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The modal equations are

∇2ψt + J(ψ,∇2ψ) + J(τ,∇2τ) + U∇2τx = −κ∇2(ψ −
√

2τ) − ν∇8(∇2ψ) ,

and

(

∇2 − λ−2
)

τt + J(ψ, (∇2 − λ−2)τ) + J(τ,∇2ψ) + U
(

∇2 + λ−2
)

ψx

= −κ∇2(2τ −
√

2ψ) − ν∇8(∇2 − λ2)τ .

Non-dimensionalizing lengths with the deformation length λ and time with

λ/U gives the three non-dimensional parameters in the system,

λ

L
,

κλ

U
,

ν

Uλ7
. (15)

The energy balance is obtained in the standard manner by multiplying

the barotropic and baroclinic modal equations by ψ and τ respectively and

ensemble averaging. In a statistically steady state the energy balance requires

Uλ−2 〈ψxτ〉 = κ
〈

|∇ψ −
√

2∇τ |2
〉

+ hypν , (16)

where the hyperviscous term is given by

hypν = ν
〈

|∇∇4ψ|2
〉

+ ν
〈

|∇∇4τ |2
〉

+ νλ−2
〈

(

∇4τ
)2

〉

. (17)

B Vortex census algorithm

The automated vortex census algorithm primarily follows the method out-

lined in McWilliams (1990) to identify vortices in a two-dimensional gridded

vorticity field at a given time. The method begins by identifying all points

above a vorticity threshold value ζmin. Following McWilliams (1990) this
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Two-layer baroclinic turbulence

The eddy diffusivity of heat is:
1 Introduction

Dτ ≡ U−1〈ψxτ〉 . (1)

Here 〈〉 denotes both a horizontal average over the square 2πL×2πL domain,

and an additional time average to remove residual turbulent pulsations.

Dimensional considerations (Haidvogel & Held 1980) show that

Dτ = Uλ × D∗

τ

(

λ

L
,
κλ

U
,
βλ2

U
,

ν

UL7

)

, (2)

where D∗ is a dimensionless function.

〈ψxτ〉 in (1) is the product of the barotropic meridional velocity, ψx, and

the thermal field τ i.e., the meridional heat flux is proportional to 〈ψxτ〉.

Moreover, the mechanical energy balance in a statistically steady state (see

Appendix A) is

Uλ−2 〈ψxτ〉 = κ
〈

|∇ψ −
√

2∇τ |2
〉

+ hypν , (3)

where “hypν” indicates the hyperviscous dissipation of energy. LH2003 pro-

pose

DLH
2 /Uλ = c5/2β−2

∗ (1 − β∗)
3/2 ,

as a parameterization for the lower layer potential vorticity, q2. (See Ap-

pendix A for a definition of the layer variables, qn and Dn.) To compare

DLH
2 to the results from our simulations we convert Dτ to D2 using

D2 =
Dτ

1 − β∗

.

Andy Could you prepare a figure showing this comparison? I’d suggest

a semi-log plot with 0 < β∗ < 1.5 (or so) on the horizontal axis, and log

D2/Uλ on the vertical. You could splash down all your data points and plot
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This is the cleanest example of the eddy 
diffusivity problem.

L/λ=25,  β=0, κλ/U=0.16

τ(x,y,t)

above <> = x, y, t average
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production
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viscosity

∂q1

∂t
+ J(ψ1, q1) = ssd (12)

∂q2

∂t
+ J(ψ2, q2) = −κ∇2ψ2 + ssd (13)

κ = f0δE/H

∇2ψt + U∇2τx + βψx = −κ∇2(ψ −
√

2τ)
(
∇2 − λ−2) τt + U

(
∇2 + λ−2) ψx + βτx = −κ(2τ −

√
2ψ)

ψ = ψ̂eikx+ily+st

τ = τ̂eikx+ily+st

∇2ψt + U∇2τx + βψx = 0
(
∇2 − λ−2) τt + U

(
∇2 + λ−2) ψx + βτx = 0

Ucrit = ±βλ2

f = f0 + βy

∇2ψt + J(ψ,∇2ψ) + J(τ,∇2τ) + U∇2τx = −κ∇2(ψ −
√

2τ)
(
∇2 − λ−2) τt+J(ψ, (∇2−λ−2)τ)+J(τ,∇2ψ)+U

(
∇2 + λ−2) ψx = −κ∇2(2τ−

√
2ψ)

1

2

∂

∂t

(〈
|∇ψ|2

〉
+

〈
|∇τ |2

〉
+ λ−2 〈

τ 2〉) + Uλ−2 〈ψxτ〉 = κ
〈
|∇ψ −

√
2∇τ |2

〉
+ ssd
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Recent work on parameterizing D (LH95, HL96, 
LH03) results in:

The eddy diffusivity of heat is:
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These LH theories are based on inertial range 
arguments (R77, S78, S80), and ignore the 
power integral:
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I’m wondering how that will look in your data?

A second figure might show

DLH03
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this won’t look so bad. But DLH
τ will vanish quickly at β∗ = 1, where as Dτ
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something like
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ζ(x,y,t)

L/λ=25,  β=0, κλ/U=0.16
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• There is no part of the parameter space where 
bottom drag is not qualitatively important.

• There are two decisive parameters, β and κ.

• The power integral is important e.g., the TY05 
parametrization of D.

• Is there a useful generalization of the power 
integral to PE models?
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Idealized models of the ACC
2

Cooling Warming

Eulerian mean flow

transport
eddy

S N

Zonal Wind

Figure 1. A sketch of the balance that estab-
lishes the stratification of a circumpolar current. The
dashed lines represent tilted isopycnals, the solid
curves the stream lines of the mean wind driven over-
turning. The overturning circulation together with
differential heating – cooling in the south near Antarc-
tica and warming in the subtropics – act to over-
turn isopycnals creating the Polar Front. This front
becomes unstable and the resulting eddy transports
balance the surface forcing establishing a statistically
steady state.

The structure of the paper is as follows. In sec-
tion 2, we present a description of the numerical sim-
ulations. In section 3, we develop and interpret sim-
ulations in terms of a simple analytical system that
can be solved to give the stratification. In section 4,
we discuss the ramifications of the theory for the
ACC, demonstrating how surface forcing determines
the structure and transport of the current as well as
the sense of the residual circulation. In section 5, we
discuss the results and conclude.

2. Numerical Simulations

2.1. The experiments

We now describe numerical solutions of a circum-
polar current designed to study the balance between
eddy transport and surface forcing. Because this work
was inspired by laboratory studies (see Marshall et al.
2001), and in subsequent work will be tied to further

H

heatheat cool

f

H

wind stress

R

Figure 2. The domain used in our numerical simu-
lations. A rotating cylinder of fluid of radius R and
depth H is forced at the surface by a wind stress
and patterns of heating and cooling. The wind stress
drives a meridional overturning as indicated by the
arrows.

laboratory experiments, we set up a current in a cylin-
drical domain of radius R and depth H (see Fig. 2)
on an ‘f ’ plane. Details of the experiments studied
here are given in Table 1. Our domain approximates
a polar cap and allows the realization of a circumpo-
lar current. The MITgcm (Marshall et al. 1997a,b)
was used.

The model resolution is sufficient to represent both
the vertical and horizontal structure of the front and
eddies that develop. For a typical front, the horizontal
grid size is roughly one fifth the Rossby deformation
radius. This allows the details of the baroclinic waves
and eddies to be captured accurately. In the vertical,
the grid size is sufficiently small to crudely capture
the surface Ekman layer and more than sufficient to
resolve the vertical stratification of the front.

For simplicity, the bottom is flat and there are no
land masses. While bottom topography is no doubt
important in a detailed model of the ACC (Munk and
Palmén 1951), it is ignored here in order to obtain a
clear picture of the balances involved in a symmet-
ric annular region. Similarly, the ACC is influenced
by the interaction of the circumpolar flow allowed
through the Drake Passage, and the gyre like flows
in the Atlantic and Pacific. However, we concur with
studies (Gnanadesikan and Hallberg 2000, Gent et al.
2001, Tansley and Marshall 2000) that have shown
that it is the circumpolar flow through the Drake
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from Karsten, Jones & Marshall (2002)

Bottom drag is now r,
and the wind stress is τ.

How does the thermocline depth, h, 
depend on external parameters? Using 
TEM arguments:

How to find the eddy-D? For example, 
KJM suggest:

relatively crude scaling arguments to collapse this data. Finding this scaling

is not entirely straightforward because there is not a convincing straight line

anywhere in the loglog plot of Figure ??. This is the first indication that the

function D∗ is not adequately characterized as a power law.
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τLy
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LH95 then proceeded to estimate the eddy diffusivity as

D = characteristic barotropic velocity, V × mixing length . (7)

Retaining the dual-cascade scenario as an interpretative framework, and tak-

ing k−1

0 as the mixing length, LH95 argue that V ∼ U/k0λ. Thus, once the

dust settles, the final result is the dual-cascade scaling

D ∼ U/k2

0λ . (8)

The strong dependence of D on bottom drag κ is implicit in k0, but no

relationship between k0 and κ was proposed by LH95.

3

relatively crude scaling arguments to collapse this data. Finding this scaling

is not entirely straightforward because there is not a convincing straight line

anywhere in the loglog plot of Figure ??. This is the first indication that the

function D∗ is not adequately characterized as a power law.

Du

Dt
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b〉 + r〈|u′

b|2〉 (8)

〈wb〉 = 〈κbz〉
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ūs ≈ ūb −
1

f0

∫ 0

−H

b̄y(y, z) dz ,

3
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b|2〉 .

〈w′b′〉 ≈ −
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w̄b̄
〉

≈ r〈|u′

b|2〉

w̄ ≈ wE = −
1

f0

dτs

dy

−〈w̄b̄〉 ∼
h

H

τg′

f0Ly
∼ ru′2

b .

〈w′b′〉 ≈ −
〈

v′b′
b̄y

b̄z

〉

≈

〈

Deddy

b̄2
y

b̄z

〉

ūb(y) =
τs(y)

rH

A The two-mode equations of motion

The derivation of the modal equations used in our study is based on Flierl

(1978), and also includes forcing terms that arise when there is a mean shear

in the basic state as discussed in Hua & Haidvogel (1986). Our equations

differ from Hua & Haidvogel only in the form of the hyperviscous term, which

is used to absorb enstrophy cascading to the highest wavenumbers. The main

difference between the modal decomposition used here and the method used

by Larichev and Held (1995) appears in the coefficients of the bottom drag

term as shown below.

The continuous quasi-geostrophic equations are written as

∂

∂t
Q + J(Ψ, Q) = −ν∇8Q . (9)

4

The zonal mean bottom 
velocity is determined by r.
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Here J represents the Jacobian, J(a, b) ≡ axby−aybx, Ψ is the streamfunction

such that u = −Ψy and v = Ψx, and

Q = ∇2Ψ + (f/N)2 Ψzz , (10)

is the potential vorticity. We consider dynamics on an f -plane, and take the

Brunt-Vaisala frequency N to be constant. The coefficient of hyperviscosity

is given by ν and H is the depth of the ocean. We then define the first Rossby

radius of deformation as

λ =
NH

π
. (11)
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In this problem the power integral is:

GGS74

TEM arguments give:
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The power integral - derive GGS74

relatively crude scaling arguments to collapse this data. Finding this scaling

is not entirely straightforward because there is not a convincing straight line

anywhere in the loglog plot of Figure ??. This is the first indication that the

function D∗ is not adequately characterized as a power law.
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〈γsτsu〉 + 〈wb〉 = r〈γb|u|2〉 + 〈ν||∇u||2〉 . (7)

〈γsτsū〉 + 〈κb̄z〉 = r〈γb|u|2〉 + 〈ν||∇u||2〉 . (8)

2 The energy balance

In the previous sections we introduced six unknown quantities rcore (or equiv-

alently %ζ), τcore, ζcore, D, V and %mix. We regard the first and last as the

most basic quantities and in (??) through (??) we have expressed the middle
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Wind work PE KE Bottom drag viscosity

After some simplifications:
(N.B. true even with topography)

How about PE KE???
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