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Lecture 4: Conditional probability and correlation

Recap
Lecture 3 examined transformation from one probability density function to another and also

joint probabiility density functions. We ended by paving the way for looking a conditional prob-
ability. This lecture will examine conditional probability density function in more detail and then
look at correlation.

We finished up by writing out formal definitions for conditional probability:

Fx(r |s) = probability that r < x ≤ r + dr given that y = s. (1)

When we count points in a given bin, we can say that out of N points total, the bin defined by
r < x ≤ r + dr, s < y ≤ s + ds will contain NFxy(r, s) dr ds points. If we consider a slice
defined by s < y ≤ s + ds, for any value of r, it will contain NFy(s) ds points. The fraction in
r < x ≤ r dr given that y = s is

Fx(r |s) dr =
NFxy(r, s) dr ds

NFy(s) ds
(2)

and the conditional pdf is

Fx(r |s) =
Fxy(r, s)

Fy(s)
(3)

Bayes’ Theorem
The formal definition for conditional probability can be written for r in terms of s, or for s in

terms of y. We have

Fx(r |s) =
Fxy(r, s)

Fy(s)
(4)

and also

Fy(s |r ) =
Fxy(r, s)

Fx(r)
(5)

We can combine these in a number of ways:

Fx(r |s) =
Fy(s|r)Fx(r)

Fy(s)
(6)

Equivalently:

Fx(r |s) =
Fy(s|r)Fx(r)∫∞
−∞ Fxy(r, s) dr

=
Fy(s|r)Fx(r)∫∞

−∞ Fy(s|r)Fx(r) dr
(7)

This expression is called Bayes’ Theorem and provides a formal framework for considering the
probability of an event given prior knowledge.

If the random variables x and y are independent, then Fx(r|s) is independent of s, which
implies from (4) that

Fxy(r, s) = Fx(r)Fy(s). (8)

General form of joint Gaussian pdf
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To place the formal definitions in context, consider a joint pdf for independent Gaussian vari-
ables:

Fxy(r, s) =
1√
2πσx

exp

(
−r2

2σ2
x

)
1√
2πσy

exp

(
−s2

2σ2
y

)
(9)

=
1

2πσxσy
exp

[
−1
2

(
r2

σ2
x

+
s2

σ2
y

)]
. (10)

If x and y are uncorrelated, the joint pdf is either isotropic (if σx = σy) or has no tilt.
We can write the joint Gaussian distribution in a general form for a collection of variations

x1, x2, ...xN , with σ1 = σ2 = 1:

Fx1x2....(r1, r2...) = (2π)−N/2 exp

[
−1

2

N∑
i=1

r2i

]
(11)

Of course things change if we have two correlated variables, and in class we looked at the joint
pdf that emerges from correlated noise, for example when x is drawn from a Gaussian distribution
and y = x + r, where r is noise drawn from a Gaussian distribution. We also looked at the
correlation of y and z when z = x+ s, where s is different from r and also drawn from a Gaussian
distribution. Both cases result in a tilted joint pdf, providing clear evidence that x and y (or x and
z) are correlated.

% define correlated noise
x=randn(100000,1); y=randn(100000,1)+x;
z=randn(100000,1)+x;

% plot joint pdf for x and y
histogram2(x,y,’Normalization’,’pdf’,’Displaystyle’,’tile’)

% plot joint pdf for y and z
histogram2(y,z,’Normalization’,’pdf’,’Displaystyle’,’tile’)

Covariance
Calculating the joint pdf is often more than we can accomplish from real data. The covariance

is a simple statistic relating variables x and y:

Cxy = 〈x′y′〉, (12)

where the primes indicate that these are fluctuations about the mean. The covariance of a variable
with itself is the variance:

Cyy = 〈y′y′〉. (13)

The correlation is sort of a normalized covariance:

ρxy =
〈x′y′〉√
〈x′2〉〈y′2〉

. (14)

How can we interpret the correlation. Let’s consider a linear model, where y is a linear
function of x. In the following, we assume that variables x and y zero means, or equivalently
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that they have had their means removed, so the primes are dropped. A linear relationship between
modeled ŷ and measured x is

ŷ′ = αx′, (15)

where α is a constant chosen to make haty approximate y.
We could also write this in a more general form as a matrix equation to fit lots of coefficients

αj to multiple form of data. In general form, we would write

yi =
N∑
j=1

Aijαj, (16)

where the elements of Aij represent the jth element of data type i. As a matrix equation we would
write

y = Aα, (17)

where y is a vector with M elements, α is a vector with N elements, and A is an M ×N matrix.
We’ll come back to this case later.

Let’s continue with the one variable fit that we’re considering now. We choose to minimize
the mean-square error (mse):

ε = 〈(ŷ − y)2〉 = α2〈x2〉 − 2α〈xy〉+ 〈y2〉. (18)

The best α in the sense that the mse is minimized is found by differentiating with respect to α,
setting the result equal to zero, and solving for α. Because ε → ∞ as α → ±∞, the result is a
minimum.

∂ε

∂α
= 2α〈x2〉 − 2〈xy〉 = 0. (19)

Thus:

α =
〈xy〉
〈x2〉

(20)

The term α is a regression coefficient, and it assumes a fully linear relationship between x and y.
If we plug α into the equation for the mse, we can find the misfit

ε = α2〈x2〉 − 2α〈xy〉+ 〈y2〉 (21)

=
〈xy〉2

〈x2〉
− 2
〈xy〉2

〈x2〉
+ 〈y2〉 (22)

= 〈y2〉
(
1− 〈xy〉2

〈x2〉〈y2〉

)
(23)

= 〈y2〉
(
1− ρ2xy

)
(24)

Thus the mean-squared error (the mse) is related to the variance of the quantity that we were trying
to fit (〈y2〉) multipled by 1 minus the correlation coefficient squared.


