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Lecture 7: Putting decorrelation scales into practice

Recap
In Lecture 6, we considered the random walk and implications for diffusion, and then we

examined autocovariance, autocorrelation, and implications for degrees of freedom in an idealized
case. Today, we’ll put this into practice with some specific examples.

We defined the autocovariance as Cxx(r) and noted that it has units and depends on the sepa-
ration r between data points. The autocorrelation ρ(r) is normalized to have a maximum value of
1 when r = 0, that is when data are correlated with themselves.

In the idealized case that we considered last time, we used an analytic form of the autocovari-
ance and said that the decorrelation time—that is the time interval between statistically independent
observations—could be computed by integrating the autocorrelation over its entire range.

“decorrelation” scale = τeff =

∫ ∞
−∞

ρ(t) dt. (1)

This approach works well when data are well behaved, but in reality, the autocovariance can be
poorly defined for large values of r.

Spread of a tracer concentration
First recall that the autocovariance is the convolution of a data set with itself. One definition

of the autocovariance is:

Cxx(r) =

∑N−r
i=1

∑N
j=1+r x

′
ix
′
j

N − r
. (2)

This provides an “unbiased” estimate of the autocovarince—unbiased because we divide each
covariance by the number of data pairs that are available at separation r.

The unbiased estimator is ill-behaved for large lags, because we have few data pairs to aver-
age. Thus more typically we use a “biased” estimator:

Cxx(r) =

∑N−r
i=1

∑N
j=1+r x

′
ix
′
j

N
. (3)

This tapers to zero for large lags.
The autocorrelation resembles the autocovariance, except that it is normalized by the data

variance:

ρxx(r) =

∑N−r
i=1

∑N
j=1+r x

′
ix
′
j

Nσ2
, (4)

where σ is the standard deviation of x.
If we want to figure out how many degrees of freedom we have in a data set of length N , we

need to figure out how redundant adjacent data points are—that is we need a “decorrelation” scale.
There are three common ways to estimate this:

1. The first zero crossing—that is the first point when the autocorrelation decreases from a
positive value to a negative value. This is conceptually easy, but fraught when the data are
noisy. Unfortunately, it’s easy to show that data with very different autocorrelation structure,
and correspondingly very different decorrelation scales, can nonetheless have the same zero
crossing.
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2. The full-width at half-maximum of the autocorrelation. This is potentially a slightly less
noisy-prone approach to obtaining a quick estimate of a decorrelation scale. For a well-
behaved decorrelation, such as a triangle autocovariance, this will produce clean results.

3. As we discussed last time, the integral of the autocovariance (
∫∞
−∞ ρ(r) dr) is a robust mea-

sure of decorrelation, though it also is subject to interpretation depending on noise and sam-
pling limitations. We’ll pursue this approach in more detail.

If we measure N data points, then the effective degrees of freedom should be N divided by
the decorrelation scale:

NE =
N∑N

n=−N ρ(|n|)
. (5)

In writing this, I’m assumed that ρ(n) is well behaved at±N . If I used an unbiased estimator, then
I’d want to suppress the uncertain values at high n

NE =
N∑N

n=−N

(
1− |n|

N

)
ρ(|n|)

. (6)

But in Matlab, the “xcov” default is the “biased” estimator, and we can ignore this.
So consider the case when data are random white noise, and adjacent points are uncorrelated.

Then ρ(n) = δ(n) which is 1 only when n = 0, and

NE =
N∑N

n=−N δ(|n|)
= N. (7)

In other words, in this case, all data are independent.
More realistically, geophysical data tend to be correlated over time and space. Usually if we

sum from −N to +N , our results will be contaminated by noise, so we actually want to sum only
over the center portion of the autocovarince.

NE =
N∑l

n=−l ρ(|n|)
, (8)

where l < N . The trick is to decide on l: how many values should we sum? If we lack any other
information, we can just test all possible l and look at the range of NE values that we find. Usually
we want to be as conservative as possible, so we assume the smallest possible NE—that is the
largest possible decorrelation scale.

If we write this continuously, we can express the values as integrals instea of sums. In other
words the observed mean of x is:

{x} = 1

T

∫ T

0

x(t) dt. (9)

And in continuous form,

NE =
T∫ T

−T ρ(t) dt
. (10)
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The expected value of the variance is:

E2 =
1

T 2

∫ T

0

∫ T

0

〈x′(t1)x′(t+ 2)〉 dt1 dt2 (11)

=
σ2

T

∫ T

−T
ρ(|t|) dt (12)

=
σ

NE

. (13)

This means that:
Teff =

T

NE

=

∫
−T Tρ(t) dt. (14)

In class we looked at a range of examples to understand how different studies have analyzed
decorrelation, and how decorrelation can be sensitive to the large-scale variations in the data record.

Introduction to data and models
Now that we’ve built a statistical framework, let’s put it to work to interpret our data. When

we looked at correlation, we considered data y and we wanted to represent with an approximation
ŷ = αx, and we sought an α that would minimize the difference betwen y and ŷ. Now we want to
expand to a more complicated case.

To do this, let’s lay out a little notation. First, we need data. Let’s write the data as anN -vector
of real numbers

d =


d1
d2
...
dN

 (15)

There are necessarily a finite number of data.
In addition we need a model. We will consider discrete inverse theory, in which case there are

a finite number of model parameters, an M -vector

m =


m1

m2
...

mM

 (16)

The relationship between the data and model parameters may, in general, be stated as a series of L
equations

f(d,m) =


f1(d,m)
f2(d,m)

...
fL(d,m)

 = 0. (17)

The equality in (17) implies that both the data and model are perfect. We will relax this unlikely
assumption as we find solutions. It is nearly always possible to write the relationship as:

d = g(m) (18)

where g is a vector function. If g is linear then we can expres this as a matrix equation.

d = Gm (19)

where G is an N ×M matrix.


