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Sandström’s (1908) ``theorem’’: a closed steady 
circulation can only be maintained if the heat 

source is beneath the cold source (Defant 1965).

A 2-D counterexample: the 
box is heated non-

uniformly at the top.

The critical Rayleigh number of HC is zero --- the slightest ∆T 
imposed at the top surface causes motion.

This is Rossby’s horizontal 
convection (HC) problem.
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Why bother with Sandström?
There are  many recent citations and endorsements of the 
1908 ``theorem’’: Munk & Wunsch (1998), Huang (1999), Emmanuel (2001), 

Wunsch & Ferrari (2004), etc. 

And also many counterexamples against the ``theorem’’: 
Jeffreys (1925), Rossby (1965), Mullarney et al. (2004), Wang & Huang (2005),  etc. 

What controls the THC? What drives (i.e., supplies energy 
to) the THC?

Sandström’s (1908) ``theorem’’: a closed steady 
circulation can only be maintained if the heat source 

is beneath the cold source (from Defant 1965).
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Why isn’t HC universally accepted as a 
counterexample to the  ``theorem’’? 

HC isn’t a vigorous flow.

 HC produces a thin thermocline --- you 
need wind, tides and breaking IGW’s to 
explain deep ocean stratification.

``strict interpretation of the theorem is 
difficult’’ (Houghton 1997).

The goal here: make the ``theorem’’ into a theorem.  
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An enclosed Boussinesq fluid --- like the ocean. 

Some equations for LANL

Du

Dt
+ ẑ × fu + ∇p = F + gαT ẑ + ν∇2

u

∇·u = 0

DT

Dt
= κ∇2T

u·n̂ = 0
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Some equations for LANL 1

Du

Dt
+ ẑ × fu + ∇p = gαT ẑ + ν∇2

u

∇·u = 0

DT

Dt
= κ∇2T

u·n̂ = 0

1

Note: linear EOS
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Notation

We assume that all these averages are stationary.

Some equations for LANL 7

• = area and time average ,

〈•〉 = volume and time average

wT = A−1t−1
∞

∫ t∞

0

∫∫

wT dxdy dt

KE = 〈12|u|
2〉 = V −1t−1

∞

∫ t∞

0

∫∫∫

1
2|u|

2 dxdydz dt

V = H × A

9
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The flux constraint
COLD COLDHOT HOT

HOT

T

T +   T∆ Tz = 0κ

F = 0F ≠ 0

Average over x, y and t. :

Some equations for LANL 6

Dissipation in the deep ocean = 10−9×1.4×1021 = 1.4×1012W

DT

Dt
= κ∇2T ⇒ wT − κT̄z = F (∀z)

8

Some equations for LANL 6

Dissipation in the deep ocean = 10−9×1.4×1021 = 1.4×1012W

DT

Dt
= κ∇2T ⇒ wT − κT̄z = F (∀z)

F = the vertical heat flux

8

z

z RBC HCz RBC HC

The momentum equation has not been used.
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To obtain the the mechanical energy budget, take:

After <>, viscous dissipation = PE release:

Some equations for LANL 2

∫

u·
[
Du

Dt
+ ẑ × fu + ∇p = gαT ẑ + ν∇2

u

]

dV

∫

u·∇pdV =
∫

∇·(up) dV =
∫

pu·n̂dA = 0

DT

Dt
= κ∇2T

u·n̂ = 0

2

∆T̄ = T̄ (0) − T̄(−H)

ν
∫

|∇u|2 dV
︸ ︷︷ ︸

ε

= gα〈wT 〉

Now recall the zero-flux constraint:

Some equations for LANL 7

z RBC HC

wT − κT̄z = 0

wT − κT̄z = F ⇒ 〈wT 〉 =
κ∆T̄

H
+ F

wT − κT̄z = 0 ⇒ 〈wT 〉 =
κ∆T̄

H
10

ν〈|∇u|2〉
︸ ︷︷ ︸

ε

= κ
αg∆T̄

H

ε = 〈u·F 〉
︸ ︷︷ ︸

tides

+wind work + gα〈wT 〉
︸ ︷︷ ︸

PE conversion

ε = 〈u·F 〉 + gα〈wT 〉

ε = gα〈wT 〉

Eliminate <wT>:

The top-to-bottom ∆T is: ∆T̄ = T̄ (0) − T̄(−H)

(A rehabilitation of 
Sandström’s theorem.)
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An estimate using:

We can easily estimate the mechanical energy dissipation: 

This is smaller by a factor of one thousand than observations.

PY (2002) theorem:  the  mechanical energy supplied by non-uniformly heating 
only the top surface is directly proportional to the molecular diffusion of heat.

Conclusion 1: the observed level of ocean turbulence requires other 
sources of KE (winds, tides and fish).

ν〈|∇u|2〉
︸ ︷︷ ︸

ε

= κ
αg∆T̄

H

ε = 〈u·F 〉
︸ ︷︷ ︸

tides

+wind work + gα〈wT 〉
︸ ︷︷ ︸

PE conversion

ε = 〈u·F 〉 + gα〈wT 〉

ε = gα〈wT 〉

Some equations for LANL 7

ε = κ
gα∆T̄

H
+ gαF

F = 0

F = 0 and ε ≈ 10−7 ×
2 × 10−2

4000
= 2 × 10−12W kg−1 .

ε ≈ 10−7 ×
2 × 10−2

4000
= 2 × 10−12W kg−1 .

11

Conclusion 2: there is a kernel of truth in Sandström’s theorem, or:
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Back to the zero-flux constraint
z RBC HC

wT − κT̄z = 0

The zero-flux constraint follows only from the thermodynamic equation and 
the bottom BC --- no consideration of the momentum equation is necessary.

At every depth:

Although the 
energy supply is 
small, the flow is 

not laminar.
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THE OCEAN....

The zero flux constraint 
almost* applies.

There is almost* no net  
conversion  between PE 
and KE in the ocean.

ε × M = 10−9 × 1.4 × 1021 = 1.4 × 1012Watts

1.76 × 1017Watts

〈wT 〉 = 〈w̄T̄ 〉
︸ ︷︷ ︸

large scales>0

+ 〈w′T ′〉
︸ ︷︷ ︸

small scales<0

≈ 0

wT ≈ 0 ∀z

12

* ``almost’’ because of molecular 
diffusion, geothermal heating, 

nonlinear EOS and radiation
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Large-scale THC lowers the 
center of gravity.

Small-scale mixing raises the 
center of gravity.

These processes are almost*  
in perfect balance.

Large scale overturning  is 
linked to small scale mixing.

EFML, Stanford

ε × M = 10−9 × 1.4 × 1021 = 1.4 × 1012Watts

1.76 × 1017Watts

〈wT 〉 = 〈w̄T̄ 〉
︸ ︷︷ ︸

large scales>0

+ 〈w′T ′〉
︸ ︷︷ ︸

small scales<0

≈ 0

12

* ``almost’’ because of molecular diffusion, 
geothermal heating, nonlinear EOS and radiation
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Conclusions

Sandström’s arguments are not completely wrong...

The mechanical energy supplied by non-uniform 
surface heating is directly proportional to 
molecular diffusion.

The net vertical buoyancy flux in the ocean is a  
small energy source (e.g., less than bioturbation).

The zero-flux constraint links small-scale mixing 
and large-scale TH overturning.


