
UCSD—SIOC 221B: (Davis, Rudnick, Gille) 1

Lecture 8: Models and data—Basics of least squares fitting

Recap
In Lecture 7, we took a close look at the autocovariance and at decorrelation scales and then

quickly started considering how we connect models and data. Today, we’ll expand on these con-
cepts more extensively.

We defined a data vector d (where in typed notes, a bold lower-case letter indicates a vector)
and in boardwork, we’ll underline the vectors (e.g. d):

d =


d1
d2
...
dN

 (1)

We also define a model with M model parameters:

m =


m1

m2
...

mM

 (2)

In general terms, we connect our data to some physical model function g:

d = g(m) (3)

Models and data
Numerical weather prediction models and ocean state estimates are complex, multi-equation,

non-linear systems that use data to constrain models. In class, we looked at examples from 4-
dimensional variational assimilation systems in the California Current and in the Southern Ocean.
In essence, these systems solve a minimization problem to reduce the misfit between the observa-
tions and the model.

Before we think about the complicated systems used to deliver weather forecasts, let’s con-
sider linear problems. In a linear problem, the model parameters m are linear multipliers of some
set of model functions.

For example, we could imagine representing the measured temperature values Ti through a
model estimate T̂i:

T̂i =
M∑
m=1

αmfm(xi), (4)

where our data in this case would be

d =


T1
T2
...
TN

 (5)

UCSD—SIOC 221B: (Davis, Rudnick, Gille) 2

and our model parameters are:

m =


α1

α2
...
αM

 (6)

Classically we set this up as an overdetermined problem, with more equations than unknowns, so
N > M , which means that we have more information than unknowns and we can hope to solve
for our unknowns.

We can write this linear system of equations as a matrix equation of the form

d = Gm (7)

where G is an N ×M matrix.
For example, consider global mean sea level rise. Suppose that sea level is rising quadratically.

We might hope to fit observed values of sea level (η(t)) to a constant, a linear trend, and a quadratic
term:

η(t) = η0 + αt+ βt2 (8)

We could write this as a matrix equation, with di = ηi, and

G =


1 t1 t21
1 t2 t22
...

...
...

1 tN t2N

 . (9)

where the column of ones allows us to identify a constant (η0). The unknown model parameters
are:

m =

η0α
β

 . (10)

How do we solve for our model parameters? First we have to decide on a goal. We’d like
to minimize the misfit between Gm and d, which we can define as e = Gm− d. What do we
actually minimize?

1. Minimize the absolute value of the misfit, which is called the L1 norm:

||e||1 =
N∑
i=1

|ei| (11)

2. Minimize the squared misfit, the L2 norm:

||e||2 =

(
N∑
i=1

e2i

)1/2

(12)

3. Minimize a higher-order norm, the Ln norm:

||e||n =

(
N∑
i=1

|ei|n
)1/n

(13)

UCSD—SIOC 221B: (Davis, Rudnick, Gille) 3

4. Minimize the highest-order norm possible, the L∞ norm:

||e||∞ = max
i
|ei| (14)

Which is the best norm for you depends on the problem. The different norms imply different
weighting. The L1 norm, for example, gives less weight to large outliers than the L2 norm. While
the L1 norm weights all misfits equally, the L∞ norm minimizes the size of the largest misfit only.

The traditional least squares problem employs the L2 norm as the “best” measure. The L2

norm has several useful traits. First, it’s more mathematically tractable than the L1 norm, which
has an inconvenient absolute value. Second, if the statistics of the misfit have a normal distribution,
then there is an argument that the L2 norm is appropriate. We’ll see the practical advantage in
using the L2 norm in solving this problem. Our goal is to find m such that ||e||2 is minimized.
Specifically, the quantity

ε = eTe = (Gm− d)T(Gm− d) (15)

is to be minimized with respect to m. To accomplish this, we differentiate by each of the compo-
nents mi, set the result equal to zero, and solve for mi. To do this, we’ll need two useful identities.

Identity 1
Consider the scalar β formed by an inner product of two vectors a and b:

α = aTb. (16)

This can be written as a sum over the vectors’ components ai, bi:

α =
N∑
i=1

ai bi. (17)

Now differentiate with respect to one of the components bk:

∂α

∂bk
= ak. (18)

The differentiation in (18) can be done for each component, and then the result arranged as a vector

∂α

∂b
= a. (19)

Identity 2
Consider the scalar β formed by a quadratic product involving vector bfb and square matrix

A:
β = bTAb. (20)

Write this as a sum

β =
N∑
i=1

N∑
j=1

biAijbj. (21)

UCSD—SIOC 221B: (Davis, Rudnick, Gille) 4

Differentiate with respect to bk

∂β

∂bk
=

N∑
j=1

Akjbj +
N∑
i=1

biAik. (22)

Now arranging as a vector
∂β

∂b
= Ab+ATb (23)

If A is symmetric, then A = AT , and:

∂β

∂b
= 2Ab. (24)

Solution of the classic overdetermined least squares problem
Use the identities to differentiate the misfit (15) with respect to the model parameters m, and

set the result equal to zero.

ε = mTGTGm− 2dTGm+ dTd (25)
ε

m
= 2GTGm− 2dTG = 0 (26)

The equation to be solved is then
2GTGm = 2dTG, (27)

which is a set of M equations in M unknowns. Since (27) is linear in m, it is easy to solve,
which is a practical advantage of using the L2 norm, or any other quadratic measure of misfit. The
solution is

m = (GT bfG)−1GTd. (28)

as long as theM×M square matrix GTG is invertible. The notion of invertibility can be discussed
with great mathematical precision, and we will do that later. For now, it is worth making a few
comments. In the least squares problem, there are N linear combinations of the model parameters
that we want to be close to the data. A linear combination is just a weighted sum of the components
of a vector, in this case defined by the N rows of G. As long as M of the rows are independent,
then the M model parameters can be unambiguously determined. So invertibility is a property of
the matrix G, which is itself an expression of our model. Thus invertibility is a statement about
the quality of the model that we have set up. If we set up a problem that is not invertible, that’s our
mistake.

Least-squares fit example
In class we looked at recent estimates of sea level rise, which has been modeled (or fitted)

with a quadratic. Let’s generate some fake data to test this out. Here we’ll generate data with
known parameters and test how well we can recover these parameters:

% first define the parameters for fake data.
x0=1; % constant
x1=2; % linear trend
x2=0.5; %quadratic growth

UCSD—SIOC 221B: (Davis, Rudnick, Gille) 5

sigma=500; % standard deviation of noise

t=(0:1:150)’; % time variable
data_true = x0 + x1*t + x2*t.ˆ2; % create noise-free ‘‘true’’ data
data = x0 + x1*t + x2*t.ˆ2 + sigma*randn(size(t)); % create noisy data

% plot data
plot(t,data_true,’LineWidth’,2); hold on
plot(t,data,’.’,’LineWidth’,3)
h=gca; set(h,’FontSize’,14)
xlabel(’"time"’,’FontSize’,14)
ylabel(’"data values"’,’FontSize’,14)

Now we can use our least-squares solution to fit the data:

% define the matrix G
G=[ones(size(t)) t t.ˆ2];

% fit data: here with a full inversion:
model_fit=inv(G’*G)*G’*data

The results of this show:

mtrue =

 1
2
0.5

 (29)

while

mfitted =

42.83.4
0.49

 . (30)

Of course the exact values will be different each time I generate new random numbers. You’ll
notice that in this case, the quadratic fit is fairly accurate, but the the other two terms don’t appear
too close to the solution.

UCSD—SIOC 221B: (Davis, Rudnick, Gille) 6

Matlab provides a quick solution for a matrix inversion problem of this type. We can get the
same results using a backslash:

model_fit = G\ddata

Regardless of the solution strategy that we use, we can overlay our fit over the original data:

plot(t,G*model_fit,’LineWidth’,2)
legend(’"true" model’,’"noisy" observations’,’model fit’,’FontSize’,14)

Variations on the basic theme Now what happens if some of our data points are wild outliers
with crazy values? These could really obliterate our results, all the more so since the L2 norm
squares the misfit so is designed to minimize the misfit relative to extreme outliers.

As an illustration, what if we reset a handful of our data values to have really enormous
departures from tthe true model. In this example I’ve reset the data values and given them a large
mean, but I could have made things just as problematic merely by amplifying the error

% reset values 100 to 110 to be big, with big variance.
data(100:110)=14000+5*sigma*randn(11,1);
plot(t,data,’.’,’LineWidth’,3)
legend(’"true" model’,’"noisy" observations’,’model fit’,...

’observations with large outliers’, ’FontSize’,14)

If we blindly fit, including these outliers, then we our fit will show large departures from the
true parameters.

model_fit_new = G\data
plot(t,G*model_fit_new);
legend(’"true" model’,’"noisy" observations’,’model fit’,...

’observations with large outliers’,...
’model fit including outliers’,’FontSize’,14)

UCSD—SIOC 221B: (Davis, Rudnick, Gille) 7

What can we do about the outliers? To get us started, here are two possible strategies:

1. Remove the bad data from the fitting process. To do this, in Matlab I find the indices of the
“good” data, and use only the good data to carry out my fit:

% find "good" data
xx=1:length(t); xx(100:110)=[];
% carry out fit using only "good" data and
% only the corresponding rows of G
model_fit_new2=G(xx,:)\data(xx)

plot(t,G*model_fit_new2,’c’,’LineWidth’,2);
legend(’"true" model’,’"noisy" observations’,’model fit’,...

’observations with large outliers’,...
’model fit including outliers’,...
’model fit, outliers omitted’,’FontSize’,14)

Omitting the questionable data nicely restores our fit to the shape that we expect. You’ll
notice that although to solve for m, I removed the rows of G corresponding to bad data, I
didn’t need to remove them when I computed Gm to reconstruct my fitted curve.

2. Weight the least-squares fit so that bad data have less impact on the solution. A second
option is to think about the fact that the least-squares fit minimizes the raw misfit between
data and model. In principle, you might suppose that the misfit should be comparable in size
to the uncertainty in the data, so we might want to tell the least-squares fit to allow for more
misfit for less certain points. In other words, we’d like the misfit for each datum to match
the uncertainty: ei ≈ σi. We can do this by weighting each line of our matrix equation by
the uncertainty. In the case that we’ve been examining, that would become:

di
σi

=
m0 +m1ti +m2t

2
i

σi
(31)

UCSD—SIOC 221B: (Davis, Rudnick, Gille) 8

With the weighting, the misfit should be∼ 1, for each row of our matrix equation, so we can
each row equivalently. Formally we implement this by including a weighting in the function
that we minimize:

ε = (Gm− d)TWe(Gm− d), (32)

where

We =


σ−21

σ−22
...

σ−2N

 I (33)

(In a more complicated system, with correlated error, We could represent the full covariance
matrix for the a priori uncertainty in the data: We = 〈d′d′T 〉−1.) If we implement this we
can write:

sigma_vector=sigma*ones(size(t));
sigma_vector(100:110)=5*sigma_vector(100:110);
Gweighted = G./sigma_vector;
data_weighted = data./sigma_vector;
model_fit_weighted = Gweighted\data_weighted;
plot(t,G*model_fit_weighted,’r’,’LineWidth’,2);
legend(’"true" model’,’"noisy" observations’,’model fit’,...

’observations with large outliers’,’model fit including outliers’,...
’model fit, outliers omitted’,’weighted model fit’,’FontSize’,14)

In class we considered one final example, with the Ocean Station Papa temperature data,
which have a strong seasonal cycle. To fit a seasonal cycle to the data, we set up a matrix G of the
form:

G =


1 cos

(
2πt1
365.25

)
sin
(

2πt1
365.25

)
1 cos

(
2πt2
365.25

)
sin
(

2πt2
365.25

)
...

...
...

1 cos
(

2πtN
365.25

)
sin
(

2πtN
365.25

)
 . (34)

UCSD—SIOC 221B: (Davis, Rudnick, Gille) 9

We can solve this:

file = ’data/sst50n145w_dy.cdf’
T=ncread(file,’T_25’);
time=ncread(file,’time’);
QT=ncread(file,’QT_5025’);
xx=find(QT==0 | QT>=4);
T(xx)=NaN;
plot(time,squeeze(T),’LineWidth’,2)

G=[ones(size(time)) cos(2*pi*time/365.25) sin(2*pi*time/365.25)];
G\squeeze(T)

xx=find(˜isnan(T));
parameters=G(xx,:)\squeeze(T(xx))

% plot results
clf; plot(time,squeeze(T),’LineWidth’,2)
hold on
plot(time,G*parameters,’LineWidth’,2)
h=gca; set(h,’FontSize’,14)
xlabel(’time (days from 2006-06-08)’,’FontSize’,14)
ylabel(’temperature (ˆoC)’,’FontSize’,14)

UCSD—SIOC 221B: (Davis, Rudnick, Gille) 10

