pseudorandom numbers 

There are many ways to generate “pseudorandom” numbers on a computer. Because the 
numbers are generated on a computer, which can only do reproducible, deterministic 
calculations, the numbers are not truly random, so the term pseudorandom is used. A good 
pseudorandom generator takes on all possible values between 0 and 1, and has a very long period 
before it repeats. The pseudorandom generator on matlab rand  uses the “Mersenne twister” 
algorithm and has a period of (219937-1)/2. A time series created by using rand to make 3892 
values at the same times as those from the Lorenz simulation takes is shown in Figure 3.  
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Figure 2. Time series of X for the Lorenz model (10).
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Figure 3. A series of uniformly distributed pseudorandom number between 0 and 
1.
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