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An experiment: mixing a stable salt gradient
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Park, VWhitehead & Gnanadeskian (1994)
Also Ruddick, McDougall & Turner (1989)
Rehmann & Koseff (2004a,b)
Linden (1978), Holford & Linden (1997)

Start with a strongly
stable density gradient:

b= N?z

With molecular diffusion,
the mixing time is:
2
taig = — > 1year
K

With stirring, the experiment
lasts a few hours.

p=po|l— _1b]« “buoyancy” »b = —gB(S — So)




Turbulence in the wake of the rod
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Strong stirring, PWG94
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Weakly stratified: turbulent mixing looks like accelerated molecular diffusion.

0 = pPo [ _16]« “buoyancy” »b = —gB(S — So)




Height (cm)

Moderate stirring PWG94: layer formation
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Moderately stratified: turbulent mixing amplifies buoyancy gradients.

0 = pPo [ _16]« “buoyancy” »b = —gB(S — So)



Weak stirring PWG94: the interior regime
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Strongly stratified: steps and layers everywhere....

0= Po [1 — g_lb]« “buoyancy” »b = —gB(S5 — S)
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“Is strongly stratified turbulence stable?”
(Phillips 1972, Posmentier 1977)

No, not if stable buoyancy gradients suppress mixing: the turbulent
flow spontaneously becomes spatially inhomogeneous.

gradient, b,

Conservation of mean buoyancy:

by = a_f f( )227 f:_w/b/_l_’ibz




The linear instability of Phillips & Posmentier

P&P explain the onset of layering as a negative-diffusion instability:

bi=f. and b=N?2+b, = b =f(N?)b.

Density ﬂu}ﬁ The diffusivity is:

Divergence

% The flux is always
down-gradient.




Problems with the P & P model

gradient, b,

(1) There is no mechanism to arrest interface steepening.

(2) The problem is ill-posed: there is no high wavenumber cut-off.

Z;t:f/(]\ﬂ)[;zz




Beyond the linear instability?

To explain the experiments we need a more elaborate model (BLSY |1998):

e(z,t) = TKE and b(z,t) = mean buoyancy

Physical arguments suggest the model:
by = (Le'?b,), e = B(le'?e,), — le'?b, — al™ e + P

conversion TKE—)PEf fdissipation
The mixing length: of TKE, €

Conservation of energy:

d H H
—/e—zbdz:/P—ozf_




Completing the model

b, = (Le/?b,), e, = B(le'?e,), — te'?b, — al 32 4 P

Equipartition

The most satisfactory
assumption is:

61/2
P:&TUz

TKE density relaxes to

the rod speed:
p1/2
et:..._|_7(U2_€)

edclﬁ'k

turnover
rate




Linear stability of the
spatially uniform solution

The non-dimensional system is:
g = (te?g) .
e ¢] (fel/Qez)z — e g+ (1 —e)el/?,

e\ /2
14 ( ) , and ¢g=0b,.
et+g

Linearize around the homogeneous
state:

g = 9go + q1€

| | |
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Buoyancy gradient

st+imz

e = e + 61est—l—lmz

Note 3 is necessary for the high
wavenumber cut-off.

Growth rate

Decaying e-modes
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(1) linear instability (P&P).
(2) pattern development via merger.

(3) invasion of the edge layers and
ultimate homogenization.
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Mergers in the interior maintain constant flux

(a) Buoyancy gradient at t = 40000, 50000
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(b) Buoyancy flux at t = 40000, 50000

Before

680

If the flux is slightly
non-uniform then the
steps slowly migrate,
leading to layer merger.

This merger process keeps the interior flux close
to constant (and we can calculate the constant).




General lessons?

At the bottom of the banana
the system can be reduced
via an amplitude expansion.
The critical point is:

T*:7+4\/§7 Jox —

1 1 1 1 1 1 1 1 I~
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go

The expansion begins like this:

r = T*+62T2 g :gO*+€[gl —I_A(Z?t)] +O(€2)
and leads to the Cahn-Hilliard equation:

FA— A, -

The CH equation - derived by CH from thermodynamic arguments - is the
simplest complete description of negative diffusion (and negative viscosity)




vertical

This is a fluid “stratified”
by vertical vorticity

4

20vert = 29 X sin 6 ~ 20 sin Oy + 2QR " cos Oy x R(0 — 6p)

——
fo BXy




Stratified turbulence in a rapidly
rotating B-plane fluid

/Available Potential Energy in
the tilted interface is released

\/\7by baroclinic instability.

I/

g
V29'H

=T

~ 10 to 40 km

ocean

bottom drag
dissipates energy

o, O |
Geostrophic balance:  (u1,01) = (— 521 : a%) 1 o pressure in layer 1




The quasigeostrophic approximation

qit + Uqiz + (5 + >\_2U) Ve + J(W1, q) = —vVoq,
Got — Uy + (8 — A7°U) oy + J (2, o) = —kV 0 — Vs .

Potential Vorticity: Gn = Ynze + Vnyy + %)\_2(—)” (W1 — o)

From the above, we obtain the energy equation:

U X2 (1),7) =~ k{|V1s|?) where ()= average over z, y and ¢
heat flux bottom drag

The release of APE by baroclinic eddies is proportional to the heat flux, and
also to the supply the mechanical energy required to balance bottom friction.

= 5(1 + 1), T = 3 (1 — o)

The barotropic mode The baroclinic mode (“heat”).




tlid = 0.4

Barotropic zonally-averaged zonal
flow: a negative-viscosity instability.

u(y,t) = L' ¢ u(z,y,t)de

L=501T*A\

Spin-up: growth of
linearly unstable
disturbances

Upper layer PV

The most unstable linear

disturbance is:
e

| Yy, ox exp ik, (x — ct)]
ky=0 = J(%VQTM =0

Exponential growth is stopped
by a secondary instability.




tid = 025

--__“---.—L "l | T
- el < CE

Statistically steady
turbulence

Upper layer PV

L=501Tx\

Barotropic zonal
mean flow a(y,t) ~ 10U

(Williams 1979, Panetta 1993)
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u(y, 1)

//

' = acos [k (z — u(y)t) » wv' ~ +%(ka)2tﬂy»ﬂt = —1(ka)’tuy, — ku

(Starr 1968, Sivashinsky 1985, Manfroi & Young 1999)

Physical basis of
negative viscosity

v'u’ <0
uy <0

Uy + (u’v’)y = —KU

v'u’ > 0
Uy > 0
Weak zonal distortion of the
elevator mode un-mixes
momentum and so maintains
the jets against bottom drag.

jump to CH



An illustrative model of negative viscosity is the stability of: /A%

U =—-V_ ..coskx, V=WV, =EkVU,_..Sinkx

The 2D Navier-Stokes equation is:

V2 + Re(1+ ) sing (V2 +¢), + J (1, V2) + B, = Vi — £V

T 1T

differential rotation
and bottom drag

This flow is unstable (in d=2) if:

\Ijmax
R= >R, =2

1%
(Meshalkin & Sinai 1961)




The Kolmogorov problem - continued
The weakly nonlinear expansion of:
VA 4+ Ro(1 4 €)sinz (V2 +4) 4+ J(4, V) + By, = Vi — VY

starts like this:
Y = A(ey, €'t) + esin xR Ay + O(€)?
v

Y & T

Again we obtain the Cahn-Hilliard equation:
Up = —pul — [(2 = 82U + 3Uyy + 2602 — 2U%]
1 1 Negative Symmetry
Bottom drag viscosity breaking

Notation: = — Ay

The Taylor-Prandtl debate: mix momentum or vorticity!?

(Sivashinsky 1985, Manfroi & Young 1999).



The Kolmogorov problem - continued
The weakly nonlinear expansion of:
V% + Reo(1 + ) sina (Vi + )+ T, V) + B, = Vi — 6V

starts like this:
Y = A(ey, €'t) + esin xR Ay + O(€)?
v

Y & T

Again we obtain the Cahn-Hilliard equation:
Ur = —pU — [(2 = 8%)U + 3Uyy +208U° — 2U°|,,,
f f Negative Symmetry
Bottom drag viscosity breaking

Notation: = — Ay

The Taylor-Prandtl debate: mix momentum or vorticity!?
One point to Prandtl for the weakly nonlinear case above.

(Sivashinsky 1985, Manfroi & Young 1999).



Ur = —15U — U 4 3Uyy +2U°% — 2U°]

100 YY

(1) Initial jet spacing according to linear
instability.
(2) Jet spacing increases due to merger.

(3) Mergers are halted by bottom drag
(not the Rhines scale).
(4) E-W asymmetry due to UA2.




Back to Baroclinic instability

The mechanical energy budgetis:  UX 2 (y,7) ~ k(| Vi |?)
, G

=DU =€

Always important

Dimensional analysis (HH 1980):D = U x D, (Z’ U’ U UL

A KA BN y>

Small and unimportant

The leading contender (LH 2003): pX% — yx x 1.75872(1 — 8,)%/?

Note: no dependence on bottom drag and no zonal jets
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kAU =0.32
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- — —LH2003
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A satisfactory
theory for D
must include

bottom drag.....

e.g., DM —Uxx L7582(1 - 3.)"”




Conclusion

Is turbulence stable? Not
always.

For experiments like PWG
there is an almost-convincing

theory (BLSY).

There is no equivalent theory
for baroclinic turbulence
problem.

Rhines scaling for the jets
doesn’t work either




Conclusion

Is turbulence stable? Not
always.

For experiments like PWG

there is an almost-convincing
theory (BLSY).

There is no equivalent theory
for baroclinic turbulence
problem. why

Rhines scaling for the jets
doesn’t work either whar




Taylor’s identity:

TG+ T = (T + ), = [+l =0

is incompatible with PV diffusion:

v1q; = —D1qyy V5q5 = —Daay D, = el?




Rhines scaling?  us~ 86

Another consequence
of Rhines scaling:
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kA/U =0.02 kAU = 0.04 kAU =0.16 kAU = 0.64




A PV staircase formed by partially mixing the -ramp

4IO 6IO
A(Barotropic PV)/U

l;=50mA/5 =107\




