Lecture 4: Conditional probability and correlation

Recap

Lecture 3 examined transformation from one probability density function to another and also joint probabiility density functions. We ended by paving the way for looking a conditional probability. This lecture will examine conditional probability density function in more detail and then look at correlation.

We finished up by writing out formal definitions for conditional probability:

$$
\begin{equation*}
F_{x}(r \mid s)=\text { probability that } r<x \leq r+d r \text { given that } y=s \tag{1}
\end{equation*}
$$

When we count points in a given bin, we can say that out of N points total, the bin defined by $r<x \leq r+d r, s<y \leq s+d s$ will contain $N F_{x y}(r, s) d r d s$ points. If we consider a slice defined by $s<y \leq s+d s$, for any value of r, it will contain $N F_{y}(s) d s$ points. The fraction in $r<x \leq r d r$ given that $y=s$ is

$$
\begin{equation*}
F_{x}(r \mid s) d r=\frac{N F_{x y}(r, s) d r d s}{N F_{y}(s) d s} \tag{2}
\end{equation*}
$$

and the conditional pdf is

$$
\begin{equation*}
F_{x}(r \mid s)=\frac{F_{x y}(r, s)}{F_{y}(s)} \tag{3}
\end{equation*}
$$

Bayes' Theorem

The formal definition for conditional probability can be written for r in terms of s, or for s in terms of y. We have

$$
\begin{equation*}
F_{x}(r \mid s)=\frac{F_{x y}(r, s)}{F_{y}(s)} \tag{4}
\end{equation*}
$$

and also

$$
\begin{equation*}
F_{y}(s \mid r)=\frac{F_{x y}(r, s)}{F_{x}(r)} \tag{5}
\end{equation*}
$$

We can combine these in a number of ways:

$$
\begin{equation*}
F_{x}(r \mid s)=\frac{F_{y}(s \mid r) F_{x}(r)}{F_{y}(s)} \tag{6}
\end{equation*}
$$

Equivalently:

$$
\begin{equation*}
F_{x}(r \mid s)=\frac{F_{y}(s \mid r) F_{x}(r)}{\int_{-\infty}^{\infty} F_{x y}(r, s) d r}=\frac{F_{y}(s \mid r) F_{x}(r)}{\int_{-\infty}^{\infty} F_{y}(s \mid r) F_{x}(r) d r} \tag{7}
\end{equation*}
$$

This expression is called Bayes' Theorem and provides a formal framework for considering the probability of an event given prior knowledge.

If the random variables x and y are independent, then $F_{x}(r \mid s)$ is independent of s, which implies from (4) that

$$
\begin{equation*}
F_{x y}(r, s)=F_{x}(r) F_{y}(s) \tag{8}
\end{equation*}
$$

General form of joint Gaussian pdf

To place the formal definitions in context, consider a joint pdf for independent Gaussian variables:

$$
\begin{align*}
F_{x y}(r, s) & =\frac{1}{\sqrt{2 \pi} \sigma_{x}} \exp \left(\frac{-r^{2}}{2 \sigma_{x}^{2}}\right) \frac{1}{\sqrt{2 \pi} \sigma_{y}} \exp \left(\frac{-s^{2}}{2 \sigma_{y}^{2}}\right) \tag{9}\\
& =\frac{1}{2 \pi \sigma_{x} \sigma_{y}} \exp \left[\frac{-1}{2}\left(\frac{r^{2}}{\sigma_{x}^{2}}+\frac{s^{2}}{\sigma_{y}^{2}}\right)\right] . \tag{10}
\end{align*}
$$

If x and y are uncorrelated, the joint pdf is either isotropic (if $\sigma_{x}=\sigma_{y}$) or has no tilt.
We can write the joint Gaussian distribution in a general form for a collection of variations $x_{1}, x_{2}, \ldots x_{N}$, with $\sigma_{1}=\sigma_{2}=1$:

$$
\begin{equation*}
F_{x_{1} x_{2} \ldots . .}\left(r_{1}, r_{2} \ldots\right)=(2 \pi)^{-N / 2} \exp \left[-\frac{1}{2} \sum_{i=1}^{N} r_{i}^{2}\right] \tag{11}
\end{equation*}
$$

Of course things change if we have two correlated variables, and in class we looked at the joint pdf that emerges from correlated noise, for example when x is drawn from a Gaussian distribution and $y=x+r$, where r is noise drawn from a Gaussian distribution. We also looked at the correlation of y and z when $z=x+s$, where s is different from r and also drawn from a Gaussian distribution. Both cases result in a tilted joint pdf, providing clear evidence that x and y (or x and z) are correlated.

```
% define correlated noise
x=randn(100000,1); y=randn(100000,1)+x;
z=randn(100000,1)+x;
% plot joint pdf for x and y
histogram2(x,y,'Normalization','pdf','Displaystyle','tile')
% plot joint pdf for y and z
histogram2(y,z,'Normalization','pdf','Displaystyle','tile')
```


Covariance

Calculating the joint pdf is often more than we can accomplish from real data. The covariance is a simple statistic relating variables x and y :

$$
\begin{equation*}
C_{x y}=\left\langle x^{\prime} y^{\prime}\right\rangle \tag{12}
\end{equation*}
$$

where the primes indicate that these are fluctuations about the mean. The covariance of a variable with itself is the variance:

$$
\begin{equation*}
C_{y y}=\left\langle y^{\prime} y^{\prime}\right\rangle \tag{13}
\end{equation*}
$$

The correlation is sort of a normalized covariance:

$$
\begin{equation*}
\rho_{x y}=\frac{\left\langle x^{\prime} y^{\prime}\right\rangle}{\sqrt{\left\langle x^{\prime 2}\right\rangle\left\langle y^{\prime 2}\right\rangle}} \tag{14}
\end{equation*}
$$

How can we interpret the correlation. Let's consider a linear model, where y is a linear function of x. In the following, we assume that variables x and y zero means, or equivalently
that they have had their means removed, so the primes are dropped. A linear relationship between modeled \hat{y} and measured x is

$$
\begin{equation*}
\hat{y}^{\prime}=\alpha x^{\prime} \tag{15}
\end{equation*}
$$

where α is a constant chosen to make haty approximate y.
We could also write this in a more general form as a matrix equation to fit lots of coefficients α_{j} to multiple form of data. In general form, we would write

$$
\begin{equation*}
y_{i}=\sum_{j=1}^{N} A_{i j} \alpha_{j} \tag{16}
\end{equation*}
$$

where the elements of $A_{i j}$ represent the j th element of data type i. As a matrix equation we would write

$$
\begin{equation*}
\mathbf{y}=\mathbf{A} \alpha \tag{17}
\end{equation*}
$$

where \mathbf{y} is a vector with M elements, α is a vector with N elements, and \mathbf{A} is an $M \times N$ matrix. We'll come back to this case later.

Let's continue with the one variable fit that we're considering now. We choose to minimize the mean-square error (mse):

$$
\begin{equation*}
\epsilon=\left\langle(\hat{y}-y)^{2}\right\rangle=\alpha^{2}\left\langle x^{2}\right\rangle-2 \alpha\langle x y\rangle+\left\langle y^{2}\right\rangle . \tag{18}
\end{equation*}
$$

The best α in the sense that the mse is minimized is found by differentiating with respect to α, setting the result equal to zero, and solving for α. Because $\epsilon \rightarrow \infty$ as $\alpha \rightarrow \pm \infty$, the result is a minimum.

$$
\begin{equation*}
\frac{\partial \epsilon}{\partial \alpha}=2 \alpha\left\langle x^{2}\right\rangle-2\langle x y\rangle=0 \tag{19}
\end{equation*}
$$

Thus:

$$
\begin{equation*}
\alpha=\frac{\langle x y\rangle}{\left\langle x^{2}\right\rangle} \tag{20}
\end{equation*}
$$

The term α is a regression coefficient, and it assumes a fully linear relationship between x and y.
If we plug α into the equation for the mse, we can find the misfit

$$
\begin{align*}
\epsilon & =\alpha^{2}\left\langle x^{2}\right\rangle-2 \alpha\langle x y\rangle+\left\langle y^{2}\right\rangle \tag{21}\\
& =\frac{\langle x y\rangle^{2}}{\left\langle x^{2}\right\rangle}-2 \frac{\langle x y\rangle^{2}}{\left\langle x^{2}\right\rangle}+\left\langle y^{2}\right\rangle \tag{22}\\
& =\left\langle y^{2}\right\rangle\left(1-\frac{\langle x y\rangle^{2}}{\left\langle x^{2}\right\rangle\left\langle y^{2}\right\rangle}\right) \tag{23}\\
& =\left\langle y^{2}\right\rangle\left(1-\rho_{x y}^{2}\right) \tag{24}
\end{align*}
$$

Thus the mean-squared error (the mse) is related to the variance of the quantity that we were trying to fit $\left(\left\langle y^{2}\right\rangle\right)$ multipled by 1 minus the correlation coefficient squared.

