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World War II 

•``Bad surf on the Atlantic beaches is a 
calculated risk.” (Roosevelt to Churchill in 
anticipation of Operation TORCH, 1942.)

•Wave energy incident on beaches can vary by 
a factor of 100 in 24 hours.

•LCVPs could not operate in more than about 5ft 
waves. 

•During the first two days of  TORCH 64% of 
the 378 LCVPs were stranded or sunk in 6 foot 
breakers.
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Walter Munk and Harald Sverdrup, circa 1940

Forecasting surf was important....

The  British also conducted a wave prediction headed by 
Fritz Ursell and  Norman Barber.
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Wave  Power?
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With T=10sec and a = 1 meter, the 
energy flux is 40kW/meter.

An average 40kW/meter of wave power  
is typical of good sites.

Energy Flux = cg × Energy Density

=
ρg2Ta2

8π

In the best locations, one 700 ton  sea-
snake delivers 300kW on average.

(kW/meter)

“Survival is more important than 
further increase in power output.”
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This natural resource is volatile - 
fluctuations by a factor of 1000 

in 24 hours.

Friday, February 22, 2013



Oc
ea

n 
Po

w
er

 Te
ch

no
lo

gie
s

A 103 foot long, 260ton buoy  being tested in 
Vancouver, Washington.

(from the New York Times, September 2012.)

Estimates of total wind-stress  forcing are:
•20TW (Ferrari & Wunsch, 2003) 

•60TW (Wang & Huang, 2004) 
•70TW (Racsale et al., 2008 )

About  2TW reaches the shore as 
surf (Rascale et al. 2008).

1 TerraWatt =10^{12} Watts 
                                  = 1000 nuclear power stations

Wave  Power  
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40kWm−1
25km of coastline = 1 nuclear power plant

(assuming 100% efficiency)

See “Sustainable Energy - without 
the hot air” by David McKay
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How to make a wave forecast 

•STORM: a weather map provides U, F and D.

•SEA: convert U, F and D into wave height H 
and period T.

•SWELL: wave propagation (decay, dispersion 
and scattering) between storm and beach. 

•SURF: the transformation of waves in 
shallow water. 
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The Cauchy-
Poisson solution 

After the STORM, or the SPLASH, 
dispersion sorts the waves into a slowly 

varying  train. Long and fast waves 
out-run the STORM.  This is SWELL.
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surface elevation

and therefore

ω =
�

gk

∂ω

∂k
=

1
2

ω

k
=

gT

4π

The dispersion relation:

T = wave period
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The wave 
propagation 

diagram 

Inertial Instability
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1

Use linear wave theory:

A 500 meter wave has a period of 18 seconds 
and a group speed of 14m/s. The wave takes 44 
hours to travel 1200  nautical miles.

and

x

t
=

gT

4π

x

t

T1 > T2 > T3
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 One should look for examples of 
very distant storms.

  High frequency waves are generated first, 
and get a head start before being 
overtaken by longer faster waves.

 In this example the area of the storm is 
too great and it is too close to the observer.

Linear theory is “reasonably accurate” 
- Barber & Ursell (1947)
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Fig. 5. Frequency-time diagram for the Guadalupe Spectral peaks, Fig. 3. Each frequency band is 
indicated by a cross. The vertical lines give a measure of the possible range of values of peak 

frequency; the horizontal lines give the duration of the analysed record. 
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Fig. 6. Azimuthal-equidistant projection centred on San Diego. Distances from Guadalupe are 
given in units of degrees (1 ° equals i l  I kin). 

“The observed frequency shift is 
consistent only with very 

distant areas of generation in 
the Indian Ocean, south of 

Western Australia.”

Azimuthal projection centered on San Diego

Enter Munk 
&Snodgrass

(1957)

x

t
=

gT

4π

There are clear 
observations of a 

source with a range of 
14,800 kilometers.
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Swell incident on a triangular array of bottom pressure sensors

Munk, Snodgrass and others, 
in 1963 (and again  in 1966)
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FIGURE 13. Contours of equal power density, E(f, t), on a frequency-time plot. The contours are at 
equal intervals of log E(fJ, t). Heavy contours correspond to 0 01, 0-1, 10, and 10 cm2/(c/ks). 
On the time axis the ticks designate midnight U.T. The ridge lines correspond to the dispersive 
arrivals from a single source, and their slope is inversely proportional to the distance from the 
source. For each ridge line we have marked the estimated direction, 0, of the source (clock- 
wise from true north) and the great circle distance A in degrees. The small numbers give some 
computed directions of the optimum point source, 00(f, t). 

following reasons. At low frequencies kDn is always small, and then (7.10) shows that the 
Q's tend to have a zero totaln= 

19 

There are then only six items of information and seven parameters become indeterminate. 
At higher frequencies this restriction does not hold, but in all the experiments it must be 

Munk, Miller, Snodgrass, and Barber (1963)

“Energy peaks associated 
with a given event appear 

as slanting ridges. The 
dispersion relation predicts 
that these ridges should be 

straight, and they are.”

time
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y

Spectral energy density log E(f,t);
Δ = range and θ = estimated  direction

A glorious victory 
for linear wave 

theory

Another version of the wave propagation diagram
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FIGURE 33. The sources as inferred from the wave observations plotted on an Antarctic Azimuthal Equidistance 
projection. The open circles refer to events for which weather observations were entirely lacking. The chart 
includes all observed events except those of 8*9 and 23-2 October, which occurred in the Northern Hemisphere. 
Great circle routes through San Clemente Island are plotted; they are labelled 0 = 1600, 1700, ..., 2400 giving 
the direction from San Clemente Island. The curves marked A-=70, 80, ..., 1800 are distance in degrees from 
San Clemente Island. Average northern limits of pack ice for March and October are shown. 

Sources on 
Antarctica!?

There is a problem:
the inferred sources are 

displaced by as much as 10 
degrees from storms on 

weather maps. Some of the 
inferred sources were on the 

Antarctic Continent (and 
some were under  sea ice).

 no meteorological observations

supporting meteorology

◦ =
• =
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Modern data
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Southern californian buoys
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Pitch and roll buoy: a receiver in deep water 

• Local depth of 1890 m: deep-water measurements.
• 3D-accelerometer: directional recording of swell.
• Height spectrum measured every hour since 2004.
• Mean direction for each frequency bin.

NOAA buoy 46086 Located near San Clemente island
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Back-tracking the swell
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We measure the peak-frequency of the 
low-frequency part of the spectrum.

This maximum increases linearly in time 
for swell from a distant storm:

The slope gives the range R, and 
the birth date of the storm.

We average the direction of the incoming 
swell for this peak frequency. Thus we infer:

Range and direction of the storm

f(t) =
� g

4πR

�
× t
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More examples of well-
inferred sources

(most of the time it works)
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But a few clean swells come 
from the “wrong” direction
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•Rotation of the Earth. But this effect is far too small 
(Backus 1962).

•The Earth is not a perfect sphere. This is even less 
important than rotation.

•The  Coriolis force acts on Stokes drift and sends wave 
packets round in inertial circles.  

•Refraction by bottom topography near the three-
sensor array. This is important - Munk (2012).

•The remainder of this talk: refraction by surface 
currents between the source and the receiver.

Why don’t waves always  
follow great circles?
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•Rotation of the Earth. But this effect is far too small 
(Backus 1962).

•The Earth is not a perfect sphere. This is even less 
important than rotation.

•The  Coriolis force acts on Stokes drift and sends wave 
packets round in inertial circles.  

•Refraction by bottom topography near the three-
sensor array. This is important - Munk (2012).

•The remainder of this talk: refraction by surface 
currents between the source and the receiver.

Why don’t waves always  
follow great circles?

Swell travels at over 10m/s, while surface 
currents are usually much slower than 0.5m/s.
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The ray equations (a.k .a. geometric optics)

The intrinsic dispersion relation is ω̄(k) and the intrinsic group velocity is ω̄kk̂kk.

r̈rr = ∇∇∇
(

1
2
|uuu|2

)

+ ζẑzz × ṙrr + β̇ (ṙrr −uuu) , (11)

where

β(k)
def
= ln

(

ω̄k

k

)

. (12)

Equation (??) is the wave analog of aaa = m−1fff . It is amusing that 1
2
|uuu|2 appears as a

potential energy.
ṙrr = ṡτ̂ττ (13)

where τ̂ττ is the unit tangent to the ray and the speed is

ṡ
def
= |ṙrr | =

√

|uuu|2 + 2ω̄kuuu ··· k̂kk+ ω̄
2
k . (14) accel5

We can represent the tangent as

τ̂ττ = cosα x̂xx + sinα ŷyy , (15)

where α(s) is the “heading”.

τ̂ττ n̂nn

χ =
dα

ds

η(rrr , t) ∝ eiS(rrr ,t)

ω = −St , p = Sx q = Sy

ω = uk+ vl+
√

g
(

k2 + l2
)1/4

ds =
√

dx2 + dy2 rrr(s) α(s)

The acceleration is then
r̈rr = s̈τ̂ττ + χṡ2n̂nn , (16) accel7

where

n̂nn
def
= ẑzz × τ̂ττ , and χ

def
=

dα

ds
(17)

are the normal and curvature.

χṡ2 = ζ ṡ + n̂nn ···∇∇∇
(

1
2|uuu|

2
)

− β̇ n̂nn ···uuu . (18) curve1
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r̈rr = s̈τ̂ττ + χṡ2n̂nn , (16) accel7

where

n̂nn
def
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Waves are shorter than the scale 
of ocean surface currents and we 

can use “geometric optics”.

The Doppler-shifted 
dispersion relation is:

We trace rays by integrating 
four differential equations:

The intrinsic dispersion relation is ω̄(k) and the intrinsic group velocity is ω̄kk̂kk.

r̈rr = ∇∇∇
(
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(16)
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dq
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The acceleration is then
r̈rr = s̈τ̂ττ + χṡ2n̂nn , (18) accel7

2

Let’s consider a simple, preliminary example
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A uniform current does not deflect 
a ray from a great-circle trajectory.

U

U

U

U

k

The wave vector is not tangent to 
the ray, and the rays are straight, 

despite the Doppler shift.

The intrinsic dispersion relation is ω̄(k) and the intrinsic group velocity is ω̄kk̂kk.
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where τ̂ττ is the unit tangent to the ray and the speed is

ṡ
def
= |ṙrr | =

√

|uuu|2 + 2ω̄kuuu ··· k̂kk+ ω̄
2
k . (14) accel5

We can represent the tangent as

τ̂ττ = cosα x̂xx + sinα ŷyy , (15)

where α(s) is the “heading”.

τ̂ττ n̂nn

χ =
dα

ds

η(rrr , t) ∝ eiS(rrr ,t)

ω = −St , p = Sx q = Sy

ω = up + vq+
√

g
(

p2 + q2
)1/4

dx

dt
=
∂ω

∂p

dy

dt
=
∂ω

∂q
(16)

dp

dt
= −

∂ω

∂x

dq

dt
= −

∂ω

∂y
(17)

ds =
√

dx2 + dy2 rrr(s) α(s)

dx

dt
= U +

p

k

√

g

k

dy

dt
=
q

k

√

g

k
(18)

dp

dt
= 0

dq

dt
= 0 (19)
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source

receiver

*

*

A uniform current does not deflect 
a ray from a great-circle trajectory.

U

U

U

U

k

The wave vector is not tangent to 
the ray, and the rays are straight, 

despite the Doppler shift.

The intrinsic dispersion relation is ω̄(k) and the intrinsic group velocity is ω̄kk̂kk.

r̈rr = ∇∇∇
(

1
2
|uuu|2

)

+ ζẑzz × ṙrr + β̇ (ṙrr −uuu) , (11)

where

β(k)
def
= ln

(

ω̄k

k

)

. (12)

Equation (??) is the wave analog of aaa = m−1fff . It is amusing that 1
2
|uuu|2 appears as a

potential energy.
ṙrr = ṡτ̂ττ (13)

where τ̂ττ is the unit tangent to the ray and the speed is

ṡ
def
= |ṙrr | =

√

|uuu|2 + 2ω̄kuuu ··· k̂kk+ ω̄
2
k . (14) accel5

We can represent the tangent as

τ̂ττ = cosα x̂xx + sinα ŷyy , (15)

where α(s) is the “heading”.

τ̂ττ n̂nn

χ =
dα

ds

η(rrr , t) ∝ eiS(rrr ,t)

ω = −St , p = Sx q = Sy

ω = up + vq+
√

g
(

p2 + q2
)1/4

dx

dt
=
∂ω

∂p

dy

dt
=
∂ω

∂q
(16)

dp

dt
= −

∂ω

∂x

dq

dt
= −

∂ω

∂y
(17)

ds =
√

dx2 + dy2 rrr(s) α(s)

dx

dt
= U +

p

k

√

g

k

dy

dt
=
q

k

√

g

k
(18)

dp

dt
= 0

dq

dt
= 0 (19)

2Thus the speed of surface 
currents is irrelevant for 

ray bending.
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r
=
χ

−
1

•The key result is:

•Valid for isotropic waves, Doppler 
shifted by  weak-currents:

•Ray curvature is independent of 
ray direction,  and of  current 
direction. There is no anisotropy, 
despite the direction suggested by 
velocity.

•An irrotational velocity produces 
no refraction.

cg =
1
2

�
g

k
ζ = ∇× u · ẑ

χ =
ζ

cg

|u|
cg
� 1

Vorticity (not velocity) bends rays - see L&L  
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Can the vorticity of  realistic 
surface currents bend rays?

The intrinsic dispersion relation is ω̄(k) and the intrinsic group velocity is ω̄kk̂kk.

r̈rr = ∇∇∇
(

1
2
|uuu|2

)

+ ζẑzz × ṙrr + β̇ (ṙrr −uuu) , (11)

where

β(k)
def
= ln

(

ω̄k

k

)

. (12)

Equation (??) is the wave analog of aaa = m−1fff . It is amusing that 1
2
|uuu|2 appears as a

potential energy.
ṙrr = ṡτ̂ττ (13)

where τ̂ττ is the unit tangent to the ray and the speed is

ṡ
def
= |ṙrr | =

√

|uuu|2 + 2ω̄kuuu ··· k̂kk+ ω̄
2
k . (14) accel5

We can represent the tangent as

τ̂ττ = cosα x̂xx + sinα ŷyy , (15)

where α(s) is the “heading”.

τ̂ττ n̂nn

χ =
dα

ds

η(rrr , t) ∝ eiS(rrr ,t)

ω = −St , p = Sx q = Sy

ω = up + vq+
√

g
(

p2 + q2
)1/4

ds =
√

dx2 + dy2 rrr(s) α(s)

The acceleration is then
r̈rr = s̈τ̂ττ + χṡ2n̂nn , (16) accel7

where

n̂nn
def
= ẑzz × τ̂ττ , and χ

def
=

dα

ds
(17)

are the normal and curvature.

χṡ2 = ζ ṡ + n̂nn ···∇∇∇
(

1
2|uuu|

2
)

− β̇ n̂nn ···uuu . (18) curve1

2

The Doppler-shifted 
dispersion relation is:

The intrinsic dispersion relation is ω̄(k) and the intrinsic group velocity is ω̄kk̂kk.

r̈rr = ∇∇∇
(

1
2
|uuu|2

)

+ ζẑzz × ṙrr + β̇ (ṙrr −uuu) , (11)

where

β(k)
def
= ln

(

ω̄k

k

)

. (12)

Equation (??) is the wave analog of aaa = m−1fff . It is amusing that 1
2|uuu|

2 appears as a
potential energy.

ṙrr = ṡτ̂ττ (13)

where τ̂ττ is the unit tangent to the ray and the speed is

ṡ
def
= |ṙrr | =

√

|uuu|2 + 2ω̄kuuu ··· k̂kk+ ω̄
2
k . (14) accel5

We can represent the tangent as

τ̂ττ = cosα x̂xx + sinα ŷyy , (15)

where α(s) is the “heading”.

τ̂ττ n̂nn

χ =
dα

ds

η(rrr , t) ∝ eiS(rrr ,t)

ω = −St , p = Sx q = Sy

ω = up + vq+
√

g
(

p2 + q2
)1/4

dx

dt
=
∂ω

∂p

dy

dt
=
∂ω

∂q
(16)

dp

dt
= −

∂ω

∂x

dq

dt
= −

∂ω

∂y
(17)

ds =
√

dx2 + dy2 rrr(s) α(s)

u(x,y, t) v(x,y, t)

The acceleration is then
r̈rr = s̈τ̂ττ + χṡ2n̂nn , (18) accel7

2

We need an estimate of 
the sea-surface velocity, 

and vorticity.
and

The intrinsic dispersion relation is ω̄(k) and the intrinsic group velocity is ω̄kk̂kk.

r̈rr = ∇∇∇
(

1
2
|uuu|2

)

+ ζẑzz × ṙrr + β̇ (ṙrr −uuu) , (11)

where

β(k)
def
= ln

(

ω̄k

k

)

. (12)

Equation (??) is the wave analog of aaa = m−1fff . It is amusing that 1
2
|uuu|2 appears as a

potential energy.
ṙrr = ṡτ̂ττ (13)

where τ̂ττ is the unit tangent to the ray and the speed is

ṡ
def
= |ṙrr | =

√

|uuu|2 + 2ω̄kuuu ··· k̂kk+ ω̄
2
k . (14) accel5

We can represent the tangent as

τ̂ττ = cosα x̂xx + sinα ŷyy , (15)

where α(s) is the “heading”.

τ̂ττ n̂nn

χ =
dα

ds

η(rrr , t) ∝ eiS(rrr ,t)

ω = −St , p = Sx q = Sy

ω = up + vq+
√

g
(

p2 + q2
)1/4

dx

dt
=
∂ω

∂p

dy

dt
=
∂ω

∂q
(16)

dp

dt
= −

∂ω

∂x

dq

dt
= −

∂ω

∂y
(17)

ds =
√

dx2 + dy2 rrr(s) α(s)

The acceleration is then
r̈rr = s̈τ̂ττ + χṡ2n̂nn , (18) accel7

2

The ray equations are:
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OSCAR sea-surface velocity

The intrinsic dispersion relation is ω̄(k) and the intrinsic group velocity is ω̄kk̂kk.

r̈rr = ∇∇∇
(

1
2
|uuu|2

)

+ ζẑzz × ṙrr + β̇ (ṙrr −uuu) , (11)

where

β(k)
def
= ln

(

ω̄k

k

)

. (12)

Equation (??) is the wave analog of aaa = m−1fff . It is amusing that 1
2|uuu|

2 appears as a
potential energy.

ṙrr = ṡτ̂ττ (13)

where τ̂ττ is the unit tangent to the ray and the speed is

ṡ
def
= |ṙrr | =

√

|uuu|2 + 2ω̄kuuu ··· k̂kk+ ω̄
2
k . (14) accel5

We can represent the tangent as

τ̂ττ = cosα x̂xx + sinα ŷyy , (15)

where α(s) is the “heading”.

τ̂ττ n̂nn

χ =
dα

ds

η(rrr , t) ∝ eiS(rrr ,t)

ω = −St , p = Sx q = Sy

ω = up + vq+
√

g
(

p2 + q2
)1/4

dx

dt
=
∂ω

∂p

dy

dt
=
∂ω

∂q
(16)

dp

dt
= −

∂ω

∂x

dq

dt
= −

∂ω

∂y
(17)

ds =
√

dx2 + dy2 rrr(s) α(s)

u(x,y, t) v(x,y, t)

The acceleration is then
r̈rr = s̈τ̂ττ + χṡ2n̂nn , (18) accel7

2

and

High res, 1/3 degree

Low res, 1 degree

Twenty-year mean

Color is  vorticity

s−1
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Inertial Instability

Bill, Stephen & Steve ∗

September 10, 2012

1 The model

ω =
√

gk (1)

cg =
1

2

√

g

k
=
gT

4π
(2)

ω(rrr , kkk) = uuu ··· kkk+
√

g|kkk| (3)

ẋ =ωp , ẏ =ωq (4)

ṗ = −ωx , q̇ = −ωy (5)

∗Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093–
0230, USA.

1

We integrate the ray equations

The sea-surface velocity is taken 
from OSCAR.

The Doppler-shifted gravity-wave  
dispersion relation is:

Assessment of sea-surface currents

Inertial Instability

Bill, Stephen & Steve ∗

September 10, 2012

1 The model

ω =
√

gk (1)

cg =
1

2

√

g

k
=
gT

4π
(2)

ω(rrr , kkk) = uuu ··· kkk+
√

g|kkk| (3)

ω(x,y, p, q) = pu(x, y, t)+ qv(x,y, t)+
√

g
(

p2 + q2
)1/4

(4)

rrr = (x,y) kkk = (p, q) (5)

ẋ =ωp , ẏ =ωq (6)

ṗ = −ωx , q̇ = −ωy (7)

∗Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093–
0230, USA.
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Inertial Instability

Bill, Stephen & Steve ∗

September 10, 2012

1 The model

ω =
√

gk (1)

cg =
1

2

√

g

k
=
gT

4π
(2)

ω(rrr , kkk) = uuu(rrr)···kkk+
√

g|kkk| (3)

ω(x,y, p, q) = pu(x, y, t)+ qv(x,y, t)+
√

g
(

p2 + q2
)1/4

(4)

rrr = (x,y) kkk = (p, q) (5)

ẋ =ωp , ẏ =ωq (6)

ṗ = −ωx , q̇ = −ωy (7)

∗Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093–
0230, USA.

1

Even very long swell (e.g., 1km) is still 
much smaller scale than mesoscale 
ocean eddies: we use geometric optics.

Azimuthal projection centered on San Clemente Island

λ = 500m T = 18s
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The observer infers the 
source location by great-

circle backtracking.

But the rays do not closely  
follow great circles....

15 days later

λ = 500m T = 18s

s−1
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Twenty years of OSCAR data
       One frame every five days for twenty years.

= inferred source
λ = 500m T = 18s
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λ = 500m T = 18s

Propagation through the twenty-year mean 

Eddies are crucial.
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Inertial Instability

Bill, Stephen & Steve ∗

September 10, 2012

1 The model

ω =
√

gk (1)

cg =
1

2

√

g

k
=
gT

4π
(2)

ω(rrr , kkk) = uuu(rrr)···kkk+
√

g|kkk| (3)

ω(x,y, p, q) = pu(x, y, t)+ qv(x,y, t)+
√

g
(

p2 + q2
)1/4

(4)

rrr = (x,y) kkk = (p, q) (5)

ẋ =ωp , ẏ =ωq (6)

ṗ = −ωx , q̇ = −ωy (7)

∗Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093–
0230, USA.
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Inertial Instability

Bill, Stephen & Steve ∗

September 17, 2012

1 The model

ω =
√

gk (1)

cg =
1

2

√

g

k
=
gT

4π
(2)

ω(rrr , kkk) = uuu(rrr)···kkk+
√

g|kkk| (3)

ω(rrr , kkk) = c(rrr)|kkk| (4)

ω(x,y, p, q) = pu(x, y, t)+ qv(x,y, t)+
√

g
(

p2 + q2
)1/4

(5)

rrr = (x,y) kkk = (p, q) (6)

ẋ =ωp , ẏ =ωq (7)

ṗ = −ωx , q̇ = −ωy (8)

∗Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093–
0230, USA.

1

versus

How do we understand these numerical solutions? 
We do not have analogs of Snell’s law, Fermat’s 

principle and  the index of refraction.
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The intrinsic dispersion relation is ω̄(k) and the intrinsic group velocity is ω̄kk̂kk.
Following Landau & Lifshitz, the ray tracing equations can be written as

ṙrr = +ωkkk = uuu+
ω̄k

k
kkk , (11) ham1

k̇kk = −ωrrr = ζ ẑzz × kkk− (kkk ···∇∇∇)uuu , (12) ham2

where the packet position is rrr = xx̂xx + yŷyy , ζ
def
= vx − uy is the vorticity, and the dot

indicates d/dt ie., the time derivative along a ray. The unfamiliar form in (12) is very
useful.

Now let’s try to eliminate kkk from (11) and (12). We start by calculating the “ray
acceleration”, and after a pleasant cancellation:

r̈rr = (uuu ···∇∇∇)uuu+
ω̄k

k
ζ ẑzz × kkk+

(

ω̄k

k

)

k
k̇kkk , (13)

= ∇∇∇
(

1
2|uuu|

2
)

+ ζẑzz × ṙrr + β̇ (ṙrr −uuu) , (14) accel2

where

β(k)
def
= ln

(

ω̄k

k

)

. (15)

Equation (14) is the wave analog of aaa = m−1fff . It is amusing that 1
2
|uuu|2 appears as a

potential energy.
Our goal was to eliminate the wavenumber kkk and write everything in terms of rrr and

time derivatives of rrr . In (14) we came close, but did not succeed: |kkk| still appears in the
terms involving dβ/dt. This is only a matter of determination — after some suffering
we can express dβ/dt in terms of rrr etc if.

Intrinsic coordinates

Now consider the ray using intrinsic coordinates, rrr(s), with s the arclength along the
ray. Then

ṙrr = ṡτ̂ττ (16)

where τ̂ττ is the unit tangent to the ray and the speed is

ṡ
def
= |ṙrr | =

√

|uuu|2 + 2ω̄kuuu ··· k̂kk+ ω̄
2
k . (17) accel5

We can represent the tangent as

τ̂ττ = cosα x̂xx + sinα ŷyy , (18)

where α(s) is the “heading”.
The acceleration is then

r̈rr = s̈τ̂ττ + χṡ2n̂nn , (19) accel7

2

Inertial Instability

Bill, Stephen & Steve ∗

September 17, 2012

1 The model

ω =
√

gk (1)

cg =
1

2

√

g

k
=
gT

4π
(2)

ω(rrr , kkk) = uuu(rrr)···kkk+
√

g|kkk| (3)

ω(rrr , kkk) = c(rrr)|kkk| (4)

ω(x,y, p, q) = pu(x, y, t)+ qv(x,y, t)+
√

g
(

p2 + q2
)1/4

(5)

rrr = (x,y) kkk = (p, q) (6)

ẋ =ωp , ẏ =ωq (7)

ṗ = −ωx , q̇ = −ωy (8)

We are considering waves propagating through a steady planar flow with velocity
uuu = u(x,y)x̂xx+v(x,y)ŷyy . We limit attention to an isotropic waves, so that the Doppler
shifted frequency is

ω(rrr , kkk) = uuu ··· kkk+ ω̄ (k) . (9)

The wavenumber is

kkk = px̂xx + qŷyy = kk̂kk , where k = |kkk| =
√

p2 + q2 . (10)

∗Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093–
0230, USA.

1
The intrinsic dispersion relation is ω̄(k) and the intrinsic group velocity is ω̄kk̂kk.

r̈rr = ∇∇∇
(

1
2
|uuu|2

)

+ ζẑzz × ṙrr + β̇ (ṙrr −uuu) , (11)

where

β(k)
def
= ln

(
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k

)

. (12)

Equation (??) is the wave analog of aaa = m−1fff . It is amusing that 1
2
|uuu|2 appears as a

potential energy.
Our goal was to eliminate the wavenumber kkk and write everything in terms of rrr and

time derivatives of rrr . In (??) we came close, but did not succeed: |kkk| still appears in the
terms involving dβ/dt. This is only a matter of determination — after some suffering
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where τ̂ττ is the unit tangent to the ray and the speed is

ṡ
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√
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2
k . (14) accel5

We can represent the tangent as

τ̂ττ = cosα x̂xx + sinα ŷyy , (15)

where α(s) is the “heading”.
The acceleration is then

r̈rr = s̈τ̂ττ + χṡ2n̂nn , (16) accel7

where

n̂nn
def
= ẑzz × τ̂ττ , and χ

def
=

dα

ds
(17)

are the normal and curvature.

χṡ2 = ζ ṡ + n̂nn ···∇∇∇
(

1
2|uuu|

2
)

− β̇ n̂nn ···uuu . (18) curve1

The final two terms on the right of (??) are second order in uuu, and also ṡ = ω̄k +O(uuu).
Thus we obtain Dysthe’s formula for the ray curvature

χ =
ζ

ω̄k
+O

(

uuu

ω̄k

)2

, (19) curve2

where we’ve used

ṡ = ω̄k +O

(

uuu

ω̄k

)

. (20)
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The intrinsic dispersion relation is ω̄(k) and the intrinsic group velocity is ω̄kk̂kk.
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+ ζẑzz × ṙrr + β̇ (ṙrr −uuu) , (11)

where

β(k)
def
= ln

(

ω̄k

k

)

. (12)

Equation (??) is the wave analog of aaa = m−1fff . It is amusing that 1
2
|uuu|2 appears as a

potential energy.
Our goal was to eliminate the wavenumber kkk and write everything in terms of rrr and
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ṡ
def
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where
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, (19) curve2

where we’ve used

ṡ = ω̄k +O

(

uuu

ω̄k

)

. (20)

2

The intrinsic dispersion relation is ω̄(k) and the intrinsic group velocity is ω̄kk̂kk.
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Equation (??) is the wave analog of aaa = m−1fff . It is amusing that 1
2
|uuu|2 appears as a

potential energy.
Our goal was to eliminate the wavenumber kkk and write everything in terms of rrr and

time derivatives of rrr . In (??) we came close, but did not succeed: |kkk| still appears in the
terms involving dβ/dt. This is only a matter of determination — after some suffering
we can express dβ/dt in terms of rrr etc if.

Intrinsic coordinates

Now consider the ray using intrinsic coordinates, rrr(s), with s the arclength along the
ray. Then

ṙrr = ṡτ̂ττ (13)

where τ̂ττ is the unit tangent to the ray and the speed is

ṡ
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= |ṙrr | =
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We can represent the tangent as

τ̂ττ = cosα x̂xx + sinα ŷyy , (15)

where α(s) is the “heading”.
The acceleration is then

r̈rr = s̈τ̂ττ + χṡ2n̂nn , (16) accel7

where
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def
= ẑzz × τ̂ττ , and χ
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=
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= |ṙrr | =

√

|uuu|2 + 2ω̄kuuu ··· k̂kk+ ω̄
2
k . (14) accel5

We can represent the tangent as

τ̂ττ = cosα x̂xx + sinα ŷyy , (15)
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= ẑzz × τ̂ττ , and χ

def
=

dα

ds
(17)

are the normal and curvature.
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r̈rr = s̈τ̂ττ + χṡ2n̂nn , (16) accel7

where

n̂nn
def
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Thus we obtain Dysthe’s formula for the ray curvature

χ =
ζ

ω̄k
+O

(

uuu

ω̄k

)2

, (19) curve2

where we’ve used
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Tangent:

Curvature:

χ =
ζ

cg
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X - 4 COLLARD ET AL.: OBSERVING OCEAN SWELL FIELDS

Swell detection with the virtual observer reaches its limits
when the swell height is very low, such as on 3 July with a
20 s 0.3 m swell well detected by the buoy (the green-orange
ridge at 0.05 Hz). Because we use a single trajectory ema-
nating from one observed swell partition the relatively small
interrogation window can easily be missed after 10000 km
of propagation.

Our discrete propagation technique suffers from a ran-
domized version of the “garden sprinkler effect” that, if not
corrected for, can create unrealistic flower-like patterns in
the far field of storms in numerical wave models that use
a discretized spectrum [e.g. Tolman, 2002]. Our choice of
a single group speed and direction, because a narrow swell
spectrum is not resolved by the SAR, produces a discrete
wave field (the dots in figure 3). With the present process-
ing this is smoothed by the finite size of our interrogation
window (figure 1). An extension of the present technique
could use neighboring group speeds and directions to take
into account the frequency and directional spread of the sea
state, which would allow the use of a smaller window. Just
like the estimation of propagated wave heights, discussed
below, the estimation of a spectra width that cannot be re-
solved by the SAR may use some further information on the
structure of the generating storm.

Other errors in the present technique can also be at-
tributed to the SAR processing. In particular, a maximum
value is defined for the transfer function used to obtain the
wave spectrum from the SAR image [Johnsen and Collard ,
2004]. Although this is designed to prevent the amplifica-
tion of measurement noise, long swells such as this 20 s event
have very small slopes, and it is likely that they are under-
estimated in the wave spectrum due to this threshold in the
processing.

When propagated for 6 days, without any other informa-
tion than the peak frequency and direction at the time of
observations, the waves are remarkably consistent with the
latest local observations. For the southern swells arriving
at Christmas Island between July 16 and 21 (figure 2), the
difference in arrival times given by the virtual oberver and
real buoy is typically less than 12 h. This is less than 10%
of the maximum time between the SAR observation and the
virtual observer record. This implies that the accuracy of
the peak period estimate for each SAR partition must also
be less than 10%, consistent with previous validation stud-
ies [Johnsen and Collard , 2004; Johnsen et al., 2006]. The
consistency of the arrival directions along the ridges also
suggests that the root mean square (RMS) error in peak di-
rection estimates must be close to 20◦, comparable to the
22◦ RMS difference between mean wave directions obtained
from SAR wave mode and a numerical wave model for waves
with periods longer than 12 s [Johnsen and Collard , 2004].

Although it cannot replace the spectral resolving power of
a buoy, the performance of the virtual observer is therefore
comparable or better to that of human observers in terms of
peak period and direction [Munk and Traylor , 1947]. The
really missing bit is a wave height estimate along the swell
propagation path. We will show that this may be obtained
by estimating the source storm characteristics and the dis-
sipation rate of swell energy.

2.2. Storm source identification and ”fireworks”

Along the estimated trajectories, virtual observations can
further be produced in a similar fashion. The animation of

these propagated swells confirms the very well organized na-
ture of storm swells crossing large ocean basins.

Figure 3. Snapshot of the ”fireworks” animation given
in the auxiliary material, for July 17 2004 at 0:00 UTC.
Each of the 1071 colored dots represent one observed
swell partition, within 6 days of its observation, displaced
along a great circle with the group speed corresponding
to the detected peak period in the direction of the de-
tected peak direction. Only swells with tracks that passes
within 1000 km of the storm center (red disk) have been
retained.

From the relatively sparse and track-based initial satel-
lite observation sampling, the swell persistency can then be
used to capture ”fireworks” patterns exploding from the few

Figure 4. Finding the source storm. All swells with a
17 ± 0.5 s period that were identified in 13 days of EN-
VISAT synthetic aperture radar data over the Pacific,
are re-focussed from their location of observation (filled
dots) following their direction of arrival at the theoreti-
cal group speed for 17 s waves. This focussing reveals a
single swell generation event, well defined in space and
time (pink to red disks). The back-tracking trajectories
are color-dated from black (July 9 2004 18:00 UTC) to
red (July 22 2004 18:00 UTC).

X - 4 COLLARD ET AL.: OBSERVING OCEAN SWELL FIELDS

Swell detection with the virtual observer reaches its limits
when the swell height is very low, such as on 3 July with a
20 s 0.3 m swell well detected by the buoy (the green-orange
ridge at 0.05 Hz). Because we use a single trajectory ema-
nating from one observed swell partition the relatively small
interrogation window can easily be missed after 10000 km
of propagation.

Our discrete propagation technique suffers from a ran-
domized version of the “garden sprinkler effect” that, if not
corrected for, can create unrealistic flower-like patterns in
the far field of storms in numerical wave models that use
a discretized spectrum [e.g. Tolman, 2002]. Our choice of
a single group speed and direction, because a narrow swell
spectrum is not resolved by the SAR, produces a discrete
wave field (the dots in figure 3). With the present process-
ing this is smoothed by the finite size of our interrogation
window (figure 1). An extension of the present technique
could use neighboring group speeds and directions to take
into account the frequency and directional spread of the sea
state, which would allow the use of a smaller window. Just
like the estimation of propagated wave heights, discussed
below, the estimation of a spectra width that cannot be re-
solved by the SAR may use some further information on the
structure of the generating storm.

Other errors in the present technique can also be at-
tributed to the SAR processing. In particular, a maximum
value is defined for the transfer function used to obtain the
wave spectrum from the SAR image [Johnsen and Collard ,
2004]. Although this is designed to prevent the amplifica-
tion of measurement noise, long swells such as this 20 s event
have very small slopes, and it is likely that they are under-
estimated in the wave spectrum due to this threshold in the
processing.

When propagated for 6 days, without any other informa-
tion than the peak frequency and direction at the time of
observations, the waves are remarkably consistent with the
latest local observations. For the southern swells arriving
at Christmas Island between July 16 and 21 (figure 2), the
difference in arrival times given by the virtual oberver and
real buoy is typically less than 12 h. This is less than 10%
of the maximum time between the SAR observation and the
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suggests that the root mean square (RMS) error in peak di-
rection estimates must be close to 20◦, comparable to the
22◦ RMS difference between mean wave directions obtained
from SAR wave mode and a numerical wave model for waves
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Although it cannot replace the spectral resolving power of
a buoy, the performance of the virtual observer is therefore
comparable or better to that of human observers in terms of
peak period and direction [Munk and Traylor , 1947]. The
really missing bit is a wave height estimate along the swell
propagation path. We will show that this may be obtained
by estimating the source storm characteristics and the dis-
sipation rate of swell energy.
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Along the estimated trajectories, virtual observations can
further be produced in a similar fashion. The animation of

these propagated swells confirms the very well organized na-
ture of storm swells crossing large ocean basins.

Figure 3. Snapshot of the ”fireworks” animation given
in the auxiliary material, for July 17 2004 at 0:00 UTC.
Each of the 1071 colored dots represent one observed
swell partition, within 6 days of its observation, displaced
along a great circle with the group speed corresponding
to the detected peak period in the direction of the de-
tected peak direction. Only swells with tracks that passes
within 1000 km of the storm center (red disk) have been
retained.

From the relatively sparse and track-based initial satel-
lite observation sampling, the swell persistency can then be
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17 ± 0.5 s period that were identified in 13 days of EN-
VISAT synthetic aperture radar data over the Pacific,
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Fig. 1. Aerial photograph of waves at Camp Pendleton, California, on 16 January, 1944. The 
coast trends north-west - south-east. 
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The time-averaged, surface circulation (mostly wind-driven) of the ocean 

during northern hemisphere winter deduced from a century of oceanographic 
expeditions. After Tolmazin (1985). 

Time-average surface currents based on a 
century of oceanographic observations 

(after Tolmazin 1985).
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La Jolla Cove, February 1986
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El Nino storm strikes the  Marine  Room
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