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Lecture 6: Diffusivity from random walk, autocovariance, and decorrelation

Recap
In Lecture 5, we examined variance ellipses as a means to characterize a joint pdf. We then

considered the a random walk, which we linked to the central limit theorem. For the random walk,
we considered the net displacement of a particle from time step 0 to time step N :

xN = x0 + ∆t
N∑

n=1

vn, (1)

with
〈vn〉 = 0. (2)

Assuming we define xO = 0 (for housekeeping purposes, then the mean position 〈xN〉 will con-
verge to 0. But the spread of possible values of xN , that is the variance will increase linearly with
total elapsed time tN = N∆t:

〈x2N〉 == (∆t)〈v2tN . (3)

We employed this in the definition of diffusivity, which describes the time rate of change of
the variance of position:

k =
1

2

d〈x2〉
dt

=
1

2
〈v2〉∆t. (4)

And we looked at numerical experiments that showed this amazing spread.
The second numerical case we looked at asked how the variance of position would change if

we normalized it by the number of time steps—that is if we asked about the average displacement
per time step. In that case, we saw that everything converged to zero—this is what we’d expect,
and we’ll explore this point a little further in this lecture.

Spread of a tracer concentration
Now that we’ve defined diffusivity, we can ask how a patch of tracer might spread out. The

diffusivity k, plugged into our equation linking 〈x2〉 and 〈v2〉 tells us that

〈x2〉 = 2kt. (5)

Let’s consider a tracer of mass M released from the origin. Over time, it is pushed around
by multiple random velocity impulses. Since the sum of many random events has a Gaussian
distribution that depends on its variance 〈x2〉. Thus the tracer concentration Γ:

Γ(r, t) =
M√
2πkt

exp

(
−r2

4kt

)
. (6)

If this works, then the tracer distribution should be consistent with the diffusion equation:

∂Γ

∂t
= k

∂2Γ

∂x2
. (7)

Does this work? Plug (6) into (7) to check.
Of course, in real world examples, tracer is also advected by a mean flow, so we should

augment our diffusion equation with an advection term.

∂Γ

∂t
+ ~v · ∇Γ = k

∂2Γ

∂x2
. (8)
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Sampling errors
We started out this class by defining the true mean of our data:

〈x〉 = lim
N→∞

1

N

∞∑
n=1

xn (9)

This definition makes sense, but it defies the reality of our world: we never have infinite data, and
the systems we sample are not necessarily stationary (with consistent, invariant statistics) over all
time. This means that we need to compute not true statistics, but sample statistics. We now wish
to determine the accuracy of our sample statistics to aid in interpretation. The difference between
the true and sampling statistics is called the sampling error.

The sampling mean is defined as

{x} =
1

N

N∑
n=1

xn. (10)

Note the use of curly braces as a notation for the sample mean. The distinguishing factor between
(9) and (10) is that the sample mean is computed over a finite number of realizations.

Consider the problem of estimating the true mean with the sample mean. Suppose the sample
mean were calculated an infinite number of times, then we could consider the mean of the sample
mean, and compare it to the true mean. The bias is defined to be the mean difference between the
sample mean and the true mean:

E1 = 〈{x} − 〈x〉〉 = 〈 1

N

N∑
n=1

xn〉 − 〈x〉 =
1

N

N∑
n=1

〈xn〉 − 〈x〉 =
1

N
(N〈x〉)− 〈x〉 = 0. (11)

This tells us that the sample mean is unbiased relative to the true mean: in the limit of many
samples, the sample mean converges to the true mean.

Now think about the variance of the the sample mean:

E2 = 〈[{x} − 〈x〉]2〉 = 〈

(
1

N

N∑
n=1

xn − 〈x〉

)2

〉. (12)

Moving the true mean inside the sum results in

E2 = 〈

(
1

N

N∑
n=1

[xn − 〈x〉]

)2

〉. (13)

The quantity in square brackets in (??) is the fluctuation, so

E2 =
1

N2
〈

(
N∑

n=1

[x′n]

)2

〉. (14)

The average squared sum of fluctuations is the sum over all elements of the covariance matrix of
the fluctuations

E2 =
1

N2

N∑
n=1

N∑
m=1

〈x′nx′m〉. (15)
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Assuming the fluctuations are independent with equal variance then

E2 =
1

N2

N∑
n=1

N∑
m=1

δnmσ
2 =

σ2

N
. (16)

So the variance decreases as the inverse of N. The square root ofE2 is called the root-mean-square
error or the standard error, and decreases as the inverse of the square root of N :√

E2 =
σ√
N
. (17)

Recognizing this improvement of error by N−1/2 is key to understanding many measures of sta-
tistical uncertainty. This result also illustrates a parallel between sampling error and the random
walk (which showed that variance of position expanded like N rather than N2).

The rms error defined by E2 depends on the true variance. Now let’s consider the thornier
situation when we are constrained by limited sampling. Our estimate of the variance of anomalies
x′ is:

σ̂2 =
{
x′2
}
. (18)

The mean of this estimate is:

〈σ̂2〉 =
1

N

N∑
n=1

〈x′2〉 = σ2, (19)

so this estimate of variance is unbiased. The variance of the estimate of variance is:

F2 ≡ 〈
({
x′2
}
− σ2

)2〉 =
1

N2

N∑
n=1

N∑
m=1

〈x′2nx′2m〉 − σ4. (20)

In estmating F2, we’ve used (19) which means that the cross terms (〈{x′2}σ2〉) produce 2σ4. Now
assuming that the fluctuations x′n and x′m are independent,

F2 =
1

N2

[
N(N − 1)σ4 +N〈x′4〉

]
− σ4 =

1

N

(
〈x′4〉 − σ4

)
. (21)

Thus the error in the variance depends on the fourth moment. This is a problem of closure. To
determine the error of any statistic we need to know a higher order statistic.

Now, let’s come back to the potential bias in our estimate σ̂2 in the real-world scenario when
the true mean 〈x〉 is unknown, and we’re stuck working with {x}. In this case, we know that we
want σ̂2 to be unbiased relative to the true σ2, but we might need to do a little adjustment. We’ll
define:

σ̂2 = A
{

(x− {x})2
}
, (22)

where A is an unknown adjustment parameter that we want to find. Then

F1 = 〈σ̂2 − σ2〉 (23)
= A〈

{
(x− {x})2

}
〉 − σ2 (24)

= A〈
{

[(x− 〈x〉)− ({x} − 〈x〉)]2
}
〉 − σ2 (25)

= A〈
{
x′2
}
− ({x} − 〈x〉)2〉 − σ2, (26)
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where we have assumed no correlation between errors in the mean ({x} − 〈x〉) and the individual
anomalies (x− 〈x〉). This leads to

F1 = A〈σ2 − σ2

N
〉 − σ2 (27)

= Aσ2

(
1− 1

N

)
− σ2 (28)

= 0, (29)

implying that in order to obtain zero bias,

A =
N

N − 1
. (30)

In essence, when we compute the mean from the original data, we lose a degree of freedom, so we
need to compute the standard deviation by assuming N − 1 degrees of freedom as a normaliza-
tion, rather than N degrees of freedom. Software packages that compute standard deviation (e.g.
Matlabs “std” function) take this into account.

Correlated uncertainties and degrees of freedom
We’ve been considering idealized situations in which random variables xn are completely

independet, so that the covariance of x is of the form:

〈x′nx′m〉 = σ2δnm. (31)

This works well if your random variables come from a random number generator, but not so well
if they come from geophysical quantities that are sampled more rapidly in time (or space) than
the system actually evolves. In reality variables that are closely spaced in time or space tend to be
correlated. If the statistics are stationary, then the covariance between measurements might depend
only on their separation. For example:

〈x′nx′m〉 = σ2ρ(|n−m|) (32)

We can compute the autovariance of x with itself at multiple lags as a lagged covariance. (In
Matlab you can do this with the function “xcov”.) There are some things to keep in mind.

1. For a record of finite length, the number of data pairs that we can average to compute the
autocovariance varies with the size of the lag. For a record with N values, at zero lag, the
autocovariance is an average of N data pairs. At lag n, it is an average of N − n data pairs.
This means that our estimate of the autocovariance has larger uncertainty for larger lags.

2. To deal with the uncertainties in pairs, the default in Matlab is to compute a “biased” auto-
covariance, by scaling the autocovariance by (N − |n|)/N so that the autocovariance tapers
to zero at large lag.

3. You can also compute an “unbiased” autocovariance, which will compute the average covari-
ance based on the available number of pairs. This works well near zero lag, when you can
average over many pairs, but it has the downside of producing a highly uncertain covariance
for large lag.
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4. The autocovariance has units, corresponding to the units of the data squared. For many
calculations, we want the autocorrelation rather than the autocovariance—that is we want an
autocorrelation that varies between -1 and +1 and that is unitless. In Matlab, we can compute
this using the “coeff” flag, which produces values consistent with correlation coefficients.

Now let’s think about an example. Consider the case of random variables that are each re-
peated 10 times in our data record. In class we produced a data record using the following lines of
Matlab code:

% first define a set of random numbers
N=1000;
x=randn(N,1);
% now make them repeat 10 times
y=x*ones(1,10);

% plot this out: is it right?
plot(y(:))
% no, this case visibly repeats the entire record 10 times.
% that’s just because when we convert from a matrix to a vector,
% Matlab does this by concatenating the columns of the matrix.
%
% If we were using python, the data storage would be inverted.

% take the transpose and plot a subset
z=y’;
plot(1:200,z(1:200))
xlabel(’time step’,’FontSize’,14)
ylabel(’random data value’,’FontSize’,14)
h=gca;
set(h,’FontSize’,14)
shg
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Once we have our data, which clearly have correlated consecutive values, we can compute the
autocorrelation:

% compute the autocorrelation
Nbig=N*10;
plot(-Nbig+1:Nbig-1,xcov(z(:),’coeff’))
xlabel(’lag’,’FontSize’,14)
ylabel(’autocorrelation’,’FontSize’,14)
h=gca;
set(h,’FontSize’,14)

The zero lag version of this is hard to read, but let’s zoom in on the center of the distribution:

axis([-40 40 -.2 1])

This shows that the autocovariance is effectively a triangle rising from 0 at τ = −10 to 1 at
τ = 0 and then falling to 0 at τ = 10. This might not be what you’d expected, but it’s not entirely
surprising: the autocovariance represents a convolution of the data with itself, and the convolution
of a boxcar distribution with itself is a triangle.

How many data steps should it take to obtain an independent value? In this case we know
that every 10th value is independent, so our “decorrelation scale” is 10 measuremewnts, and the
number of degrees of freedomNeff is the total number of values in z (Nbig) divided by 10, which
is N .

How can we show this more generally? There are a number of heuristic approaches that
people use, but a good formalism is to integrate the autocovariance.

“decorrelation” scale = τeff =

∫ ∞
−∞

ρ(t) dt. (33)
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In this idealized example, that would yield:

τeff =

∫ ∞
−∞

ρ(t) dt (34)

=

∫ 0

−10

(
1 +

t

10

)
+

∫ 10

0

(
1− t

10

)
(35)

=

(
t+

t2

20

)∣∣∣∣0
−10

+

(
t− t2

20

)∣∣∣∣10
0

(36)

=

(
10− 100

20

)
+

(
10− 100

20

)
= 10. (37)

More details to come next time....


