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Lecture 1

Why integrals?

Integrals occur frequently as the solution of partial and ordinary di�erential equations, and as the
de�nition of many \special functions". The coe�cients of a F ourier series are given as integrals
involving the target function etc. Green's function technology expresses the solution of a di�er-
ential equation as a convolution integral etc. Integrals are also important because they provide
the simplest and most accessible examples of concepts like asymptoticity and techniques such as
asymptotic matching.

1.1 The Airy function

Airy's equation,
y00� xy = 0 ; (1.1)

is an important second-order di�erential equation. The two l inearly independent solutions, Ai(x)
and Bi(x), are shown in �gure 1.1. The Airy function, Ai( x), is de�ned as the solution that decays
as x ! 1 , with the normalization Z 1

�1
Ai( x) dx = 1 : (1.2)

We obtain an integral representation of Ai(x) by attacking (1.1) with the Fourier transform. Denote
the Fourier transform of Ai by

fAi( k) =
Z 1

�1
Ai( x)e� ikx dx : (1.3)

Fourier transforming (1.1), we eventually �nd

fAi( k) = e ik3=3 : (1.4)

Using the Fourier integral theorem

Ai( x) =
Z 1

�1
eikx +i k3=3 dk

2�
; (1.5)

=
1
�

Z 1

0
cos

�
kx +

k3

3

�
dk : (1.6)

Notice that the integral converges at k = 1 because of destructive interference or catastrophic
cancellation.
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Figure 1.1: The functions Ai(x) and Bi( x). The Airy function decays rapidly as x ! 1 and rather
slowly as x ! �1 .

We'll develop several techniques for extracting information from integral representations such
as (1.6). We'll show that as x ! �1 :

Ai( x) �
1

p
� jxj1=4

cos

 
2jxj3=2

3
�

�
4

!

; (1.7)

and asx ! + 1 :

Ai( x) �
e� 2x 3=2

3

2
p

�x 1=4
: (1.8)

Exercise: Fill in the details between (1.3) and (1.4).

1.2 Recursion relations: the example n!

The factorial function
an = n! (1.9)

satis�es the recursion relation

an+1 = ( n + 1) an ; a0 = 1 : (1.10)

The integral representation

an =
Z 1

0
tne� t dt (1.11)

is equivalent to both the initial condition and the recursion relation. The proof is integration by
parts:

Z 1

0
tn+1 e� t dt = �

Z 1

0
tn+1 d

dt
e� t dt ; (1.12)

= � [tn+1 e� t ]10| {z }
=0

+( n + 1)
Z 1

0
tne� t dt : (1.13)

Exercise: Memorize

n! =
Z 1

0
tn e� t dt : (1.14)

Later we will use the integral representation (1.14) to obtain Stirlings approximation :

n! �
p

2�n
� n

e

� n
; as n ! 1 . (1.15)

Exercise: Compare Stirling's approximation to n! with n = 1, 2 and 3.
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Figure 1.2: The �-function and its reciprocal.

1.3 Special functions de�ned by integrals

We'll soon encounter the error function and its complement:

erf(z) def=
2

p
�

Z z

0
e� t2

dt and erfc(z) def= 1 � erf(z) : (1.16)

Another special function de�ned by an integral is the exponential integral of order n:

En (z) def=
Z 1

z

e� t

tn dt : (1.17)

We refer to the casen = 1 simply as the \exponential integral".
Example: Singularity subtraction | small z behavior of En (z).

The Gamma function: �( z) def=
R1

0 tz� 1e� t dt ; for <z > 0.

There are many other examples of special functions de�ned byintegrals. Probably the most impor-
tant is the �-function, which is de�ned in the heading of this section | see Figure 1.2. If < z > 0
we can use integration by parts to show that �( z) satis�es the functional equation

z�( z) = �( z + 1) : (1.18)

Using analytic continuation1 this result is valid for all z 6= 0, � 1, � 2 � � � Thus the functional
equation (1.18) is used to extend the de�nition of �-functio n throughout the complex plane. Notice
that if z is an integer, n, then

�( n + 1) = n! (1.19)

1 If f (z) and g(z) are analytic in a domain D , and if f = g in a smaller domain E � D , then f = g throughout D .
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The special value

�
�

1
2

�
=

Z 1

0

e� t
p

t
dt =

Z 1

�1
e� u2

du =
p

� (1.20)

is important.

Exercise: Use the functional equation (1.18) to obtain �(3 =2) and �( � 1=2).

Exercise: Use the functional equation (1.18) to �nd the leading order b ehaviour of �( z) near z = 0 and z = � 1,
and other negative integers. Work backwards and show that

�( x) �
(� )n

n!
1

x + n
; as x ! � n.

Thus �( z) has poles at z = 0, � 1, � � � with residues (� )n =n!.

1.4 Elementary methods for evaluating integrals

Change of variables

How can we evaluate the integral Z 1

0
e� t3

dt ? (1.21)

Try a change of variable

v = t3 and therefore dv = 3 t2dt = 3v2=3dt : (1.22)

The integral is then
1
3

Z 1

0
e� vv� 2=3 dv =

1
3

�
�

1
3

�
= �

�
4
3

�
: (1.23)

Exercise: Evaluate in terms of the �-function

U(�; p; q ) def=
Z 1

0
tqe� �t p

dt :

Exercise: Show that

 L[tp ] =
Z 1

0
tpe� st dt =

�(1 + p)
s1+ p

: (1.24)

Di�erentiation with respect to a parameter

Given that p
�

2
=

Z 1

0
e� x2

dx ; (1.25)

we can make the change of variablesx =
p

tx 0 and �nd that

1
2

r
�
t

=
Z 1

0
e� tx 2

dx : (1.26)

We now have an integral containing the parametert.
To evaluate Z 1

0
x2e� tx 2

dx ; (1.27)

we di�erentiate (1.26) with respect to t to obtain

1
4

r
�
t3 =

Z 1

0
x2e� tx 2

dx ; and again
3
8

r
�
t5 =

Z 1

0
x4e� tx 2

dx : (1.28)
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Di�erentiation with respect to a parameter is a very e�ective t rick. For some reason it is not taught
to undergraduates.

How would you calculate  L[tp ln t]? No problem | just notice that

@ptp = @pep ln t = tp ln t ; (1.29)

and then take the derivative of (1.24) with respect to p

 L[tp ln t] =
� 0(1 + p)

s1+ p �
�(1 + p) ln s

s1+ p ; (1.30)

=
�(1 + p)

s1+ p [ (1 + p) � ln s] ; (1.31)

where the digamma function

 (z) def=
� 0(z)
�( z)

(1.32)

is the derivative of ln �.

1.5 Complexi�cation

Consider

F (a; b) =
Z 1

0
e� at cosbtdt ; (1.33)

where a > 0. Then

F = <
Z 1

0
e� (a+i b)t dt ; (1.34)

= <
1

a + i b
= <

a � ib
a2 + b2 ; (1.35)

=
a

a2 + b2 : (1.36)

As a bonus, the imaginary part gives us

b
a2 + b2 =

Z 1

0
e� at sinbtdt : (1.37)

Derivatives with respect to the parametersa and b generate further integrals.

Contour integration

The theory of contour integration, covered in part B, is an example of complexi�cation. As revision
we'll consider examples that illustrate important techniques.

Example: Consider the Fourier transform

f (k) =
Z 1

�1

e� i kx

1 + x2
dx : (1.38)

We evaluate this Fourier transform using contour integrati on to obtain

f (k) = � e�j k j : (1.39)

Note particularly the jkj: if k > 0 we must close in the lower half of the z = x + i y plane, and if k < 0 we close
in the upper half plane.
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Figure 1.3: The pie contour ABC in the complex plane (z = x + i y = r ei � ) used to evaluateJ (1)
in (1.42). The ray AC is a contour of constant phase:z3 = i r 3 and exp(iz3) = exp( � r 3).

Example Let's evaluate

Ai(0) =
1
�

Z 1

0
cos

�
k3

3

�
dk (1.40)

via contour integration. We consider a slightly more genera l integral

J (� ) =
Z 1

0
ei �v 3

dv ; (1.41)

= j� j � 1=3
Z 1

0
eisgn( � ) x 3

dx : (1.42)

Thus if we can evaluate J (1) we also have J (� ), and in particular < J (1=3), which is just what we need for
Ai(0). But at the moment it may not even be clear that these int egrals converge | we're relying on the
destructive cancellation of increasingly wild oscillatio ns as x ! 1 , rather than decay of the integrand, to
ensure convergence.

To evaluate J (1) we consider the entire analytic function

f (z) = e i z 3
= e i r 3 e3i �

= exp
h
y3 � 3x2y + i ( x3 � 3xy 2)

| {z }
=the phase of z 3

i
: (1.43)

Notice from Cauchy's theorem that the integral of f (z) over any closed path in the z-plane is zero. In particular,
using the pie-shaped path ABC in the �gure,

0 =
Z

ABC
ei z 3

dz : (1.44)

The pie-path ABC is cunningly chosen so that the segment CA (where z = r ei �= 6) is a contour of constant
phase, so called because

f (z) = e � r 3
on AC . (1.45)

On CA phase of f (z) is a constant, namely zero.

Now write out (1.44) as

0 =
Z R

0
ei x 3

dx
| {z }

! J (1)

+
Z �= 6

0
ei R 3 e3i �

iRei � d�
| {z }

= M ( R )

+
Z 0

R
e� r 3

dr : (1.46)

Note that on the arc BC , z = Rei � and dz = i Rei � d� | we've used this in M (R) above.

We consider the limit R ! 1 . If we can show that the term in the middle, M (r ), vanishes asR ! 1 then
we will have

J (1) =
Z 1

0
e� r 3

dr : (1.47)

The right of (1.47) is a splendidly convergent integral and i s readily evaluated in terms of our friend the
�-function.
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So we now focus on the troublesomeM (R):

jM (R)j = R
�
�
�
Z �= 6

0
ei R 3 cos 3 � e� R 3 sin 3 � ei � d�

�
�
� ;

� R
Z �= 6

0

�
�
�ei R 3 cos 3 � e� R 3 sin 3 � ei �

�
�
� d� ;

� R
Z �= 6

0
e� R 3 sin 3 � d� ;

< R
Z �= 6

0
e� R 3 (6 �=� ) d� ; (1.48)

=
�

6R2

�
1 � e� R 3

�
;

! 0 ; as R ! 1 : (1.49)

At (1.48) we've obtained a simple upper bound 2 using the inequality

sin 3� >
6�
�

; for 0 < � <
�
6

. (1.50)

An alternative is to change variables with v = sin 3 � so that
Z �= 6

0
e� R 3 sin 3 � d� =

1
3

Z 1

0
e� R 3 v dv

p
1 � v2

; (1.51)

and then use Watson's lemma (from the next lecture). This giv es a sharper bound on the arc integral.

The �nal answer is

Ai(0) =
31=3

�

Z 1

0
e� r 3

dr =
�(1 =3)
32=3 �

: (1.52)

In the example above we used a constant-phase contour to evaluate an integral exactly. A
constant-phase contour is also a contour ofsteepest descent. The function in the exponential is

iz3 = y3 � 3x2y
| {z }

= �

+i ( x3 � 3xy2)
| {z }

=  

: (1.53)

On CA the phase is constant:  = 0. But from the Cauchy-Rieman equations

r � � r  = 0 ; (1.54)

and therefore as one moves alongCA one is moving parallel to r � . One is therefore always
ascending or descending along the steepest direction of thesurface formed by� (x; y) above the
(x; y)-plane. Thus the main advantage to integrating along the constant-phase contourCA is that
the integrand is decreasing as fast as possible without any oscillatory behavior.

Example: Let's prove the important functional equation

�( z)�(1 � z) =
Z 1

0

vz � 1

1 + v
dv =

�
sin �z

: (1.55)

Example: Later, in our discussion of the method of averaging, we'll need the integral

A(� ) =
1

2�

Z �

� �

dt
1 + � cost

: (1.56)

We introduce a complex variable

z = e i t ; so that dz = i zd� ; and cost = 1
2 z + 1

2 z� 1 : (1.57)

2This trick is a variant of Jordan's lemma.
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Thus

A(� ) = �
i
�

Z

C

dz
�z 2 + 2 z + �

; (1.58)

= �
i

��

Z

C

dz
(z � z+ )( z � z� )

; (1.59)

where the path of integration, C, is a unit circle centered on the origin. The integrand has si mple poles at

z� = � � 1 �
p

� � 2 � 1 : (1.60)

The pole at z+ is inside C, and the other is outside. Therefore

A(� ) = 2 � i �
�

�
i

��

�
�

1
z+ � z�

; (1.61)

=
1

p
1 � � 2

: (1.62)

Mathematica, Maple and Gradshteyn & Ryzhik

Tables of Integrals Series and Productsby I.S. Gradshteyn & I.M. Ryzhik is a good source for
look-up evaluation of integrals. Get the seventh edition | i t has fewer typos.

1.6 Problems

Problem 1.1. Use the elementary integral

1
n + 1

=
Z 1

0
xn dx ; (1.63)

to evaluate

S(n) def=
Z 1

0
xn ln

�
1
x

�
dx and R(n) def=

Z 1

0
xn ln2

�
1
x

�
dx : (1.64)

Do this problem two ways (i) integration by parts and (ii) di�erentiation with respect to the
parameter n.

Problem 1.2. Starting from
a

a2 + � 2 =
Z 1

0
e� ax cos�x dx ; (1.65)

evaluate

I (a; � ) =
Z 1

0
x e� ax cos�x dx ; (1.66)

and for desert

J (a) =
Z 1

0
e� ax sinx

x
dx : (1.67)

Notice that J (a) is an interesting Laplace transform.

Problem 1.3. Consider

F (a; b) =
Z 1

0
e� a2u2 � b2u � 2

du : (1.68)

(i) Using a change of variables show thatF (a; b) = a� 1F (1; ab). (ii) Show that

@F(a; b)
@b

= � 2F (1; ab) : (1.69)

(iii) Use the results above to show thatf satis�es a simple �rst order di�erential equation; solve
the equation and show that

F (a; b) =

p
2�

2a
e� 2ab : (1.70)
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Problem 1.4. The harmonic sum is de�ned by

HN �
NX

n=1

1
n

: (1.71)

In this problem you're asked to show that

lim
N !1

(HN � ln N ) = 
 E ; (1.72)

where the Euler constant 
 E is de�ned in (1.80). (i) Prove that HN diverges by showing that

ln(1 + N ) � HN � 1 + ln N : (1.73)

Hint: compare HN with the area beneath the curvef (x) = x � 1 | you'll need to carefully select
the limits of integration. Your answer should include a careful sketch. (ii) Prove that

HN =
Z 1

0

1 � xN

1 � x
dx : (1.74)

Hint : n� 1 =
R1

0 xn� 1 dx. (iii) Use matlab to graph

FN (x) �
1 � xN

1 � x
; for 0 � x � 1, (1.75)

with N = 100. This indicates that FN (x) achieves its maximum value at x = 1. Prove that
FN (1) = N . These considerations should convince you that the integral in (1.74) is dominated by
the peak at x = 1. (iv) With a change of variables, rewrite (1.74) as

HN =
Z N

0

�
1 �

�
1 �

y
N

� N
�

dy
y

: (1.76)

(v) Deduce (1.72) by asymptotic evaluation,N ! 1 , of the integral in (1.76).

Problem 1.5. Consider a harmonic oscillator that is kicked at t = 0 by singular forcing

•x + x =
1
t

: (1.77)

(i) Show that a particular solution of (1.77) is provided by the Stieltjes integral

x(t) =
Z 1

0

e� st

1 + s2 ds : (1.78)

(ii) Find the leading-order the behaviour ofx(t) as t ! 1 from the integral representation (1.78).
(iii) Show that this asymptotic result corresponds to a two-term balance in (1.77). (iv) Evaluate
x(0). (v) Can you �nd _x(0)? (vi) If your answer to (v) was \no", what can you say about the form
of x(t) as t ! 0? Do you get more information from the di�erential equation, or from the integral
representation?

Problem 1.6. Evaluate the Fresnel integral

F (� ) =
Z 1

0
ei �x 2

dx : (1.79)
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Problem 1.7. Euler's constant is de�ned by


 E
def= � � 0(1) : (1.80)

(i) Show by direct di�erentiation of the de�nition of the �-funct ion that:


 E = �
Z 1

0
e� t ln t dt : (1.81)

(ii) Judiciously applying IP to the RHS, deduce that


 E =
Z 1

0

1 � e� t � e� t � 1

t
dt : (1.82)

Problem 1.8. This problem uses many3 of the elementary tricks you'll need for real integrals. (i)
Show that

ln t =
Z 1

0

e� x � e� xt

x
dx : (1.83)

(ii) From the de�nition of the �-function,

�( z) def=
Z 1

0
e� t tz� 1 dt ; < z > 0; (1.84)

show that the digamma function is

 (z) def=
d ln �

dz
=

� 0(z)
�( z)

=
Z 1

0

�
e� x �

1
(x + 1) z

�
dx
x

; < z > 0: (1.85)

Hint: Di�erentiate the de�nition of �( z) in (1.84), and use the result from part (i) . (iii) Noting
that (1.85) implies

 (z) = lim
� ! 0

� Z 1

�

e� x

x
dx �

Z 1

�

1
(x + 1) z

dx
x

�
; < z > 0; (1.86)

change variables withx + 1 = e u in the second integral and deduce that:

 (z) =
Z 1

0

�
e� u

u
�

e� zu

1 � e� u

�
du ; < z > 0: (1.87)

Explain in ten or twenty words why it is necessary to introduce � in order to split the integral on
the RHS of (1.85) into the two integrals on the RHS of (1.86). (iv) We de�ne Euler's constant as


 E � �  (1) = � � 0(1) = 0 :57721� � � (1.88)

Show that

 (z) = � 
 E +
Z 1

0

e� u � e� ux

1 � e� u du ;

= � 
 E +
Z 1

0

1 � vz� 1

1 � v
dv :

(v) From the last integral representation, show that

 (z) = � 
 E +
1X

n=0

�
1

n + 1
�

1
n + z

�
:

Notice we can now drop the restriction< z > 0 | the beautiful formula above provides an analytic
extension of  (z) into the whole complex plane.

3But not all | there is no integration by parts.

12



Problem 1.9. Use pie-shaped contours to evaluate the integrals

A =
Z 1

0

dx
1 + x3 ; and B =

Z 1

0
cosx2 dx : (1.89)

Problem 1.10. Use the Fourier transform to solve the dispersive wave equation

ut = �u xxx ; with IC u(x; 0) = � (x). (1.90)

Express the answer in terms of Ai.

Problem 1.11. Solve the half-plane (y > 0) boundary value problem

yuxx + uyy = 0 (1.91)

with u(x; 0) = cos qx and limy!1 u(x; y) = 0.

13



Lecture 2

What is asymptotic?

2.1 An example: the erf function

We consider the error function

erf(z) def=
2

p
�

Z z

0
e� t2

dt : (2.1)

The upper panel of Figure 2.1 shows erf, and the complementary error function

erfc(z) def= 1 � erf(z) =
2

p
�

Z 1

z
e� t2

dt ; (2.2)

on the real line.
The series on the right of

e� t2
=

1X

n=0

(� t2)n

n!
(2.3)

has in�nite radius of convergence i.e., e� t2
is an entire function in the complex t-plane. Thus we

can simply integrate term-by-term in (2.1) to obtain a series for erf(z) that converges in the entire
complex plane:

erf(z) =
2

p
�

1X

n=0

(� )nz2n+1

(2n + 1) n!
; (2.4)

=
2

p
�

�
z � 1

3z3 + 1
10z5 � 1

42z7 + 1
216z9 � 1

1320z11�

| {z }
= erf6 (x)

+ R6 ; (2.5)

where erf6(x) is the sum of the �rst six terms and R6(z) is the remainder after 6 terms.
The lower panel of Figure 2.1 shows that erfn (the sum of the �rst n nonzero terms) provides

an excellent approximation to erf if jxj < 1. With matlab we �nd that

erf(1) � erf10(1)
erf(1)

= 1 :6217� 10� 8 ; and
erf(2) � erf10(2)

erf(2)
= 0 :0233: (2.6)

The Taylor series is useful if jzj < 1, but as jzj increases past 1 convergence is slow. Moreover
some of the intermediate terms are very large and there is a lot of destructive cancellation between
terms of di�erent signs. Figure 2.2 shows that this cancellation is bad at z = 3, and it gets a lot
worse asjzj increases. Thus, because of round-o� error, a computer withlimited precision cannot

14
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15



accurately sum the convergent Taylor series ifjzj is too large. Convergence is not as useful as one
might think.

Now let's consider an approximation to erf(x) that's good for large1 x. We work with the
complementary error functions in (2.2) and use integrationby parts

erfc(x) =
2

p
�

Z 1

x

�
�

1
2t

�
d
dt

e� t2
dt ; (2.7)

=
2

p
�

e� x2

2x
�

2
p

�

Z 1

x

e� t2

2t2 dt : (2.8)

If we discard the �nal term in (2.8) we get a useful approximation2

erfc(x) �
e� x2

p
�x

; as x ! 1 . (2.9)

The upper panel of Figure 2.3 shows that thisleading-order asymptotic approximation is reliable
oncex is greater than about 2 e.g., atx = 2 the error is 10:5%, and at x = 4 the error is less than
3%.

Exercise: If we try integration by parts on erf (as opposed erfc) someth ing bad happens: try it and see.

Why does the approximation in (2.9) work? Notice that the �na l term in (2.8) can be bounded
like this

2
p

�

Z 1

x

e� t2

2t2 dt =
2

p
�

Z 1

x

1
4t3 � 2te� t2

dt ; (2.10)

�
2

p
�

1
4x3

Z 1

x
2te� t2

dt ; (2.11)

=
2

p
�

e� x2

4x3 : (2.12)

The little trick we've used above in going from (2.10) to (2.11) is that

t � x ; )
1

4t3 �
1

4x3 : (2.13)

Pulling the (4x)� 3 outside, we're left with an elementary integral. Variants of this maneuverer
appear frequently in the asymptotics of integrals (try the exercise below).

Using the bound in (2.23) in (2.8) we have

erfc(x) =
2

p
�

e� x2

2x
+

"

something which is much less than
2

p
�

e� x2

2x
as x ! 1 .

#

(2.14)

Thus as x ! 1 there is a dominant balance in (2.14) between the left hand side and the �rst term
on the right. The �nal term is smaller than the other two terms by a factor of at least x � 2.

Exercise: Prove that Z 1

x

e� t

tN
dt <

e� x

xN
: (2.15)

1We restrict attention to the real line: z = x + i y. The situation in the complex plane is tricky | we'll return t o
this later. We also defer the de�nition asymptotic approximation .

2The � in (2.9) denotes \asymptotic equivalence" and is de�ned in s ection 2.2. In (2.9) it means that

lim
x !1

p
�x ex 2

erfc(x) = 1 :
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Figure 2.3: Upper panel shows erfc(x) divided by the leading order asymptotic approximation on
the right of (2.9); as x ! 1 the ratio approaches 1. The lower panel shows erfc(x) divided by an
n-term truncation of (2.28) with n = 1, 2, 3 and 4.

One more term

We can develop anasymptotic series if we integrate by parts successively starting with (2.8):

erfc(z) =
e� x2

p
�x

�
1

p
�

Z 1

x

1
t2

�
�

1
2t

�
d
dt

e� t2
dt ; (2.16)

=
e� x2

p
�x

�
1 �

1
2x2

�
+

3
2
p

�

Z 1

x

e� t2

t4 dt :
| {z }

R2

(2.17)

We use the same trick to bound the remainder:

R2 = �
3

4
p

�

Z 1

x

� 2te� t2

t5 dt <
3

4
p

�x 5

Z 1

x

d
dt

e� t2
dt =

3
4
p

�x 5 e� x2
: (2.18)

As x ! 1 the remainder R2(x) is much less than the second term in the series, so we can suppress
some information and write

erfc(x) =
e� x2

p
�x

�
1 �

1
2x2 + O

�
1
x4

��
: (2.19)

The big O notation used above is explained in section 2.2 | it m eans that x4 times the term
O(x � 4) is bounded by some constant asx ! 1 . You can see that the constant identi�ed by the
inequality (2.18) is in fact 3=4.
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Yet more terms: the asymptotic series

Exercise: show that Z 1

z
t � qe� t 2

dt
| {z }

J q

= 1
2 z� ( q+1) e� z 2

� 1
2 (q + 1) Jq+2 : (2.20)

Using the result in the exercise above we integrate by partsN times and obtain an exact
expression for erfc(x):

erfc(x) =
e� x2

p
�x

N � 1X

n=0

(2n � 1)!!
�

�
1

2x2

� n

| {z }
N terms

+ ( � 1)N (2N � 1)!!
2

p
�

Z 1

x

e� t2

(2t2)N dt
| {z }

RN

: (2.21)

Above, RN (x) is the remainder after N terms and the \double factorial" is 7!! = 7 � 5 � 3 � 1 etc. To
bound the remainder we use our trick again:

jRN j =
2 (2N � 1)!!

p
�

Z 1

x

(e� t2
)t

2t � (2t2)N dt ; (2.22)

�
(2N � 1)!!

p
� 2N x2N +1 e� x2

: (2.23)

We have shown that
jRN j

N th term of the series
�

2N � 1
(2x)2 ; (2.24)

or equivalently
jRN j � term N + 1 in the asymptotic series: (2.25)

Thus the �rst term we neglect in the expansion is an upper bound on the error as x ! 1 . And
if we �x N and increasex then the approximation to erfc(x) obtained by dropping the remainder
gets better and better. But the limits

x ! 1 and N ! 1 (2.26)

don't \commute". In other words, if we �x x at some large value, such asx = 3, and increaseN
then the approximation gets better for a while, but then goeshorribly wrong. This behaviour is
illustrated in �gure 2.4 which shows how

relative error def=
N -term approximation to erfc( x)

erfc(x)
� 1 (2.27)

depends on bothN and x in our erf example.

Numerical use of asymptotic series | the optimal stopping rule

Suppose an unreasonable person insists on ignoring the simple limit x ! 1 and instead demands
the best answer at a �xed value ofx, such asx = 2. How many terms in the series

erfc(x) �
e� x2

x
p

�

�
1 �

1
2x2 +

1 � 3
(2x2)2 �

1 � 3 � 5
(2x2)3 +

1 � 3 � 5 � 7
(2x2)4 + O

�
x � 10�

�
(2.28)

should one use to appease this tyrant? The numerators above are growing very quickly so at a
�xed value of x this series for erfc(x) diverges as we add more terms. But Figure 2.4 shows that at

18



0 2 4 6 8 10 12 14 16 18 20
number of terms

10-6

10-5

10-4

10-3

10-2

10-1

100

ab
s(

re
la

tiv
e

er
ro

r)

x=1
x=1.5
x=2
x=2.5
x=3
x=3.5
x=4

Figure 2.4: The absolute value of the relative error as a function of the number of terms used in
the asymptotic series (2.28).

�xed x there is an optimal value of N at which the relative error is smallest. How do we �nd this
best asymptotic estimate?

We showed above in (2.24) and (2.25) that asx ! 1 the remainder RN (x) is less than the
(N + 1)st term in the series. Thus a good place to stop summing is just before the smallest term in
the series: we know the remainder is less than this smallest term. In practice we get good accuracy
if we use theoptimal stopping rule: locate the smallest term in the series and add all the previous
terms. Do not include the smallest term in this sum.

The optimal stopping rule is a rule of thumb not a precise result | the remainder RN is less
than the (N + 1)st term only when x is su�ciently large i.e., in the limit x ! 1 . We have no
assurance that this inequality applies at a particular value of x.

We illustrate the optimal stopping rule by estimating erfc( 2). With x = 2 the sum (2.28) is

erfc(2)
| {z }

4:67773� 10� 3

�
e� 4

2
p

�
| {z }

5:16675� 10� 3

�
1 �

1
8|{z}

0:0125

+
3
64|{z}

0:046875

�
15
512|{z}

0:0292969

+
105
4096| {z }

0:0256348

�
945

32768| {z }
0:0288391

+
10395
262144| {z }
0:0396538

+ � � �
�

:

(2.29)
The smallest term is 105/4096. The optimal approximation is obtained by stopping before the
smallest terms:

0:0051667
�

1 �
1
8

+
3
64

�
15
512

�
= 0 :00461172: (2.30)

The relative error is 0:0141116, or about 1:4%.
We get a much better answer by includinghalf of the smallest termin the asymptotic series:

0:0051667
�

1 �
1
8

+
3
64

�
15
512

+
1
2

105
4096

�
= 0 :00467795: (2.31)

With this mysterious improvement the relative error is now � 0:000046. We should explain why
adding half of the smallest term works so well. (Bender & Orszag and Hinch don't mention this.....)
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Exercise: erfc(1) = 0 :157299 and the leading-order approximation is e� 1=
p

� = 0 :207554. The relative error is
therefore 0:31948 which seems unfortunately large. Show that according to the optimal stopping rule the
leading-order approximation is optimal. Does adding half o f the smallest term signi�cantly reduce the error?

2.2 The Landau symbols

Let's explain the frequently used \Landau symbols". In asymptotic calculations the Landau nota-
tion is used to suppress information while still maintaining some precision.

Big Oh

We frequently use \big Oh" | in fact I may have accidentally do ne this without de�ning O. One
saysf (� ) = O(� (� )) as � ! 0 if we can �nd an � 0 and a number A such that

jf (� )j < A j� (� )j ; whenever� < � 0.

Both � 0 and A have to be independent of� . Application of the big Oh notation is a lot easier than
this de�nition suggests. Here are some� ! 0 examples

sin 32� = O(� ) ; sin 32� = O(� 1=2) ; � 5 = O(� 2) ;

cos� � 1 = O(� 1=2) ; � + � 2 sin
1
�

= O(� ) ;

sin
1
�

= O(1) ; e� 1=� = O(� n ) for all n:

The expression

cos� = 1 �
� 2

2
+ O(� 3) (2.32)

means

cos� � 1 +
� 2

2
= O(� 3) : (2.33)

In some of the cases above

lim
� ! 0

f (� )
� (� )

(2.34)

is zero, and that's good enough forO. Also, according to our de�nition of O, the limit in (2.34)
may not exist | all that's required is that ratio f (� )=� (� ) is boundedby a constant independent of
� as � ! 0. One of the examples above illustrates this case.

The big Oh notation can be applied to other limits in obvious ways. For example, asx ! 1

sinx = O(1) ;
p

1 + x2 = O(x2) ; ln coshx = O(x) : (2.35)

As x ! 1
ln

�
1 + x + x2�

� x = O(x2) : (2.36)

Hinch's ord

H uses the more precise notation ord(� (� )). We say

f (� ) = ord( � (� )) , lim
� ! 0

f (� )
� (� )

exists and is nonzero. (2.37)
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For example, as� ! 0:

sinh(37� + � 3) = ord( � ) ; and
�

ln(1 + � + � 2)
= ord(1) : (2.38)

Notice that sinh(37� + � 3) is not ord( � 1=2), but

sinh(37� + � 3) = O(� 1=2) ; and sin
�

1
�

�
sinh(37� + � 3) = O(� 1=2) (2.39)

Big Oh tells one a lot less than ord.

Little Oh

Very occasionally | almost never | we need \little Oh". We say f (� ) = o(� (� )) if for every positive
� there is an � 0 such that

jf (� )j < � j� (� )j ; whenever� < � 0.

Another way of saying this is that

f (� ) = o(� (� )) , lim
� ! 0

f (� )
� (� )

= 0 : (2.40)

Obviously f (� ) = o(� (� )) implies f (� ) = O(� (� )), but not the reverse. Here are some examples

ln(1 + � ) = o(� 1=2) ; cos� � 1 +
� 2

2
= o(� 3) ; eo(� ) = 1 + o(� ) : (2.41)

The trouble with little Oh is that it hides too much informati on: if something tends to zero we
usually want to know how it tends to zero. For example

ln(1 + 2e � x + 3e� 2x ) = o
�

e� x=2
�

; as x ! 1 , (2.42)

is not as informative as

ln(1 + 2e � x + 3e� 2x ) = ord
�
e� x �

; as x ! 1 . (2.43)

Asymptotic equivalence

Finally \asymptotic equivalence" � is useful. We sayf (� ) � � (� ) as � ! 0 if

lim
� ! 0

f (� )
� (� )

= 1 : (2.44)

Notice that
f (� ) � � (� ) ; , f (� ) = � (� ) [1 + o(� )] : (2.45)

Some� ! 0 examples are

� +
sin �

ln(1=�)
� � ; and

p
1 + � � 1 �

�
2

: (2.46)

Somex ! 1 examples are

sinhx �
ex

2
; and

x3

1 + x2 + sin x � x ; and x + ln
�
1 + e2x �

� 3x : (2.47)

Exercise: Show by counterexample that f (x) � g(x) as x ! 1 does not imply that d f
dx � dg

dx , and that f (x) � g(x)
as x ! 1 does not imply that e f � eg .
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Gauge functions

The � (� )'s referred to above aregauge functions | simple functions that we use to compare a
complicated f (� ) with. A sequence of gauge functionsf � 0 ; � 1 ; � � � g is asymptotically ordered if

� n+1 (� ) = o[� n (� )] ; as � ! 0. (2.48)

In practice the � 's are combinations of powers and logarithms:

� n ; ln � ; � m (ln � )p ; ln ln � etc: (2.49)

Exercise Suppose� ! 0. Arrange the following gauge functions in order, from the l argest to the smallest:

� ; ln
�

ln
1
�

�
; e� ln 2 � ; e1=

p
� ; � 0 ; ln

1
�

(2.50)

e� 1=� ; � 1=3 ; � 1=� ; � ln2 1
�

;
1

ln 1
�

; � ln � : (2.51)

2.3 The de�nition of asymptoticity

Asymptotic power series

Consider a sum based on the simplest gauge functions� n :

1X

n=0

an � n : (2.52)

This sum is an � ! 0 asymptotic approximation to a function f (� ) if

lim
� ! 0

f (� ) �
P N

n=0 an � n

� N = 0 : (2.53)

The numerator in the fraction above is the remainder after summing N + 1 terms, also known
as RN +1 (� ). So the series in (2.52) is asymptotic to the functionf (� ) if the remainder RN +1 (� )
goes to zero faster than the last retained gauge function� N . We use the notation � to denote an
asymptotic approximation:

f (� ) �
1X

n=0

an � n ; as � ! 0. (2.54)

The right hand side of (2.54) is called anasymptotic power seriesor a Poincar�e series, or an
asymptotic representation of f (� ).

Our erf-example satis�es this de�nition with � = x � 1. If we retain only one term in the series
(2.28) then the remainder is

R1 =
2

p
�

Z 1

x

e� t2

2t2 dt : (2.55)

In (2.11) we showed that
R1

e� x2 =
p

�x
�

1
4x2 : (2.56)

Thus asx ! 1 the remainder is much less than the last retained term. According to the de�nition
above, this is the �rst step in justifying the asyptoticness of the series.

Exercise: Show from the de�nition of asymptoticity that

e� 1=� � 0 + 0 � + 0 � 2 + 0 � 3 + � � � as � # 0. (2.57)
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A problem with applying the de�nition is that one has to be abl e to say something about the
remainder in order to determine if a series is asymptotic. This is not the case with convergence.
For example, one can establish the convergence of

1X

n=0

ln(n + 2) xn ; (2.58)

without knowing the function to which this mysterious series converges. Convergence is an intrinsic
property of the coe�cients ln( n + 2). The ratio test shows that the series in (2.58) convergesif
jxj < 1 and we don't have to know what (2.58) is converging to. On theother hand, asympoticity
depends onboth the function and the terms in the asymptotic series.

Example The famous Stieltjes series

S(x) def=
1X

n =0

(� )n n!xn (2.59)

does not converge unlessx = 0. In fact, as it stands, S(x) does not de�ne a function of x. S(x) is a formal
power series. And we can't say that S(x) is an asymptotic series because we have to ask asymptotic towhat?
But now observe that

n! =
Z 1

0
tn e� t dt ; (2.60)

and substitute this integral representation of n! into the sum (2.59). There is a moment of pleasure when we
realize that if we exchange the order of integration and summation then we can evaluate the sum to obtain

F (x) def=
Z 1

0

e� t

1 + xt
dt : (2.61)

Because of the dubious steps between (2.59) and (2.61), I'vesimply de�ned F (x) by the integral above. But
now that we have a well de�ned function F (x), we're entitled to ask is the sum S(x) asymptotic to F (x) as
x ! 0? The answer is yes.
The proof is integration by parts, which yields the identity

F (x) = 1 � x + 2! x2 � 3!x3 + � � � (� 1)( N � 1) (N � 1)! xN � 1 + ( � 1)N N !xN
Z 1

0

e� t

(1 + xt )N +1
dt

| {z }
= R N

: (2.62)

It is easy show that
jRN (x)j � N !xN ; (2.63)

and therefore

lim
x ! 0

RN (x)
(N � 1)! xN � 1

= 0 : (2.64)

Above we're comparing the remainder to the last retained ter m in the truncated series. Because the ratio goes
to zero in the limit the series is asymptotic.

Exercise: Find another function with the same x ! 0 asymptotic expansion as F (x) in (2.61).

Example: Dawson's integral is

D (x) def= e � x 2
Z x

0
et 2

dt : (2.65)

The integrand is strongly peaked near t = x, where the integrand is equal to ex 2
. The width of this peak is

order x � 1 . Thus we expect that the answer is something like

D (x) � e� x 2 ?
x

ex 2
=

?
x

; (2.66)

where ? is an unidenti�ed number.
To more precisely estimate D (x) for x � 1 we try IP:

Z x

0
et 2

dt =
Z x

0

1
2t

det 2

dt
dt ; (2.67)

=

"
et 2

2t

#x

0

+
Z x

0

et 2

2t2
dt : (2.68)
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The expression above is meaningless | we've taken a perfectl y sensible integral and written it as the di�erence
of two in�nities.
A correct approach is to split the integral like this

Z x

0
et 2

dt =
Z 1

0
et 2

dt +
Z x

1

1
2t

det 2

dt
dt ; (2.69)

=
Z 1

0
et 2

dt +

"
et 2

2t

#x

1

+
Z x

1

et 2

2t2
dt ; (2.70)

=
Z 1

0
et 2

dt � 1
2 e

| {z }
a number

+
ex 2

2x
+

Z x

1

et 2

2t2
dt ;

| {z }
R

(2.71)

�
ex 2

2x
; as x ! 1 . (2.72)

Thus
D (x) �

1
2x

; as x ! 1 . (2.73)

Back in (2.69) we split the range at t = 1 | this was an arbitrary choice. We could split at another ar bitrary
value such ast = 32 :2345465. The point is that as x ! 1 all the terms on the right of (2.71) are much less
than the single dominant term e x 2

=2x. If we want the next term in (2.73), then that comes from perfo rming
another IP on the next biggest term on the right of (2.71), nam ely

R(x) =
Z x

1

et 2

2t2
dt : (2.74)

To show that (2.72) is a valid asymptotic approximation acco rding to the de�nition of Poincar�e | with � = x � 1

and N = 1 in de�nition (2.53) | we should show that R(x) in (2.74) is very much less than the leading term,
or in other words that

lim
x !1

Rx
1 et 2

=2t2 dt

ex 2 =2x
= 0 : (2.75)

Exercise: Use l'Hôpital's rule to verify the result above.

2.4 Manipulation of asymptotic series

Many | but not all| of the expansion expansions you'll encoun ter have the form of an asymptotic
power series. But in the previous lectures we saw examples with fractional powers of � and ln � and
ln[ln(1=�)]. These expansions have the form

f (� ) �
1X

n=0

an � n (� ) ; (2.76)

where f � ng is an asymptotically ordered set of gauge functions. The Poincar�e de�nition of asymp-
toticity is generalized to say that the sum on the right of (2.76) is an asymptotic approximation to
f (� ) as � ! 0 if

lim
� ! 0

f (� ) �
P N

n=0 an � n (� )
� N (� )

= 0 : (2.77)

In other words, once� is su�ciently small the remainder is less than the last term.

Example: Using the x ! 1 gauge functions f xn= 12 g, where n is an integer, we have the generalized asymptotic
expansion

x1=2 + x1=3

x1=12 + 1
= x5=12 � x1=3 + 2 x1=4 � 2x1=6 + 2 x1=12 � 2 + ord

�
x � 1=12

�
: (2.78)

Example: Another example produced by

Series[x^(x - x^2), {x, 0, 3}]
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in mathematica is

xx � x 2
� 1 + x ln x + x2( 1

2 ln2 x � ln x) + x3( 1
6 ln3 x � ln2 x) + O(x4) : (2.79)

Evidently in this example the x ! 0 gauge functions arexp lnq x where p and q are non-negative integers.

Uniqueness

If a function has an asymptotic expansion in terms of a particular set of gauge function then that
expansion is unique. For example, using the� ! 0 gauge functions� n , the function sin 2� can be
expanded as

sin 2� = 2 � �
4� 3

3
+ ord

�
� 5�

; (2.80)

and that's the only asymptotic expansion of sin� using � n . In this sense asymptotic expansions are
unique.

The converse is not true: if you've done the exercise in (2.76) then you know that two dif-
ferent functions might share an asymptotic expansion because they di�er by a quantity that is
asymptotically smaller than every gauge function. For example, as � # 0

sin 2� + e � 1=� �
1X

n=0

(� 1)n (2� )2n+1

(2n + 1)!
: (2.81)

The right of (2.81) is also the asymptotic expansion of sin 2� in terms of the gauge functions� n .
A given function can also have multiple asymptotic expansions in terms of di�erent gauge

functions. For example, consider the� ! 0 gauge functions sinn � , for which

sin 2� = 2 sin2 � � sin3 � + ord
�
sin5 �

�
: (2.82)

Or gauge functions tann � , for which

sin 2� = 2 tan � � 2 tan3 � + ord
�
tan5 �

�
: (2.83)

Manipulation of asymptotic expansions

If we have two � ! 0 asymptotic power series

f �
1X

n=0

an � n ; and g �
1X

n=0

an � n : (2.84)

then we can do what comes naturally as far as adding, multiplying and dividing these expansions.
If f and g are represented by the generalized asymptotic series in (2.76) then we have a minor

problem with multiplication: � m � n may not be a member of our set of gauge functions. In this
case we can simply enlarge the set of gauge functions | provided that the expanded set can be
ordered as� ! 0. (I can't think of an example in which this is not possible.)

Exercise: Noting that
1

� (1 + � )
�

1
�

as � ! 0, (2.85)

is

exp
�

1
� (1 + � )

�
� e1=� ? (2.86)
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Asymptotic series can be integrated: if

f (x) �
1X

n=0

an (x � x0)n ; as x ! x0, (2.87)

then Z x

x0

f (t) dt �
1X

n=0

an

n + 1
(x � x0)n+1 ; as x ! x0. (2.88)

Asymptotic series cannot in general be di�erentiated. Thus

x + sin x � x ; as x ! 1 , (2.89)

but the derivative 1 + cos x is not asymptotic to 1. Note however that BO section 3.8 discusses
some useful special cases in which di�erentiation is permitted.

2.5 Stokes lines

2.6 Problems

Problem 2.1. (i) Find a leading-order x ! 1 asymptotic approximation to

A(x; p; q) def=
Z 1

x
e� ptq

dt : (2.90)

Show that the remainder is asymptotically negligible asx ! 1 . Above, p and q are both positive
real numbers.

Problem 2.2. Find two terms in the x ! 1 behaviour of

F (x) =
Z x

0

e� v

v1=3
dv : (2.91)

Problem 2.3. (i) Use integration by parts to �nd the leading-order term in the x ! 1 asymptotic
expansion of theexponential integral:

E1(x) def=
Z 1

x

e� v

v
dv : (2.92)

Show that this approximation is asymptotic i.e., prove that the remainder is asymptotically less
than the leading term as x ! 1 . (ii) With further integration by parts, �nd an expression for
the n'th term, and the remainder after n terms. (iii) Show that the remainder after N terms is
asymptotically less than the N 'th terms as x ! 1 .

Problem 2.4. Consider the �rst-order di�erential equation:

y0� y = �
1
x

; with the condition lim
x!1

y(x) = 0 : (2.93)

(i) Find a valid two-term dominant balance in the di�erential equ ation and thus deduce the leading-
order asymptotic approximation to y(x) for large positive x. (ii) Use an iterative procedure to
deduce the full asymptotic expansion ofy(x). (iii) Is the expansion convergent? (iv) Use the
integrating function method to solve the di�erential equati on exactly in terms of the exponen-
tial integral in (2.92). Use matlab (help expint ) to compare the exact solution of (2.93) with
asymptotic expansions of di�erent order. Summarize your study as in Figure 2.5.
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Figure 2.5: Solution of problem 2.4. Upper panel compares the exact solution with truncated
asymptotic series. Lower panel shows the asymptotic approximation at x = 5 as a function of the
truncation order n i.e., n = 1 is the one-term approximation. The solid line is the exact answer.

Problem 2.5. The exponential integral of order n is

En (x) def=
Z 1

x

e� t

tn dt : (2.94)

Show that

En+1 (x) =
e� x

nxn �
1
n

En (x) : (2.95)

Find the leading-order asymptotic approximation to En(x) as x ! 1 .

Problem 2.6. (i) Solve the di�erential equation

y0� xy = � 1; with lim
x!1

y(x) = 0 ; (2.96)

in terms of erf and use the results from this lecture to �nd the full asymptotic expansion of the
solution as x ! 1 . (ii) Find this expansion without using explicit solution: ident ify a two-term
x ! 1 balance in the di�erential equation, and then proceed to higher order via iteration or some
other scheme.

Problem 2.7. Find an example of a in�nitely di�erentiable function satisf ying the inequalities

max
0<x< 1

jf (x)j < 10� 10 ; and max
0<x< 1

�
�
�
�
df
dx

�
�
�
� > 1010 : (2.97)

This is why the di�erential operator d =dx is \unbounded": d =dx can take a small function and
turn it into a big function.

Problem 2.8. Prove that
Z 1

0

e� t

1 + xt 2 dt �
1X

n=0

(� 1)n (2n)!xn ; x ! 0: (2.98)
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Problem 2.9. True or false asx ! 1

(i ) x +
1
x

?� x ; (ii ) x +
p

x ?� x ; (iii ) exp
�

x +
1
x

�
?� exp(x) ; (2.99)

(iv ) exp
�
x +

p
x

� ?� exp(x) ; (v) cos
�

x +
1
x

�
?� cosx ; (v)

1
x

?� 0 ? (2.100)

Problem 2.10. Let's investigate the Stieltjes seriesS(x) in (2.59) and the function F (x) in (2.61)
(i) Compute the integral F (0:1) numerically. (ii) With x = 0 :1, compute partial sums of the
divergent series (2.59) withN = 2, 3, 4; � � � 20. Which N gives the best approximation to F (0:1)?
(iii) I think the best answer is obtained by truncating the seriesS(0:1) just before the smallest
term. Is that correct?
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Lecture 3

Integration by parts (IP)

Our earlier example

erfc(z) �
e� z2

z
p

�

�
1 �

1
2z2 +

1 � 3
(2z2)2 �

1 � 3 � 5
(2z2)3 + O(z� 8)

�
; as z ! 1 , (3.1)

illustrated the use of integration by parts (IP) to obtain an asymptotic series. In this lecture we
discuss other integrals that also yield to IP

3.1 The Taylor series, with remainder

We can very quickly use integration by parts to prove that a function f (x) with n derivatives can
be representedexactly by n terms of a Taylor series, plus a remainder. The fundamental theorem
of calculus is

f (x) = f (a) +
Z x

a
f 0(� ) d�

| {z }
R1

: (3.2)

If we drop the �nal term, R1(x), we have a one-term Taylor series forf (x) centered onx = a. To
generate one more terms we integrate by parts like this

f (x) = f (a) +
Z x

a
f 0(� )

d
d�

(� � x) d� ; (3.3)

= f (a) + ( x � a)f 0(a) �
Z x

a
f 00(� )( � � x) d� : (3.4)

And again

f (x) = f (a) + ( x � a)f 0(a) �
Z x

a
f 00(� )

d
d�

1
2

(� � x)2 d� ; (3.5)

= f (a) + ( x � a)f 0(a) +
1
2

f 00(a)(x � a)2 +
1
2

Z x

a
f 000(� )( � � x)2 d� :

| {z }
R3

(3.6)

If f (x) has n-derivatives we can keep going till we get

f (x) = f (a) + f 0(a)(x � a) +
f 00(a)

2
(x � a)2 + � � � +

f (n� 1)(a)
(n � 1)!

(x � a)n� 1

| {z }
= n terms, let's call this f n (x)

+ Rn(x) ; (3.7)
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where the remainder aftern-terms is

Rn (x) =
1

(n � 1)!

Z x

a
f (n)(� )(x � � )n� 1 d� : (3.8)

Using the �rst mean value theorem, the remainder can be represented as

Rn (x) =
f (n)(�x)

n!
(x � a)n ; (3.9)

where �x is some unknown point in the interval [a; x]. This is the form given in section 4.6 ofRHB .
Some remarks about the result in (3.7) through (3.9) are:

(1) f (x) need not have derivatives of all order at the point x: the representation in (3.7) and
(3.9) makes reference only to derivatives of ordern, and that is all that is required.

(2) Using (3.9), we see that the ratio ofRn (x) to the last retained term in the series is proportional
to x � a and therefore vanishes asx ! a. Thus, according to our de�nition in (2.53), f n(x)
is an asymptotic expansion off (x).

(3) The convergence of the truncated seriesf n (x) as n ! 1 is not assumed: (3.7) is exact. The
remainder Rn (x) may decrease up to a certain point and then start increasingagain.

(4) Even if f n(x) diverges with increasing n, we may obtain a close approximation to f (x) |
with a small remainder Rn | if we stop summing at a judicious value of n.

(5) The di�erence between the convergent case and the divergent case is that in the former
instance the remainder can be made arbitrarily small by increasingn, while in the latter case
the remainder cannot be reduced below a certain minimum.

Above we are recapitulating many remarks we made previouslyregarding the asymptotic expansion
of erf in (3.1).

Example: Taylor series, even when they diverge, are still asymptotic series. Let's investigate this by revisiting
problem 1.1 :

x(� )2 = 9 + � : (3.10)

Notice that even before taking this class you could have solved this problem by arguing that

x(� ) = 3
�
1 + �

9

� 1=2 ; (3.11)

and then recollecting the standard Taylor series

(1 + z) � = 1 + �z +
� (� � 1)

2!
z2 +

� (� � 1)( � � 2)
3!

z3 + � � � (3.12)

The perturbation expansion you worked out in problem 1.1 is laboriously reproducing the special case� = 1 =2
and z = �=9.
You should recall from part B that the radius of convergence o f (3.12) is limited by the nearest singularity to
the origin in the complex z-plane. With � = 1 =2 the nearest singularity is the branch point at z = � 1. So the
series in problem 1.1 convergesprovided that � < 9. Let us ignore this red 
ag and use the Taylor series with
� = 16 to estimate x(16) =

p
25 = 5. We calculate a lot of terms with the mathematica comman d:

Series[Sqrt[9 + u], {u, 0, 8}].

This produces the series

x(� ) = 3 +
�
6

�
� 2

216
+

� 3

3 888
�

5� 4

279 936
+

7� 5

5 038 848
�

7� 6

60 466 176
+

11� 7

1 088 391 168
�

143� 8

156 728 328 192
+ ord

�
� 9 �

:

Thus
x(16) � 3 +

8
3

�
32
27|{z}

1:18519

+
256
243| {z}

1:0535

�
2560
2187| {z }

1:17055

+
28672
19683| {z }
1:45669

�
114688
59049| {z }
1:94225

+ � � � (3.13)
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The fourth term is the smallest term. Stopping short of the sm allest term, the sum of the �rst three terms is

x(16) �
121
27

= 4 :48148; (3.14)

which is a relative error of about 10%. If we include half of th e smallest term then

x(16) �
1217
243

= 5 :00823; (3.15)

with relative error 0 :00165. This is a good result when working with the \small" par ameter 16=9.

3.2 Large- s behaviour of Laplace transforms

The s ! 1 behaviour of the Laplace transform

�f (s) def=
Z 1

0
e� st f (t) dt (3.16)

provides a typical and important example of IP. But before turning to IP, we argue that as < s ! 1 ,
the maximum of the integrand in (3.16) is determined by the rapidly decaying e� st and is therefore
at t = 0. In fact, e � st is appreciably di�erent from zero only in a peak at t = 0, and the width
of this peak is s� 1 � 1. Within this peak t = O(s� 1) the function f (t) is almost equal to f (0)
(assuming that f (0) is non-zero) and thus

�f (s) � f (0)
Z 1

0
e� st dt =

f (0)
s

: (3.17)

This argument suggests that the larges-behaviour of the Laplace transform of any function f (t)
with a Taylor series around t = 0 is given by

Z 1

0
e� st f (t) dt =

Z 1

0
e� st

�
f (0) + tf 0(0) +

t2

2!
f 00(0) + � � �

�
e� st dt ; (3.18)

�
f (0)

s
+

f 0(0)
s2 +

f 00(0)
s3 + � � � (3.19)

This heuristic1 answer is in fact a valid asymptotic series.
We obtain an improved version of (3.19) using successive integration by parts starting with

(3.16):

�f (s) =
f (0)

s
+

f 0(0)
s2 +

f 00(0)
s2 + � � � +

f (n� 1)(0)
sn +

1
sn

Z 1

0
e� st f (n)(t)dt

| {z }
Rn

: (3.20)

The improvement over (3.19) is that on the right of (3.20), IP has provided an explicit expression
for the remainder Rn (s).

Example: A Laplace transform. Find the large- s behaviour of the Laplace transform

L
�

1
p

1 + t2

�
=

Z 1

0

e� st

p
1 + t2

dt : (3.21)

When s is large the function e� st is non-zero only in a peak located at t = 0. The width of this peak is
s� 1 � 1. In this region the function (1 + t2) � 1=2 is almost equal to one. Hence heuristically

Z 1

0

e� st

p
1 + t2

dt �
Z 1

0
e� st dt =

1
s

: (3.22)

1See the next section,Watson's lemma, for justi�cation.
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This is the correct leading-order behaviour.

To make a more careful estimate we can use integration by parts:

L
�

1
p

1 + t2

�
= �

1
s

Z 1

0

1
p

1 + t2

de� st

dt
dt ; (3.23)

= �
1
s

�
e� st

p
1 + t2

� 1

0

�
1
s

Z 1

0

te� st

(1 + t2)3=2
dt ; (3.24)

=
1
s

� R1(s) : (3.25)

As s ! 1 the remainder R1(s) is negligible with respect to s� 1 and the heuristic (3.22) is con�rmed. Why is
R1(s) much smaller than s� 1 in the limit? Notice that in the integrand of R1

te� st

(1 + t2)3=2
� te� st ; and therefore R(s) <

1
s

Z 1

0
te� st dt =

1
s2

: (3.26)

The estimates between (3.23) and (3.26) are a recap of arguments we've been making in the previous lectures.
The proof of Watson's lemma below is just a slightly more general version of these same estimates.

To get more terms in the asymptotic expansion we invoke Watso n's lemma, so ass ! 1 :

L
�

1
p

1 + t2

�
=

Z 1

0
e� st

�
1 �

t2

2
+

3t4

8
�

5t6

16
+ O(t8)

�
dt ; (3.27)

�
1
s

�
1
s3

+
9
s5

�
225
s7

+ O
�
s� 9 �

: (3.28)

Because of the rapid growth of the numerators this is clearly an asymptotic series. The Taylor series of
(1 + t2) � 1=2 does not converge beyondt = 1. The limited radius of convergence doesn't matter: Watso n's
lemma assures us that we get the right asymptotic expansion even if we integrate into the region where the
Taylor series diverges. In fact, the expansion of the integral is asymptotic, rather than convergent, because
we've integrated a Taylor series beyond its radius of convergence.

We obtain the entire asymptotic series by noting that

1
p

1 � 4x
= 1 + 2 x + 6 x2 + 20x3 + 70x4 + � � � (3.29)

where the coe�cient of xn above is the \central binomial coe�cient" (2 n)!=(n!)2 . Thus, with x = � t2=4, we
have

L
�

1
p

1 + t2

�
�

1X

n =1

(2n)!
(n!)2

(� 1)n �
1
2

� 2n
Z 1

0
t2n e� st dt ; (3.30)

=
1
s

1X

n =0

(� 1)n
�

(2n)!
n!

� 2 1
(2s)2n

: (3.31)

Example: Another Laplace transform. Consider

L
�

H (t)
p

1 � t2

�
=

Z 1

0

e� st

p
1 � t2

dt ; (3.32)

�
1
s

+
1
s3

+
9
s5

+
225
s7

+ O
�
s� 9 �

: (3.33)

This is the same as (3.28), except that all the signs are positive. The integrable singularity at t = 1 makes
only an exponentially small contribution as s ! 1 .

Example: Yet another Laplace transform. Find the large- s behaviour of the Laplace transform

L
hp

1 + e t
i

=
Z 1

0
e� st p

1 + e t
| {z }

f ( t )

dt : (3.34)

In this case f (0) =
p

2 and we expect that the leading order is

�f �

p
2

s
: (3.35)
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Let's con�rm this using IP:

�f (s) =

p
2

s
�

1
s

Z 1

0
e� st et

2
p

1 + e t
| {z }

f 0( t )

dt : (3.36)

Notice that in this example f 0(t ) � et= 2 ast ! 1 , and thus we cannot bound the remainder using maxt> 0 f 0(t ).
Instead, we bound the reminder like this

R1 =
1
s

Z 1

0
e� ( s�

1
2 ) t 1

2
p

1 + e � t= 2
| {z }

�
1
2

dt <
1
s

1
2s � 1

: (3.37)

This maneuver works in examples with f (t) � e�t as t ! 1 .

Example: A thinly disguised Laplace transform. Consider

S(x) def=
Z 1

0
ext 7

dt (3.38)

as x ! 1 . The integrand is strongly peaked near t = 1. Changing variable to v = 1 � t7 we obtain

S(x) =
ex

7

Z 1

0

e� xv dv
(1 � v)6=7

; (3.39)

�
ex

7

Z 1

0
e� xv (1 � 6

7 v + � � � ) dv (3.40)

etc.

Example: An integral with a parameter. Consider

I (x; � ) def=
Z 1

0
t � e� x sinh t dt : (3.41)

The minimum of � (t ) = sinh t is at t = 0, so

I (x) �
Z 1

0
t � e� xt dt �

�( � + 1)
x � +1

; as x ! 1 . (3.42)

To get the next term in the asymptotic series, keep one more term in the expansion of sinh t:

e� x sinh t � e� xt ext 3 =6� xt 5 =120+ ��� � e� xt
�

1 �
xt 3

6
+ O(xt 5)

�
: (3.43)

Thus

I (x) �
Z 1

0
t � e� xt

�
1 �

xt 3

6
+ O(xt 5)

�
dt ; (3.44)

�
�( � + 1)

x � +1
�

�( � + 4)
6x � +3

+ O
�
x � � � 5 �

: (3.45)

Notice we have to keep the dominant term xt up in the exponential.

If we desire more terms, and are obliged to justify the heuris tic above, we should change variables with
u = sinh t in (3.41), and use Watson's lemma. The transformed integral is a formidable Laplace transform:

I (x; � ) def=
Z 1

0
e� xu ln �

� p
1 + u2 + u

� du
p

1 + u2
: (3.46)

With mathematica

ln � � p
1 + u2 + u

�

p
1 + u2

= u�
�
1 �

3 + �
6

u2 +
135 + 52� + 5 � 2

360
u4 + O(u6)

�
: (3.47)

The coe�cient of u2n in this expansion is a polynomial | let's call it ( � )n Pn (� ) | of order n. Substituting
(3.47) into (3.46) and integrating term-by-term

I (x; � ) �
1

x � +1

�
�( � + 1) �

P2(� )
x2

�( � + 3) +
P4(� )

x4
�( � + 5) + O(x � 6)

�
: (3.48)
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3.3 Watson's Lemma

All the examples in the previous section are a special cases of Watson's lemma. So let's prove the
lemma by considering a Laplace transform

�f (s) =
Z 1

0
e� st t � g(t) dt ; (3.49)

where the factor t � includes whatever singularity exists at t = 0; the singularity must be integrable
i.e., � > � 1. We assume that the functiong(t) has a Taylor series with remainder

g(t) = g0 + g1t + � � � gn tn
| {z }

n + 1 terms

+ Rn+1 (t) : (3.50)

This is a t ! 0 asymptotic expansion in the sense that there is some constant K such that

jRn+1 j < Kt n+1 : (3.51)

Notice we are not assuming that the Taylor series converges.
Of course, we do assume convergence of the Laplace transform(3.49) as t ! 1 , which most

simply requires that f (t) = t � g(t) eventually grows no faster than e
t for some
 . Notice that the
possibility of a �nite upper limit in (3.49) is encompassed if f (t) is zero oncet > T .

With these modest constraints ont � g(t):

�f (s) =
Z 1

0
e� st t � �

g0 + g1t + � � � gn tn �
dt

| {z }
I 1

+
Z 1

0
e� st t � Rn+1 (t) dt

| {z }
I 2

: (3.52)

The second integral in (3.52) is

I 2 < K
Z 1

0
e� st tn+1+ � dt = O

 
1

s� + n+2

!

: (3.53)

Using Z 1

0
e� st t � + n dt =

�( n + � + 1)
sn+ � +1 ; (3.54)

we integrate I 1 term-by-term and obtain Watson's lemma:

�f (s) � g0
�( � + 1)

s� +1 + g1
�( � + 2)

s� +2 + � � � + gn
�( � + n + 1)

s� + n+1 + O

 
1

s� + n+2

!

: (3.55)

Watson's lemma justi�es doing what comes naturally.

3.4 Problems

Problem 3.1. (i) Obtain the leading-order asymptotic approximation for the integral

Z 1

� 1
ext 3

dt ; as x ! 1 . (3.56)

(ii) Justify the asympoticness of the expansion.(iii) Find the leading-order asymptotic approxi-
mation for x ! �1 .
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Problem 3.2. In our evaluation of Ai(0) we encountered a special case, namely n = 3, of the
integral

Z (n; x) def=
Z �= (2n)

0
e� x sin n� d� : (3.57)

Convert Z (n; x) to a Laplace transform and use Watson's lemma to obtain the �rst few terms of
the x ! 1 asymptotic expansion.

Problem 3.3. In lecture 3 we obtained the full asymptotic series for erfc(z) via IP:

erfc(x) �
e� x2

p
�x

1X

n=0

(2n � 1)!!
�

�
1

2x2

� n

: (3.58)

Obtain this result by making a change of variables that converts erfc(z) into a Laplace transform,
and then use Watson's lemma.

Problem 3.4. Use integration by parts to �nd x ! 1 asymptotic approximations of the integrals

A(x) =
Z x

0
e� t4

dt ; (3.59)

B (x) =
Z x

0
e+ t4

dt ; (3.60)

C(x) =
Z 1

0
e� xt ln(1 + t2) dt ; (3.61)

D (x) =
Z 1

0

e� xt

ta(1 + t)
dt ; with a < 1; (3.62)

E(x) =
Z 1

1
e� xt p

dt ; with p > 0; (3.63)

In each case obtain a two-term asymptotic approximation andexhibit the remainder as an integral.
Explain why the remainder is smaller than the second term asx ! 1 .

Problem 3.5. Using repeated IP, �nd the full x ! 1 asymptotic expansion of Dawson's integral
(2.65). Is this series convergent?

Problem 3.6. Consider f (x) = (1 + x)5=2, and the corresponding Taylor seriesf n (x) centered on
x = 0. (i) Show that for n � 3 and x > 0:

Rn <
f (n)(0)

n!
xn ;

i.e., the remainder is smaller than the �rst neglected term for all positive x. (ii) The Taylor series
converges only up tox = 1. But suppose we desiref (2) = 3 5=2. How many terms of the series
should be summed for best accuracy? Sum this optimally truncated series and compare with the
exact answer. (iii) Argue from the remainder in (3.9) that the error can be reduced by adding half
the �rst neglected term. Compare this corrected series withthe exact answer.
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Lecture 4

Laplace's method

Laplace's method applies to integrals in which the integrand is concentrated in the neighbourhood of
a few (or one) isolated points. The value of the integral is determined by the dominant contribution
from those points. This happens most often for integrals of the form

L(x) =
Z b

a
f (t)e� x� (t ) dt ; as x ! 1 . (4.1)

If � (t) � 0 for all t in the interval a � t � b then as x ! + 1 the integrand will be maximal where
� (t) is smallest. This largest contribution becomes more and more dominant as x increases.

Look what happens if we apply IP to (4.1):

L (x) = �
Z b

a

f
x� 0

d
dt

e� x� dt ; (4.2)

= �
�

f
x� 0e

� x�
� b

a
+

Z b

a
e� x� d

dt

�
f

x� 0

�
dt : (4.3)

There is a problem if � 0 has a zero anywhere in the closed interval [a; b]. However if � 0 is non-zero
throughout [a; b] then IP delivers the goods. For example, suppose

� 0 > 0 for a � t � b, (4.4)

then from (4.3)

L (x) �
f (a)

x� 0(a)
e� x� (a) ; as x ! 1 . (4.5)

All of the examples in section 3.2 have this form.
In the case of (4.5), the integrand is concentrated nearx = a and the asymptotic approximation

in (4.3) depends only on f (a), � (a) and � 0(a). We can quickly obtain (4.5) with the following
approximations in (4.3):

L (x) �
Z 1

a
f (a)e� x� (a)� x� 0(a)t dt : (4.6)

Exercise: Find the leading order asymptotic approximation to I (x) if � 0 < 0 for a � t � b. Show that

A(x) def=
Z �

0
ex cosh t dt �

ex cosh �

x sinh �
; as x ! 1 . (4.7)

To summarize, if � 0 is non-zero throughout [a; b] then the integrand is concentrated at one of
the end points, and IP quickly delivers the leading-order term. And, if necessary, one can write the
integral as a Laplace transform by changing variables to

v = � (t) (4.8)
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in (4.1). Then Watson's lemma delivers the full asymptotic expansion. We turn now to discussion
of the case in which� 0(t) has a zero somewhere in [a; b].

4.1 An example | the Gaussian approximation

As an example of Laplace's method with a zero of� 0 we study the function de�ned by

U(x; y) def=
Z y

0
e� x cosht dt ; (4.9)

and ask for an asymptotic approximations asx ! + 1 with y �xed. In this example � 0 = sinh t is
zero at t = 0 and IP fails.

Exercise: Find a two-term approximation of U(x; 1) when jxj � 1.

With x ! 1 , the main contribution to U(x; y) in (4.9) is from t � 0. Thus, according to
Laplace, the leading-order behaviour is

U(x; y) �
Z 1

0
e� x(1+ 1

2 t2 ) dt ; (4.10)

= e � x
r

�
2x

; as x ! + 1 . (4.11)

The peak of the integrand is centered ont = 0 and has width x � 1=2 � 1. All the approximations
we've made above are good in the peak region. They're lousy approximations outside the peak
e.g., neart = 1=2. But both the integrand and our approximation to the integr and are tiny near
t = 1=2 and thus those errors do not seriously disturb our estimateof the integral.

Notice that in (4.10) the range of integration is extended tot = 1 | we can then do the integral
without getting tangled up in error functions. The point is t hat the leading-order behaviour of
U(x; y) as x ! 1 is independent of the �xed upper limit y. If you've understood the argument
above regarding the peak width, then you'll appreciate that if y = 1=10 then x will have to be
roughly as big as 100 in order for (4.11) to be accurate.

Let's bash out the second term in thex ! 1 asymptotic expansion. According tomathemat-
ica , the integrand is

e� x cosht = e � x � xt 2=2e� xt 4=4!� xt 6=6!+ ��� � e� x � xt 2=2
�

1 �
xt 4

24
�

xt 6

720
+ O

�
x2t8�

�
: (4.12)

Notice the x2 in the big Oh error estimate above | this x2 will bite us below. We now substitute
the expansion (4.12) into the integral (4.9) and integrate term-by-term using

Z 1

0
tpe� at2

dt = 1
2a� p+1

2 �
�

p+1
2

�
: (4.13)

Thus we have

U(x; y) = e � x
Z 1

0
e� 1

2xt 2
�

1|{z}
� x � 1=2

� 1
24 xt 4

|{z}
x � 3=2

� 1
720 xt 6

|{z}
� x � 5=2

+ O
�

x2t8
| {z}
x � 5=2

�
�

(4.14)

The underbraces indicate the order of magnitude of each termafter using (4.13) to evaluate the
integral. Notice that a term of order x2t6 is of order x � 5=2 after integration. Thus, if we desire a
systematic expansion, we should not keep the termxt 6 and drop x2t8. After integration both these
terms are orderx � 5=2, and we should keep them both, or drop them both.
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Figure 4.1: Upper panel compares the two-term asymptotic expansion in (4.17) with evaluation of
the integral by numerical quadrature using the matlab routine quad. The lower panel compares
the three term expansion in (4.21) with quadrature.
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Proceeding with the integration

U(x; y) � e� x

r
2
x

Z 1

0
e� v2

�
1 �

v4

6x
�

8v6

720x2 + O
�
v8x � 2�

�
dv ; (4.15)

= e � x
r

�
2x

�
1 �

1
6x

�
3
4

�
8

720x2 �
15
8

+ O
�
x � 2�

�
; (4.16)

� e� x
r

�
2x

�
1 �

1
8x

+ O
�
x � 2�

�
: (4.17)

Discretion is the better part of valor, so I've dropped the inconsistent term and written O(x � 2)
above.

Another way to generate more terms in the expansion is to convert U(x; y) into a Laplace
transform via u = cosh t � 1:

U(x; y) � e� x
Z 1

0

e� xu
p

2u + u2
du ; (4.18)

� e� x
Z 1

0
e� xu 1

p
2u

�
1 �

u
4

+
3u2

32
�

5u3

128
+ O

�
u4�

�
du ; (4.19)

= e � x

r
1
2x

�
�

�
1
2

�
�

1
4x

�
�

3
2

�
+

3
32x2 �

�
5
2

�
+ O

�
x � 3�

�
; (4.20)

= e � x
r

�
2x

�
1 �

1
8x

+
9

128x2 + O
�
x � 3�

�
: (4.21)

The Laplace-transform approach is more systematic becausethe coe�cients in the series expansion
(4.19) are not functions of x, and the expansion is justi�ed using Watson's lemma. However the
argument about the dominance of the peak provides insight and is all one needs to quickly obtain
the leading-order asymptotic expansion.

4.2 Another Laplacian example

Consider

I n
def=

1
�

Z �= 2

� �= 2
(cost)n dt : (4.22)

With a little integration by parts one can show that

I n =
�

1 �
1
n

�
I n� 2 : (4.23)

Then, sinceI 0 = 1 and I 1 = 2=� , it is easy to compute the exact integral at integern recursively.
Let's use Laplace's method to �nd an n ! 1 asymptotic approximation. We write the integral

as

I n =
1
�

Z �= 2

� �= 2
en ln cos t dt ; (4.24)

and then make the smallt-approximation

ln cost = ln
�

1 �
t2

2

�
� �

t2

2
: (4.25)
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is solid lines connecting the� 's and the
leading-order asymptotic estimate (4.27) is
the dashed curve. The improved result in
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Thus the leading order is obtained by evaluating a gaussian integral

I n �
1
�

Z 1

�1
e� nt 2=2 dt ; (4.26)

=

r
2

�n
: (4.27)

Figure 4.2 compares this approximation to the exact integral. Suppose we're disappointed with
the performance of this approximation at n = 5, and want just one more term. The easiest way to
bash out an extra term is

ln cost = ln
�

1 �
t2

2
+

t4

24
+ ord( t6)

�
; (4.28)

=
�

t2

2
�

t4

24
+ ord( t6)

�
+

1
2

�
t2

2
+ ord( t4)

� 2

+ ord( t6) ; (4.29)

= �
t2

2
�

t4

12
+ ord( t6) ; (4.30)

and then

I n �
1
�

Z 1

�1
e� nt 2=2 e� nt 4=12 dt ; (4.31)

=
1
�

Z 1

�1
e� nt 2=2

�
1 �

nt 4

12

�
dt ; (4.32)

=

r
2

�n

�
1 �

1
4n

�
: (4.33)

This works very well at n = 5. In the unlikely event that more terms are required, then it is
probably best to be systematic: change variables withv = � ln cost and use Watson's lemma.
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4.3 Laplace's method with moving maximum

Large s asymptotic expansion of a Laplace transform

Not all applications of Laplace's method fall into the form (4.1). For example, consider the Laplace
transform

L
h
e� 1=t

i
=

Z 1

0
e� 1

t � st dt ; as s ! 1 . (4.34)

Watson's lemma is defeated by this example.

In the exponential in (4.34) have � def= t � 1 + st, and

d�
dt

= 0 ; ) �
1
t2 + s = 0 : (4.35)

Thus the integrand is biggest at t � = s� 1=2 | the peak is approaching t = 0 as s increases. Close
to the peak

� = � (t � ) +
1
2

� 00(t � )( t � t � )2 + O(t � t � )3 ; (4.36)

= 2s1=2 + s� 3=2�
t � s� 1=2� 2 + O(t � t � )3 : (4.37)

The width of the peak is s� 3=4 � s� 1=2, so it helps to introduce a change of variables

v def= s3=4�
t � s� 1=2�

: (4.38)

In terms of the original variable t the peak of the integrand is moving ass increases. We make the
change of variable in (4.38) so that the peak is stationary atv = 0. The factor s3=4 on the right of
(4.38) ensures that the width of the v-peak is not changing ass ! 1 .

Notice that t = 0 corresponds to v = � s1=4 ! �1 . But the integrand has decayed to
practically to zero once v � 1. Thus the lower limit can be taken to v = �1 . The Laplace
transform is therefore

L
h
e� 1=t

i
� s� 3=4e� 2s1=2

Z 1

�1
e� v2

dt
| {z }

=
p

�

; as s ! 1 . (4.39)

This Laplace transform is exponentially small ass ! 1 , and of course the original function was
also exponentially small ast ! 0. I trust you're starting to appreciate that there is an inti mate
connection between the small-t behaviour of f (t) and the large-s behaviour of �f (s).

Remark: the Laplace transform of any function must vanish ass ! 1 . So, if you're asked to
�nd the inverse Laplace transform of s, the answer is there is no function with this transform.

Stirling's approximation

A classic example of a moving maximum is provided byStirling's approximation to n!. Starting
from

�( x + 1) =
Z 1

0
txe� t dt ; (4.40)

let's derive the fabulous result

�( x + 1) �
p

2�x
� x

e

� x
�

1 +
1

12x
+ O

�
x � 2�

�
; as x ! 1 . (4.41)
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At x = 1, we have from the leading order 1�
p

2�= e = 0:9221, which is not bad! And with the
next term

p
2�= e� (13=12) = 0:99898. It only gets better asx increases.

We begin by moving everything in (4.40) upstairs into the exponential:

�( x + 1) =
Z 1

0
e� � dt ; (4.42)

where
� def= x ln t � t : (4.43)

The maximum of � is at t � = x | the maximum is moving as x increases. We can expand� around
this moving maximum as

� = x ln x � x +
(t � x)2

2x
+ O(t � x)3 ; (4.44)

= x ln x � x � v2 ; (4.45)

where v def= ( t � x)=
p

2x is the new variable of integration. With this Gaussian approximation we
have

�( x + 1) = e x ln x� x
p

2x
Z 1

�1
e� v2

dv
| {z }

=
p

�

: (4.46)

This is the leading order term in (4.40).

Exercise: Obtain the next term, 1 =12x, in (4.40).

Example: Find the leading order approximation to

�( x) def=
Z 1

0

tx e� t dt
1 + t2

(4.47)

It is necessary to move all functions upstairs into the expon ential, and after some algebra I found

�( x) �
p

2�x
�

x � 2
e

� x � 2

; as x ! 1 . (4.48)

I'm about 80% sure that this is correct.

4.4 Uniform approximations

Consider a function of two variables1 de�ned by:

J (x; � ) def=
Z 1

0
e� x(sinh t � �t )dt ; with x ! 1 , and � �xed. (4.49)

In this case

� = sinh t � �t ; and
d�
dt

= cosh t � � : (4.50)

The location of the minimum of � crucially depends on whether� is greater or less than one.

1This function is related to the Anger function

A � (x) def=
Z 1

0
exp (� �t � x sinh t) dt :
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If � < 1 then the minimum of � is at t = 0 and

J (x; � < 1) �
Z 1

0
e� x(1� � )t dt ; (4.51)

=
1

(1 � � )x
; as x ! 1 , and � < 1 �xed. (4.52)

If � > 1, the minimum of � (t) moves away fromt = 0 and enters the interior of the range of
integration. Let's call the location of the minimum t � (� ):

cosht � (� ) = � ; and therefore t � = ln
�

� +
p

� 2 � 1
�

: (4.53)

If � > 1 then t � is real and positive. Notice that

� (t � ) = sinh t � � �t � =
p

� 2 � 1 � �t � (� ) ; (4.54)

and
� 00(t � ) = sinh t � =

p
� 2 � 1 : (4.55)

Then we expand� (t) in a Taylor series round t � :

� (t) = � (t � ) +
1
2

(t � t � )2� 00(t � ) + O(t � t � )3 : (4.56)

To leading order

J (x; � > 1) � e� x� �

Z 1

�1
e� x 1

2 (t � t � )2 � 00(t � )dt ; (4.57)

Notice we've extended the range of integration tot = �1 above. The error is small, and this
enables us to evaluate the integral exactly

J (x; � > 1) � e� � � (� )

s
2�

x� 00
� (� )

; as x ! 1 . (4.58)

If we use the expressions fort � (� ) and � 00
� (� ) above then we obtain an impressive function of the

parameter � :

J (x; � > 1) �

s
2�

x
p

� 2 � 1
exp

�
� x

p
� 2 � 1

� �
� +

p
� 2 � 1

� �x
; as x ! 1 . (4.59)

Comparing (4.52) with (4.59), we wonder what happens if� = 1? And how does the asymptotic
expansion change continuously from the simple form in (4.52) to the complicated expression in
(4.59) as� passes continuously through 1?

Notice that as x ! 1 :

J (x; 1) =
Z 1

0
e� x(sinh t � t ) dt ; (4.60)

�
Z 1

0
e� xt 3=6 dt ; (4.61)

= 2 1=33� 2=3�
�

1
3

�
x � 1=3 : (4.62)

So, despite the impression given by (4.52) and (4.59),J (x; 1) is not singular.

43



We're interested in the transition where � is close to 1, so we write

� = 1 + � (4.63)

where � is small. Then

J (x; � ) �
Z 1

0
ex�t � 1

3 xt 3
dt = x � 1=3

Z 1

0
e�� � 1

3 � 3
d� ; (4.64)

where � is a similarity variable :

� def= ( � � 1)x2=3 : (4.65)

The transition from (4.52) to (4.59) occurs when � � 1 = O(x � 2=3), and � = O(1). The transition
is described uniformly by a special function

J (� ) def=
Z 1

0
e�� � 1

3 � 3
d� : (4.66)

Our earlier results in (4.52), (4.59) and (4.62) are obtained as special cases by taking� ! �1 ,
� ! + 1 and � = 0 in J (� ).

4.5 Problems

Problem 4.1. Considering U(x; y) in (4.9), show that

x2Uxx + xUx � x2U = Uyy : (4.67)

Evaluate U(x; 1 ) in terms of modi�ed Bessel functions.

Problem 4.2. Consider

V (x; k; p) def=
Z kx � p

0
e� x cosht dt ; as x ! 1 . (4.68)

Find a leading-order approximation to (i) V (x; k; 1); (ii) V (x; k; 1=2) and (iii) V (x; k; 1=4). Hint:
In one of the three cases you'll need to use the error function.

Problem 4.3. Show that
Z 1

0
et

�
t

1 + t2

� n

dt �

r
�
2n

e
2n ; as n ! 1 . (4.69)

Problem 4.4. Show that
Z �

0
tn sin t dt �

� n+2

n2 ; as n ! 1 . (4.70)

Problem 4.5. The beta function is

B (x; y) def=
Z 1

0
tx� 1(1 � t)y� 1 dt : (4.71)

With a change of variables show that

B (x; y) =
Z 1

0
e� xv (1 � e� v)y� 1 dv : (4.72)
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Suppose thaty is �xed and x ! 1 . Use Laplace's method to obtain the leading order approxima-
tion

B (x; y) �
�( y)
xy : (4.73)

Go to the Digital Library of Special Functions, chapter 5 and �nd the relation between the beta
function and the gamma function. (You can probably also �nd t his formula in RHB , or any text
on special functions.) Use this relation to show that

�( x)
�( x + y)

�
1
xy ; as x ! 1 . (4.74)

Remark: this result can also be deduced from Stirling's approximation, but its a rather messy
calculation.

Problem 4.6. Find an asymptotic approximation of

Z 1

0

Z 1

0

e� n(x2+ y2 )

(1 + x + y)n dxdy as n ! 1 . (4.75)

Problem 4.7. Find the x ! 1 leading-order behaviour of the integrals

A(x) =
Z 1

� 1
e� xt 3

dt ; B (x) =
Z 1

� 1
e+ xt 3

dt ; (4.76)

C(x) =
Z 1

� 1
e� xt 4

dt ; D (x) =
Z 1

� 1
e+ xt 4

dt ; (4.77)

E(x) =
Z 1

0
e� xt � t4=4 dt ; F (x) =

Z 1

�1
e+ xt � t4=4 dt ; (4.78)

G(x) =
Z 1

�1

e� t2

(1 + t2)x dt ; H (x) =
Z 1

�1

et2

(1 + t2)x dt ; (4.79)

I (x) =
Z �= 2

0
e� x sect dt ; J (x) =

Z �= 2

0
e� x sin2 t dt ; (4.80)

K (x) =
Z 1

� 1

�
1 � t2�

e� x cosht dt ; L (x) =
Z 1

� 1

�
1 � t2�

ex cosht dt : (4.81)

Problem 4.8. Find the leading order asymptotic expansion of

M (x) def=
Z 1

0
ext t � t dt (4.82)

as x ! 1 and asx ! �1 .

Problem 4.9. Find the �rst two terms in the asymptotic expansion of

N (x) def=
Z 1

0
tne� t2 � x

t dt (4.83)

as x ! 1 .

Problem 4.10. Show that
Z 1

0
e� x

�
1

1 + e� x

� n

dx �
p

2�
(n � 1)n� 3

2

nn� 1
2

as n ! 1 . (4.84)

(I am 80% sure this is correct.)
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Problem 4.11. (i) Draw a careful graph of � (t) = (1 � 2t2)2 for � 2 � t � 2. (ii) Use Laplace's
method to show that as x ! 1

Z 1=2

0

p
1 + t ex� dt � ex

�
1
4

r
�
x

+
p
x

+
q

x3=2
+ � � �

�
; (4.85)

and determine the constantsp and q. Find asymptotic expansion asx ! 1 of

(ii )
Z 1

0

p
1 + t ex� dt ; (iii )

Z 1

� 1

p
1 + t ex� dt : (4.86)

Calculate the expansion up to and including terms of orderx � 3=2ex .
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Figure 4.3: A comparison of F (x) com-
puted from (4.87) using matlab (solid
curve) with the asymptotic approximation
(dashed curve).

Problem 4.12. Consider the function

F (x) �
Z 1

0
exp

�
�

t3

3
+ xt

�
dt : (4.87)

(i) F (x) satis�es a second-order linear inhomogeneous di�erentialequation. Find the ODE and
give the initial conditions F (0) and F 0(0) in terms of the �-function. (ii) Perform a local analysis
of this ODE round the irregular singular point at x = 1 and say what you can about the largex
behaviour of F (x). (iii) Use Laplace's method on (4.87) to obtain the completex ! 1 leading-
order approximation to F (x). (iv) Numerically evaluate (4.87) and make a graphical comparison
with Laplace's approximation on the interval 0 � x � 3 (see �gure 4.3).

%% MATLAB script for Laplace's method.
%%You'll have to supply the ??'s and code {\tt myfun}.
clear
xx = [0:0.05:3];
nloop = length(xx);
FF = zeros(1,nloop); % Store function values in FF
uplim = 10; %10=\infty for the upper limit of quad?
lowlim = realmin; % avoid a divide-by-zero error
for n=1:nloop

F = quad(@(t)myfun(t,xx(n)),lowlim,uplim);
FF(n) = F;

end
plot(xx,FF)
hold on
approx = sqrt(??)*xx.^(-??).*exp(2*xx.^(??)/3);
plot(xx,approx,'--')
hold off
xlabel('x')
ylabel('F(x)')
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Figure 4.4: Upper panel is the exact integrand in (4.88) (thesolid curve) and the Gaussian approx-
imation (dashed). Lower panel compares theF (x) obtained by numerical quadrature (solid) with
the asymptotic approximation. The comparison is not great | problem 4.13 asks you to calculate
the next term in the asymptotic expansion and add that to the � gure.

Problem 4.13. Find the �rst few terms in the x ! 1 asymptotic expansion of

F (x) def=
Z 1

0
exp

�
�

xt 2

1 + t

�
dt : (4.88)

Improve �gure 4.4 by adding the higher-order approximations to the lower panel.

Problem 4.14. Find the �rst two terms in the x ! 1 expansion of

Y (x) def=
Z ex

0
e� xt 2=(1+ t2 ) dt : (4.89)

Problem 4.15. Show that as x ! 1
Z 1

x

e� t

tx dt � e� x
�

1
2x

+
1

8x2 + ord
�
x � 3�

�
: (4.90)
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Lecture 5

Fourier Integrals and Stationary phase

5.1 Fourier Series

Recall that we can represent almost any functionf (x) de�ned on the fundamental interval � � <
x < � as a Fourier series

f (x) = a0 + a1 cosx + a2 cos 2x + � � �

+ b1 sinx + b2 sin 2x + � � � (5.1)

(see chapter 12 ofRHB ). Determining the coe�cients in the series above devolves to evaluating
the integrals:

a0 =
1

2�

Z �

� �
f (x) dx ; ak =

1
�

Z �

� �
coskx f (x) dx ; (5.2)

bk =
1
�

Z �

� �
sinkx f (x) dx : (5.3)

(Notice the irritating factors of 2 in a0 versus ak .) We're interested in how fast these Fourier
coe�cients decay as k ! 1 : the series is most useful if the coe�cients decay rapidly.

A classic example is the discontinuous square wave function

sqr(x) def= sgn [sin(x)] : (5.4)

Applying the recipe above to sqr(x), we begin by observing that because sqr(x) is an odd function,
all the ak 's are zero. To evaluatebk notice that the integrand of (5.3) is even so that we need only
integrate from 0 to �

bk =
2
�

Z �

0
sinkx dx = �

�
2

�k
coskx

� �

0
=

h
1 � (� 1)k

i 2
�k

: (5.5)

The even bk 's are also zero | this is clear from the anti-symmetry of the i ntegrand above about
x = �= 2. A sensitive awareness of symmetry is often a great help in evaluating Fourier coe�cients.
Thus we have

sqr(x) =
4
�

�
sinx +

1
3

sin 3x +
1
5

sin 5x +
1
7

sin 7x + � � �
�

: (5.6)

The wiggly convergence of (5.6) is illustrated in �gure 5.1. (Perhaps we'll have time to say more
about the wiggles later.) The point of this square-wave example is that Fourier series is converg-
ing very slowly: the coe�cients decrease only ask� 1, and the series is certainly not absolutely
convergent.
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Figure 5.1: Convergence of the Fourier series of sqr(t). The left panel shows the partial sum
with 1, 4 and 16 terms. The right panel is an expanded view of the Gibbs oscillations round the
discontinuity at x = 0. Notice that the overshoot near x = 0 does not get smaller if n is increased
from 16 to 256. FourSer4.eps

Exercise: Deduce the Gregory-Leibniz series

�
4

= 1 �
1
3

+
1
5

�
1
7

+ � � � (5.7)

from (5.6).

Now let's go to the other extreme and consider very rapidly convergent Fourier series, such as

cos2 x = 1
2 + 1

2 cos 2x : (5.8)

Another example of a rapidly convergent Fourier series is

1 � r 2

1 + r 2 � 2r cosx
= 1 + 2 r cosx + 2r 2 cos 2x + 2r 3 cos 3x + � � � (5.9)

If jr j < 1 then the coe�cients decrease asr k = ek ln r , which is faster than any power of k. In
examples like this we get a great approximation with only a few terms.

We can use IP to prove that if f (x) and its �rst p� 1 derivatives are continuous and di�erentiable
in the closed interval � � � x � � , and if the p'th derivative exists apart from jump discontinuities
at some points, then the Fourier coe�cients are O(n� p� 1) as n ! 1 . Functions such as sqr(x),
with jump discontinuities, correspond to p = 0 | the coe�cients decay slowly as n� 1. Very smooth
functions such as (5.8) and (5.9) correspond top = 1 .

The asymptotic estimate in the previous paragraph is obtained by evaluating the Fourier coef-
�cient

f n =
Z �

� �
f (x)einx dx ; (5.10)

using integration by parts. Suppose we can break the fundamental interval up into sub-intervals so
that f (x) is smooth (i.e., in�nitely di�erentiable) in each subinter val. Non-smooth behavior, such
a jump in some derivative, occurs only at the ends of the interval. Then the contribution of the
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sub-interval (a; b) to f n is

I n �
Z b

a
f (x)einx dx ;

=
1
in

Z b

a
f (x)

deinx

dx
dx ;

=
1
in

�
f (x)einx � b

a �
1
in

Z b

a
f 0(x)einx dx

| {z }
� Jn

: (5.11)

Sincef (x) is smooth, we can apply integration by parts to Jn to obtain

I n =
1
in

�
f (x)einx � b

a +
1
n2

�
f 0(x)einx � b

a �
1
n2

Z b

a
f 00(x)einx dx

| {z }
� K n

: (5.12)

Obviously we can keep going and develop a series in powers ofn� 1. Thus we can expressI n in
terms of the values off and its derivatives at the end-points.

It is sporting to show that we actually generate an asymptotic series with this approach. For
instance, looking at (5.12), we should show that the ratio ofthe remainder, n� 2K n , to the previous
term limits to zero as n increases. Assuming thatf 0 is not zero at both end points, this requires
that

lim
n!1

Z b

a
f 00(x)einx dx = 0 : (5.13)

We can bound the integral easily

�
�
�
Z b

a
f 00(x)einx dx

�
�
� �

Z b

a
jf 00(x)jjeinx j dx �

Z b

a
jf 00(x)j dx : (5.14)

But this doesn't do the job.
Instead, we can invoke the Riemann-Lebesgue lemma1: If

Rb
a jF (t)j dt exists then

lim
� !1

Z b

a
ei �t F (t) dt = 0 : (5.15)

Riemann-Lebesgue does not tell us how fast the integral vanishes. So, by itself, Riemann-Lebesgue
is not an asymptotic estimate. But RL does assure us that the remainder in (5.12) is vanishing
faster than the previous term asn ! 0 i.e., dropping the remainder we obtain ann ! 1 asymptotic
approximation.

An alternative to Riemann-Lebesgue is to change our perspective and think of (5.12) like this:

I n =
1
in

�
f (x)einx � b

a +
1
n2

�
f 0(x)einx � b

a �
1
n2

Z b

a
f 00(x)einx dx

| {z }
the new remainder

: (5.16)

The bound in (5.14) then shows that the new remainder is asymptotically less than the �rst term
on the right as n ! 1 . We can then continue to integrate by parts and prove asymptoticity by
using the last two terms as the remainder.

1The statement above is not the most general and useful form of RL | see section 3.4 of Asymptotics and Special
Functions by F.W.J. Olver | particularly for cases with a = �1 or b = + 1 .
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Figure 5.2: The �rst three terms in (5.18) make a rough approximation to the dashed square.

Some examples

Suppose, for example, we have a function such as those in (5.8) and (5.9). These examples are
smooth throughout the fundamental interval. In this case we take a = � � and b = � and use the
result above. Sincef (x) and all its derivatives have no jumps, even atx = � � , all the end-point
terms vanish. Thus in this casef n decreases faster than any power ofn e.g., perhaps something
like e� n , or e�

p
n . In this case integration-by-parts does not provide the asymptotic rate of decay

of the Fourier coe�cients | we must deploy a more potent metho d such as steepest descent.

Example: An interesting example of a Fourier series is provided by a square in the (x; y )-plane de�ned by the four
vertices (1; 0), (0; 1), ( � 1; 0) and (0; � 1). The square can be represented in polar coordinates asr = R(� ). In
the �rst quadrant of the ( x; y )-plane, the edge of the square is linex + y = 1, or

R(� ) =
1

cos� + sin �
; if 0 � � � �= 2. (5.17)

With some hu�ng and pu�ng we could write down R(� ) in the other three quadrants. But instead we simplify
matters using the obvious symmetries of the square.

BecauseR(� ) = R(� � ) we only need the cosines in the Fourier series. But we also have R(� ) = R(� + �= 2),
and this symmetry implies that

R(� ) = a0 + a4 cos 4� + a8 cos 8� + � � � (5.18)

We can save some work by leaving out cos� , cos 2� , cos 3� etc because these terms reverse sign if� ! � + �= 2.
Thus the ak 's corresponding to these harmonics will turn out to be zero.

The �rst term in the Fourier series is therefore

a0 =
1

2�

I
R(� ) d� ; (5.19)

=
2
�

Z �= 2

0

d�
cos� + sin �

: (5.20)

We've used symmetry to reduce the integral from � � to � to four times the integral over the side in the �rst
quadrant. The mathematica command

Integrate[1/(Sin[x] + Cos[x]), {x, 0, Pi/2}]

tells us that

a0 =
2
p

2
�

tanh � 1
�

1
p

2

�
� 0:7935: (5.21)
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The higher terms in the series are

a4k =
1
�

I
cos(4k� )R(� ) d� =

4
�

Z �= 2

0

cos(4k� ) d�
cos� + sin �

: (5.22)

With mathematica, we �nd

a4 =
4
�

�
4
3

� �
�

= 0 :1106; a8 = �
4
�

�
128
105

� �
�

= 0 :0349; (5.23)

a12 =
4
�

�
4364
3465

� �
�

= 0 :0166; a16 = �
4
�

�
55808
45045

� �
�

= 0 :0096; (5.24)

where

� def=
p

2tanh � 1
�

1
p

2

�
= 1 :24645: (5.25)

Figure 5.2 shows that the �rst three terms of the Fourier seri es can be used to draw a pretty good square.
We might have anticipated this because the coe�cients above decrease quickly. In fact, we now show that
a4k = O(k � 2) as k ! 1 .
After this preamble, we consider the problem of estimating t he Fourier integral

S(N ) =
Z �= 2

0

cosN�
sin � + cos �

d� ; (5.26)

as N ! 1 . (I've changed notation: N is a continuously varying quantity i.e., not necessarily in tegers 4, 8
etc.)
The Riemann-Lebesgue (RL) lemma assures us that

lim
N !1

S(N ) = 0 : (5.27)

But in asymptotics we're not content with this | we want to kno w how S(N ) approaches zero.
Lets us try IP

S(N ) =
1
N

Z �= 2

0

(sin N� ) �

sin � + cos �
d� ; (5.28)

=
1
N

�
sin N�

sin � + cos �

� �= 2

0

+
1
N

Z �= 2

0

sin N� (cos� � sin � )
(sin � + cos � )2

d�
| {z }

! 0 (Riemann-Lebesgue)

:

We've invoked the Riemann-Lebesgue lemma above. Thus, provided that sin(N�= 2) 6= 0, the leading order
term is

S(N ) �
sin(N�= 2)

N
: (5.29)

If N is an even integer (and in the problem that originated this ex ample, N = 4 k is an even integer) then to
�nd a non-zero result we have to integrate by parts again:

S(N ) =
sin(N�= 2)

N
�

1
N 2

Z �= 2

0

(cos� � sin � )
(sin � + cos � )2

(cosN� ) � d� ;

=
sin(N�= 2)

N
�

1
N 2

�
cos� � sin �

(sin � + cos � )2
cosN�

� �= 2

0

+
1

N 2

Z �= 2

0

�
cos� � sin �

(sin � + cos � )2

�

�

cosN� d� ;

�
sin(N�= 2)

N
+

1 + cos (N�= 2)
N 2

+ o
�
N � 2 �

: (5.30)

We've used RL to justify the o(N � 2). We can keep integrating by parts and develop an asymptotic series is
powers of N � 1 .
With N = 4 and 8 we �nd from (5.30)

a4 �
1

2�
= 0 :1592; a8 �

1
8�

= 0 :0398; (5.31)

a12 �
1

18�
= 0 :0177; a16 �

1
32�

= 0 :0099: (5.32)

Comparing these asymptotic estimates with (5.24), we see that the errors are 44%, 14%, 6% and 4% respec-
tively.
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Example: partial failure of IP Previously we evaluated the Fourier transform

� e�j k j =
Z 1

�1

e� i kx

1 + x2
dx : (5.33)

Can we �nd a k ! 1 asymptotic expansion using IP? Let's try:

f (k) =
Z 1

�1

1
1 + x2

d
dk

ei kx

ik
dx ; (5.34)

=
�

1
1 + x2

ei kx

ik

� 1

�1| {z }
=0

+
1
ik

Z 1

�1

2x ei kx

(1 + x2)2
dx ;

= O
�
k � 1 �

; (use RL). (5.35)

We could IP again, but again the terms that fall outside the in tegral are zero. In retrospect, this can't work
| after n integrations we'll �nd

f (k) = O
�
k � n �

: (5.36)

This is true: using the exact answer in (5.33)

lim
k !1

kn e� k = 0 ; for all n. (5.37)

IP will never recover an exponentially small integral. I cal l this a partial failure, because at least integration
by parts correctly tells us that the Fourier transform is sma ller than any inverse power of k. This is the case
for any in�nitely di�erentiable function: just keep integr ating by parts.

5.2 Generalized Fourier Integrals

Generalized Fourier integrals are the imaginary analog of the Laplace integrals in (4.1). The
generalized Fourier integral is

J (x) =
Z b

a
f (t)eix (t ) dt ; (5.38)

where  (t) is a real phase function. As x ! 1 the integrand is very oscillatory. We previously
considered the special case (t) = t and obtained the asymptotic expansion with IP. Let's try IP
again:

J = �
i
x

Z b

a

f
 0

d
dt

eix (t ) dt ; (5.39)

= �
i
x

�
f
 0 eix 

� b

a
+

i
x

Z b

a
eix (t ) d

dt
f
 0 dt

| {z }
o(1)| invoke RL.

: (5.40)

The asymptotic expansion ofJ (x) can be obtained via IP provided that f (t)= 0(t) is non-zero at
either a or b and provided that f (t)= 0(t) is not singular for a � t � b. If f (t)= 0(t) is singular
then IP fails. Instead we need the method of stationary phase.

Example: Let's �nd the leading term in the asymptotic expansion of

A(x) =
Z �= 2

0
e� t 2

sin xt dt ; as x ! 1 . (5.41)

This is an ordinary Fourier integral and integration by part s is the method of choice:

A(x) = �
1
x

Z �= 2

0
e� t 2 d

dt
cosxt dt ; (5.42)

=
1
x

�
1 � e� � 2 =4 cos

x�
2

�
�

2
x

Z �= 2

0
te� t 2

cosxt dt : (5.43)

The RL lemma shows that the �nal term is o(x � 1). We can keep integrating by parts to generate the full
asymptotic series in inverse powers ofx.
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Example: Find the asymptotic expansion of the generalized Fourier in tegral

B (x) =
Z �= 2

0
e� t 2

sin(x cost) dt ; as x ! 1 . (5.44)

We set up the integral for IP

B (x) =
1
x

Z �= 2

0

e� t 2

sin t
d
dt

cos(x cost) dt : (5.45)

But then we see that in this case the integration by parts will fail because e� t 2
=sin t is singular at t = 0. This

happens because the phase, cost, is has a stationary point at t = 0. We'll use stationary phase on this integral.

Example: Find the asymptotic expansion of

C(x) =
Z �= 2

0
t sin(x cost) dt ; as x ! 1 . (5.46)

In this case we get away with integration by parts only once:

C(x) =
1
x

Z �= 2

0

t
sin t

d
dt

cos(x cost) dt ; (5.47)

=
1
x

� �
2

� cosx
�

�
1
x

Z �= 2

0
cos(x cost)

sin t � t cost
sin2 t

dt ; (5.48)

=
1
x

� �
2

� cosx
�

+ o
�
x � 1 �

: (5.49)

We can't integrate by parts again | we encounter the same t = 0 singularity that stopped us in the example
B (x) above.

Example: Find the asymptotic expansion of

D (x) def=
Z a

0
ei xt 2

dt ; as x ! 1 . (5.50)

This example is important for a complete understanding of st ationary phase: we'll obtain the full asymptotic
expansion of D (x).
Write the integral as

D (x) =
Z 1

0
ei xt 2

dt �
Z 1

a
ei xt 2

dt ; (5.51)

=
1

p
x

Z 1

0
ei v 2

dv +
i

2x

Z 1

a

1
t

d
dt

ei xt 2
dt : (5.52)

The �rst term on the right is the Fresnel integral, and the sec ond can be integrated by parts to obtain

D (x) = 1
2

r
�
x

e
i �
4 +

i ei a2 x

2ax
+

i
2x

Z 1

a

ei xt 2

t2
dt : (5.53)

The �nal integral in (5.53) is easily bounded
�
�
�
�

Z 1

a

ei xt 2

t2
dt

�
�
�
� �

Z 1

a

dt
t2

=
1
a

: (5.54)

Thus the �nal two terms in (5.53) are O(x � 1), showing that

D � 1
2

r
�
x

e
i �
4 ; as x ! 1 . (5.55)

Successive integration by parts in (5.53) will generate the full asymptotic expansion of D (x). In fact, we can
reduce this problem to the function

F (z; p) def=
Z 1

z

ei t

tp
dt (5.56)

studied in problem 5.4: making the change of variables v = xt 2 , the �nal integral in (5.51) is
Z 1

a
ei xt 2

dt =
1

2
p

x

Z 1

a2 x

ei v

p
v

dv ; (5.57)

=
F

�
a2x; 1

2

�

2
p

x
; (5.58)

�
iei a2 x

2xa
p

�

1X

n =0

�( n + 1
2 )

(i a2x)n
: (5.59)
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Fresnel Integral Factoids

The Fresnel integrals are

Z 1

0
cosa2t2 dt =

Z 1

0
sina2t2 dt =

1
2a

r
�
2

:

Alternatively, if � is a real number
Z 1

0
e� i �v 2

dv =
1
2

r
�
j� j

exp
�
�

i�
4

sgn(� )
�

:

The Fresnel integrals are special cases of
Z 1

0
ei tn

dt = �
�

1 +
1
n

�
ei �= 2n ; provided n > 1.

The integral above is used in the case of higher-order stationary points.
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Figure 5.3: The upper panel shows the function sin(x cost) in (5.60) with x = 160. The solid curve
in the lower panel shows the integrand of (5.60). The dotted curve shows the stationary phase
approximation sin[x(1 � t2=2)] used in (5.61).

The stationary phase approximation

Let's reconsider the integral that defeated IP:

B (x) =
Z �= 2

0
e� t2

sin(x cost) dt ; as x ! 1 . (5.60)

The phase = cos t is stationary at t = 0 and thus we suspect that the dominant contribution to
B (x) comes from the neighbourhood oft = 0. Looking at �gure 5.3 and proceeding heuristically

B (x) �
Z 1

0
sin

�
x

�
1 �

t2

2

��
dt ; (5.61)

= sin x
Z 1

0
cos

xt 2

2
dt � cosx

Z 1

0
sin

xt 2

2
dt ; (5.62)

�
1
2

r
�
x

(sin x � cosx) ; as x ! 1 . (5.63)

We justify the heuristic above by dividing the range of integration into two regions:

B =
Z �

0
e� t2

sin(x cost) dt
| {z }

B 1

+
Z 1

�
e� t2

sin(x cost) dt
| {z }

B 2

; (5.64)

where� � 1. In integral B1, the variable t is always much less than one and therefore exp(� t2) � 1.
Thus B1 is asymptotically determined following the argument in example D(x): we obtain (5.61).
In integral B2 there are no stationary points in the range of integration and therefore with IP
B2 � x � 1, which is negligible relative to B1 as x ! 1 .
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Example: Find the leading term in the x ! 1 asymptotic expansion of

E (x) def=
Z 1

0
exp [ix(t � sinh t)] dt : (5.65)

The phase is

 = t � sinh t = �
t3

6
+ ord

�
t5 �

: (5.66)

This is a higher order stationary point because both  0 and  00 vanish at the stationary point. The leading
term is

E (x) �
Z 1

0
exp

�
�

ixt 3

6

�
dt =

�
6
x

� 1=3

�
�

4
3

�
e� i �= 6 : (5.67)

Example: Find the leading term in the x ! 1 asymptotic expansion of

F (x; p) def=
Z 1

0
t � p cos

�
x

p
sinh t � t

�
dt ; where 0 � p < 1. (5.68)

5.3 The Airy function

An important example leading to asymptotic analysis of a Fourier integral is the x ! �1 asymp-
totic expansion of the Airy function

Ai( x) =
1
�

Z 1

0
cos

�
kx +

k3

3

�
dk : (5.69)

We now use the method of stationary phase to determine the leading order asymptotic expansion
of Ai( x) as x ! �1 .

We begin by calculating the derivative of the phase function

d
dk

�
kx +

k3

3

�
= x + k2 : (5.70)

If x < 0 we see that there are stationary points atk = �j xj1=2 (and only k = + jxj1=2 is in the range
of integration). This observation motivates the change of variable

t def=
k

jxj1=2
; (5.71)

so that

Ai( x) =
jxj1=2

�

Z 1

0
cos

h
X (t)

i
dt ; (5.72)

where

X def= jxj3=2 ; and  (t) def= t �
t3

3
: (5.73)

The change of variables in (5.71) puts (5.69) into the form ofa generalized Fourier integral in (5.72).
When X is large the phase of the cosine is changing rapidly and integrand is violently oscillatory.

Successive positive and negative lobes almost cancel. The main contribution to the integral comes
from the neighbourhood of the point t = t � where the oscillations are slowest. This is the point of
\stationary phase", de�ned by

d 
dt

= 0 ; ) t � = 1 : (5.74)

We get a leading-order approximation to the integral by expanding the phase function roundt � :

 =  �|{z}
=2 =3

+ 1
2(t � 1)2  00

�|{z}
= � 2

+ord( t � 1)3 ; (5.75)
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Figure 5.4: The solid blue curve is Ai(x) and the red dashed curve is thex ! �1 asymptotic
approximation in (5.78).

where  �
def=  (t � ) and  00

�
def=  00(t � ). Thus as x ! �1 :

Ai( x) �
jxj1=2

�

Z 1

�1
cos

�
X

�
2
3

� (t � 1)2
��

dt ; (5.76)

�
jxj1=2

�X 1=2
< e2iX= 3

Z 1

�1
e� iv2

dv : (5.77)

To ease the integration we extend the range to�1 , and now invoke the Fresnel integral to obtain

Ai( x) �
1

p
� jxj1=4

cos

 
2jxj3=2

3
�

�
4

!

; as x ! �1 . (5.78)

This asymptotic approximation is compared with Ai in Figure 5.4

5.4 Problems

Problem 5.1. (i) Use IP to obtain the leading-order asymptotic approximation for the integral

Z 1

x

ei t

t
dt ; as x ! 1 . (5.79)

(ii) Justify the asympoticness of the expansion.Hint: see the discussion surrounding (5.16).

Problem 5.2. Using integration by parts to �nd x ! 1 asymptotic approximations of the integrals

A(x) =
Z 2

1

cosxt
t

dt ; and B (x) =
Z 1

0
cost2 eixt dt : (5.80)

Problem 5.3. Consider

f (x) =
Z �= 4

0
cos

�
xt 2� �

1 � e� t2
�

dt ; as x ! 1 . (5.81)

Show that IP can be used to compute the leading-order term, but not the second term. Compute
the second term using stationary phase.
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Figure 5.5: Comparison ofJ0(x) (solid blue curve) with the leading order asymptotic term in (5.87)
(red dashed curve).

Problem 5.4. Consider the Fresnel-type function

F (x; p) def=
Z 1

x

ei t

tp dt ; (5.82)

which converges for all positivex if p > 0. Use integration by parts to show that

F (x; p) =
ieix

xp � ipF (x; p + 1) : (5.83)

Prove that the full x ! 1 asymptotic expansion ofF (x; p) is

F (x; p) �
ieix

xp

1X

n=0

�( p + n)
�( p)(i x)n : (5.84)

Be sure to explain carefully why the remainder after N terms is asymptotically less than the
absolute value of the (N + 1)'st term.

Problem 5.5. Find two terms in the x ! 0 and x ! 1 expansion of the Fresnel integrals

C(x) =
Z 1

x
cost2 dt ; and S(x) =

Z 1

x
sin t2 dt : (5.85)

Problem 5.6. The Bessel function of order zero is de�ned by

J0(x) def=
2
�

Z �= 2

0
cos (x cost) dt : (5.86)

(i) Show that J 00
0 + x � 1J 0

0 + J0 = 0. (ii) Plot the integrand of (5.86) as a function of t at x = 100.
(iii) Show that

J0(x) �

r
2

�x
cos

�
x � �

4

�
: (5.87)

(iv) Use matlab (help besselj ) to compare the leading order approximation with the exact
Bessel function on the interval 0< x < 5� . The comparison is splendid: see Figure 5.5.

Problem 5.7. The Bessel function of integer ordern has an integral representation

Jn (x) =
1
�

Z �

0
cos(x sin t � nt ) dt : (5.88)

Show that

Jn (n) �
�

� 1
3

�

� 22=331=6n1=3
; as n ! 1 . (5.89)
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Problem 5.8. (i) Using the integral representation for Jn (x) in the previous problem show that

Jn (ny) �

r
�
2n

(y2 � 1)� 1=4 cos
h
n

� p
y2 � 1 � cos� 1 �

y� 1� �
�

�
4

i
; (5.90)

where y > 1 is �xed as n ! 1 . (ii) Now instead of �xing y, write y = 1 + n� pv with p > 0 and
v �xed. Thus as n ! 1 , y ! 1. Determine the scaling exponentp that results in an interesting
distinguished limit. (iii) Find a uniformly valid approximation to Jn (ny) for large n and y close to
one. You should recover (5.89) ify = 1 (equivalently v = 0).

Problem 5.9. Find a leading order x ! 1 asymptotic approximation to

B (x) =
Z �

0
eix(t+cos t) dt : (5.91)

Problem 5.10. Find leading-order, x ! 1 asymptotic expansion of

(i )
Z 1

0

p
1 + t eix(1� 2t2 )2

dt ; (ii )
Z 1

1

p
1 + t eix(1� 2t2 )2

dt : (5.92)

Problem 5.11. According to article 238 in Lamb, the surface elevation produced by a two-
dimensional splash is given by

� (x; t ) =
1
�

Z 1

0
cos

�
kx �

p
gk t

�
dk : (5.93)

Show that as t ! 1

� (x; t ) �
p

gt

2
3
2
p

�x
3
2

�
cos

gt2

4x
+ sin

gt2

4x

�
: (5.94)

Verify that the frequency and wavenumber in (5.94) are connected by the water-wave dispersion
relation ! =

p
gk.
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Lecture 6

Dispersive wave equations

6.1 Group velocity

An important application of stationary phase is estimating the Fourier integrals that arise when
we solve dispersive wave problems using the Fourier transform. Some �rst-order dispersive wave
equations, and their Fourier transforms (@x ! ik), are

iA t + Axx = 0 ; ~A t + i k2 ~A = 0 ; (6.1)

Axt � A = 0 ; ~A t + i k� 1 ~A = 0 ; (6.2)

A t � Axxx = 0 ; ~A + i k3 ~A = 0 : (6.3)

In each case the solution is

A(x; t ) =
Z 1

�1
ei( kx � t! (k)) A0(k)

dk
2�

; (6.4)

where ~A0(k) is the Fourier transform of the intial condition and the fun ction ! (k) is the dispersion
relation. In the three cases above

! (k) = k2 ; ! (k) =
1
k

; ! (k) = k3 : (6.5)

We'll see later that very similar results apply to second-order wave equations.
The inverse Fourier transform can be written in the form of a generalized Fourier integral

A(x; t ) =
Z 1

�1
ei t ~A0(k)

dk
2�

; (6.6)

where the phase function is

 (k; u) def= uk � ! (k) ; with u def=
x
t

: (6.7)

In the limit t ! 1 , with u = x=t �xed, the stationary phase condition that @k  = 0 leads to

d!
dk|{z}

group velocity

= u : (6.8)

To apply the method of stationary phase to the generalized Fourier integral in (6.6), we have to
�nd all solutions of (6.8), call them k1(u), k2(u); � � � and kn (u). Usually n is a modest number:
n = 1 in the following example. Then we expand the phase functions around eachkm (u) as

 (k; u) =  m �
1
2

(k � km )2! 00
m + O(k � km )3 ; (6.9)
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Figure 6.1: Upper panel shows the initial condition in (8.27) with ` = 12 and p = 1, and the
solution at t = 40 computed with matlab FFT. The lower panel compares thematlab solution
with the stationary phase approximation in (6.19).

where m = 1 ; 2� � � n. Also in (6.9)

 m
def=  (km ) ; and ! 00

m
def= @2

k ! (km ) : (6.10)

Thus the integral in (6.6) becomes

A(x; t ) �
nX

m=1

ei[km x� ! (km )t ] ~A0(km )
Z 1

�1
e� i t

2 (k� km )2 ! 00
m

dk
2�

: (6.11)

Evaluating the Fresnel integrals we �nd

A(x; t ) �
nX

m=1

~A0(km )
p

2�t j! 00
m j

exp
h
i
�

km x � ! (km )t � sgn
�
! 00

m

� �
4

�i
: (6.12)

Note the �ddly j! 00
m j and sgn(! 00

m ) in (6.12). More important, note that km in (6.12) is a function
of x=t which is obtained by solving the group velocity equation (6.8).

Remark: if ! 00
m = 0 the formula in (6.12) is invalid. This higher-order stationary point requires

separate analysis.

Example: Use stationary phase to approximate the t ! 1 solution of

A t � A xxx = 0 ; with IC A(x; 0) =
e� x 2 =2` 2

`
p

2�
cospx : (6.13)

Using the Fourier transform, the initial condition is

~A0(k) = 1
2

�
e� ` 2 ( k � p) 2 =2 + e � ` 2 ( k + p) 2 =2

�
; (6.14)
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and the solution is then

A(x; t ) =
Z 1

�1
ei( kx � k 3 t ) ~A0(k)

dk
2�

; (6.15)

= 2
Z 1

0
cos(kx � k3 t ) ~A0(k)

dk
2�

: (6.16)

In (6.15), because ~A0(k) = A0(� k), we can restrict attention to k > 0. The stationary phase equation is

3k2 =
x
t

; or k� (x; t ) = �

r
x
3t

: (6.17)

There are two stationary phase points, but only k+ (x; t ) lies in the range of integration in (6.16). The expansion
of the phase function ku � k3 around k+ is:

 = 2 k3
+ � 3k+ (k � k+ )2 + ord( k � k+ )3 : (6.18)

The stationary-phase approximation to the Fourier intergr al in (6.16) is then

A �
~A0(k+ )

�

�
cos

�
2k3

+ t
� Z 1

�1
cos

�
3
2 k2

+ (k � k+ )2 t
�

dk + sin
�
2k3

+ t
� Z 1

�1
sin

�
3
2 k2

+ (k � k+ )2 t
�

dk
�

;

=
~A0(k+ )

p
6�tk +

�
cos

�
2k3

+ t
�

+ sin
�
2k3

+ t
��

: (6.19)

Figure 6.1 compares this approximation to a numerical solut ion.

%% Third-order dispersive wave equation A_t-A_{xxx}=0
Lx = 4e2; nx = 2e4; dx = Lx/nx; %grid
xx = 0:dx:Lx-dx; xx=xx-Lx/2;
k1 = 2*pi/Lx; kk = k1*[0:nx/2 (-nx/2+1):-1]; %wavenumbers

%% IC in physical space, and in Fourier space
ell = 12; p=1; %IC parameters
A0 = (ell*sqrt(2*pi))^(-1) * exp(-xx.^2/(2*ell^2)).*cos (p*xx);
A0h = fft(A0);
subplot(2,1,1)
plot(xx,A0,'b-') %plot IC
axis([-40 , 200 , -1.1*max(A0), 1.1*max(A0)])
xlabel('$x$','interpreter','latex','fontsize',14)
ylabel('$A(x,t)$','interpreter','latex','fontsize', 14)
text(15,0.025,'$t=0$','interpreter','latex','fontsi ze',14 )
hold on

%% long-time solution
t=40;
Ah = A0h .* exp(-1i.*kk.^3*t); % Fourier evolution
A = real(ifft(Ah)); % physical space solution
subplot(2,1,1)
plot(xx,A,'r--') % plot A(x,t)
text(145,0.02,'$t=40$','interpreter','latex','fonts ize',14 )

%% SP approximation
kp = sqrt(abs(xx)/(3*t));
A0 = 0.5*( exp(-0.5*ell^2*(kp - p).^2) + exp(-0.5*ell^2*(k p + p).^2) );
ASP =A0.*( cos(2*t*kp.^3) + sin(2*t*kp.^3))./(sqrt(6*pi *t*kp));
subplot(2,1,2)
plot(xx,A,'r--',xx,ASP,'b')
axis([50 , 200 , -1.1*max(A), 1.1*max(A)])
legend('FFT','SP')
xlabel('$x$','interpreter','latex','fontsize',14)
ylabel('$A(x,t)$','interpreter','latex','fontsize', 14)
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6.2 The 1D KG equation

Let's use stationary phase to analyze theKlein-Gordon equation:

A tt � a2Axx + � 2A = 0 ; (6.20)

with the initial condition such as

A(x; 0) =
e� x2=2`2

p
2�`

cospx ; and A t (x; 0) = 0 : (6.21)

We introduce non-dimensional variables

�x def=
�x
a

; and �t = �t ; and �A =
a
�

A : (6.22)

With this change in notation, the non-dimensional problem is

�A �t �t � �A �x �x + �A = 0 ; (6.23)

with the initial condition

�A(�x; 0) =
e� �x2=2� 2

p
2��

cos� �x ; and �A t (x; 0) = 0 : (6.24)

The IC contains the non-dimensional parameters

� def=
pa
�

; and � def=
`�
a

: (6.25)

We proceed dropping all the bars decorating the non-dimensional variables.
Remark: in the limit � ! 0, the initial condition is A(x; 0) ! � (x). By taking � ! 0 we recover

the Green's function of the Klein-Gordon equation.
The Fourier transform of  is

~A(k; t ) def=
Z 1

�1
e� ikx A(x; t ) dx ; (6.26)

and with the operational rule @x ! ik we �nd the transformed equation Klein-Gordon equation

~A tt + ( k2 + 1) ~A = 0 : (6.27)

The solution that satis�es the transformed initial conditi on is

~A = cos !t ~A0(k) =
1
2

�
ei !t + e � i !t

�
~A0(k) : (6.28)

Above, the Klein-Gordon dispersion relation is

! (k) =
p

k2 + 1 : (6.29)

and ~A0(k) is the Fourier transform of the initial condition.
We record some consequences of the Klein-Gordon dispersionrelation that we'll need below:

d!
dk

=
k

p
k2 + 1

=
k
!

; and
d2!
dk2 =

1
! 3 : (6.30)

These results simplify some of the calculations below.
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From (6.28), the Fourier Integral Theorem now delivers the solution in the form

A(x; t ) =
Z 1

�1
eikx cos(!t ) ~A0(k)

dk
2�

; (6.31)

= 1
2

Z 1

�1
eikx � i!t ~A0(k)

dk
2�

| {z }
def
= B

+ 1
2

Z 1

�1
eikx +i !t ~A0(k)

dk
2�

| {z }
= B �

: (6.32)

To show that the two integrals on the right of (6.32) are complex conjugates of each other we use
the reality conditon ~A �

0(k) = ~A0(� k).
Should simplify to an integral over x > 0 by restrict attention to even functions of x so that

~A0(� k) = ~A0(k).
The Klein-Gordon equation is a second-order wave equation and has two modes, one with

dispersion relation
p

k2 + 1 and the other with �
p

k2 + 1. One wave goes to the left and the other
to the right. Our initial condition excites both waves. These are the two termsB (x; t ) and B � (x; t )
above.

Let's consider B (x; t ), written as :

B (x; t ) =
1
2

Z 1

�1
ei t ~A0

dk
2�

; (6.33)

with phase function

 (k; u) def= uk �
p

k2 + 1 : (6.34)

The stationary-phase condition for  is that

u =
k?p

k2
? + 1

: (6.35)

Solving (6.35) for k? as a function of u = x=t we have

k?(u) =
u

p
1 � u2

; and 1 + k2
? =

1
1 � u2 ; (6.36)

provided that � 1 < u < 1. The restriction on u is because an observer moving with speedjuj > 1
is out-running the waves | we return to this point later.

Close to the stationary point k?(u), the phase is therefore

 (k) = �
p

1 � u2
| {z }

=  (k? )

�
1
2

(1 � u2)3=2

| {z }
= ! 00(k? )

(k � k?)2 + O(k � k?)3 : (6.37)

Notice that ! 00(k?) = (1 � u2)3=2 is positive.
The Fourier integral is therefore

B �
1
2

e� i t
p

1� u2
Z 1

�1
e� i t

2 (1� u2 )3=2 (k� k? )2 ~A0(k?)
dk
2�

: (6.38)

Invoking the Fresnel integral, we obtain

B �
1
2

cos
�

t
p

1 � u2 + �
4

�

p
2�t (1 � u2)3=2

~A0

�
u

p
1 � u2

�
; (6.39)
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provided that 0 < u def= x=t < 1. The total solution is A = B + B � , or

A(x; t ) �
cos

�
t
p

1 � u2 + �
4

�

p
2�t (1 � u2)3=2

< ~A0

�
u

p
1 � u2

�
: (6.40)

Figure 6.2 compares the stationary phase approximation (6.40) with a numerical solution of the
Klein-Gordon equation.

Should do � 6= 0 �rst.

Visualization of the stationary phase solution

Let's visualize this asymptotic solution using the Gaussian initial condition with the Fourier trans-
form ~A0 in (??).

First consider � ! 0, so that A(x; 0) ! � (x). In this case the Klein-Gordon equation has an
exact solution

A(x; t ) = �
J1

�
t
p

1 � u2
�

2
p

1 � u2
+

1
2

[� (x � t) + � (x + t)] ; (6.41)

where J1(z) is the �rst order Bessel function. Figure ?? compares the stationary phase solution in
(6.39) (with ~A0 = 1) to the exact solution in (6.41). The approximation is OK p rovided we don't
get too close tox = t. The stationary phase approximations says nothing about the � -pulses that
herald the arrival of the signal.

Figure ?? shows the stationary phase approximation (6.39) with� 6= 0. The initial disturbance
now has �nite width and therefore contains no high-wavenumbers. Thus the rapid oscillations near
the from at x = t have been removed. This is good: it probably means that the stationary phase
approximation is accurately reproducing the waveform. But on the other hand, because of the
� (x � t) in (6.41), there should be terms like

e� (x � t )2 =2� 2

p
2��

(6.42)

in the exact solution. The stationary phase approximation fails when u = x=t is close to� 1, and
therefore the approximation gives no hint of these pulses.

Caustics: u � 1

To analyze the solution (6.32) close to front at x = t, we write x = t + x0 where x0 � 1. The
stationary-phase approximation, analogous to (6.39), is therefore

 2(k) = ( t + x0)k �
p

1 + k2
| {z }

�j kj(1+ 1
2 k2)

t ;

� x0k �
t

2k
; provided k > 0. (6.43)

The approximation above is valid close to the stationary wavenumber, k = 1 . The inverse trans-
form is therefore

A2(x; t ) =
1

4�

Z 1

�1
ei( x0k� t

2k ) ~A0(k) dk ;

=
1

4�

r
t

2x0

Z 1

�1
ei � (� � 1 � � ) ~A0

 r
t

2x0�

!

d� ; (6.44)
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Figure 6.2: Comparison of a numerical solution of the Klein-Gordon equation (solid black curve)
with the asymptotic approximation (red dashed curve) in (6.40) at t = 400. In this illustration
� = 0. The matlab code is given in the following verbatim box.

where
� def=

q
1
2 tx 0: (6.45)
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%% Comparison of stat phase approx with FFT solution of KG
Lx = 1e3; nx = 2e5; dx = Lx/nx; %grid
xx = 0:dx:Lx-dx; xx=xx-Lx/2;
k1 = 2*pi/Lx; kk = k1*[0:nx/2 (-nx/2+1):-1]; %wavenumbers
t = 400; %final time
nLoop=0;
for eta =[0.5 1 2]

nLoop= nLoop+1;
% IC in physical space, and in Fourier space
A0 = ( eta*sqrt(2*pi) )^(-1) * exp(-xx.^2/(2*eta^2));
A0h = fft(A0);
% solution to Klein-Gordon
Ah = A0h .* cos( sqrt(1+kk.^2)*t );
A = real(ifft(Ah)); % physical space solution
subplot(3,1,nLoop)
plot(xx,A,'k-')
axis([-0.2*t , 1.1*t , -1.1*max(A), 1.1*max(A)])
hold on
% compare final solution to stationary phase
uu = xx/t; sq = sqrt(1-uu.^2); ut = uu ./ sq;
At = exp( -(eta*ut).^2 );
Asp = cos( t*sq + pi/4 ) ./ sqrt( 2*pi*t*sq.^3 ) .* At;
subplot(3,1,nLoop), hold on
plot(xx,real(Asp),'r--')
xlabel('$x$','interpreter','latex','fontsize',16)
ylabel('$A(x,t)$','interpreter','latex','fontsize', 16)
ss = ['$\eta =' ,num2str(eta), '$'];
text(-50,0.75*max(A),ss,'interpreter','latex','font size',12)

end
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Figure 6.3: Solution of a mystery equation.

6.3 Problems

Problem 6.1. Use a Fourier transform to solve

Qt =
i
2

Qxx �
1
3

Qxxx ; with IC Q(x; 0) = � (x). (6.46)

Use the method of stationary phase to estimate

lim
t !1

Q(ut; t ) (6.47)

with (a) u = 0; (b) u = 1=4; (c) all values of u.

Problem 6.2. Here are some one-dimensional dispersive wave equations

A t � Axxx = 0 ; Fxt � F = 0 ; B t + Bxxx = 0 ; Gxt + G = 0 : (6.48)

Figure 6.3 shows the solution of one of these equations with the initial condition

e� x2=200
p

2� 10
cosx : (6.49)

(i) Which equation has been solved to produce the �gure? (ii) Construct the solution of the
equation from part (i) using the Fourier Integral Theorem. (iii) The width of the wave packet
increases liket � , while its amplitude decreases liket � � . Determine the exponents� and � .
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Lecture 7

Constant-phase (a.k.a.
steepest-descent) contours

The method of steepest descents, and its big brother the saddle-point method, is concerned with
complex integrals of the form

I (� ) =
Z

C
h(z)e�f (z) dz ; (7.1)

where C is some contour in the complex (z = x + i y) plane. The basic idea is to convertI (� ) to

I (� ) =
Z

D
h(z)e�f (z) dz ; (7.2)

where D is a contour on which = f is constant. Thus if

f = � + i  ; (7.3)

then on the contour D

I (� ) = e � i  D

Z

D
h(z)e�� dt : (7.4)

Above  D is the constant imaginary part of f (z). We refer  as the phase function and D is
therefore a constant-phase contour.

Contour D is orthogonal to r  and, because

r � � r  = 0 ; (7.5)

D is also tangent to r � . Thus as one moves alongD one is always ascending or descending along
the steepest direction of the surface formed by� (x; y) above the (x; y)-plane. The main advantage
to integrating along D is that the integral will be dominated by the neighbourhood of the point on
D where � is largest.

Because� is changing most rapidly as one moves alongD, D is also a contour ofsteepest descent
(or of steepest ascent).

Exercise: Prove (7.5) and the surrounding statements.

The method and its advantages are best explained via well chosen examples. In fact we've already
used the method to calculate Ai(0) back in section 1.5 | you sh ould review that example.
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7.1 Asymptotic evaluation of an integral using a constant-p hase
contour

An example of the constant phase method is provided by

B (� ) def=
Z 1

0
ei �x 2

dx : (7.6)

If � � 1 we quickly obtain a leading order approximation to B using stationary phase. We improve
on this leading-order approximation by considering

f (z) = i z2 = � 2xy
| {z }

= �

+i ( x2 � y2)
| {z }

=  

: (7.7)

The end-points of (7.6) de�ne two constant-phase contours | see Figure 7.1. The end-point at
(x; y) = (0 ; 0) has  = 0, and the other end-point at ( x; y) = (1 ; 0) has  = 1. The constant-phase
contours through these endpoints are

D0 : z = r ei �= 4 ; and D1 : z =
p

1 + y2 + i y : (7.8)

(See the �gure.) There are no singularities in the region enclosed by C, D0, D1 and E. Thus, as E
recedes to in�nity, we have

B (� ) =
Z

D0

ei �z 2
dz

| {z }
= 1

2

p
�
� ei �= 4

+
Z

D1

ei �z 2
dz : (7.9)

The �rst integral along D0 in (7.9) is the standard Fresnel integral. In the second integral along
D1, the exponential function is

ei �z 2
= e i � e� 2�y

p
1+ y2

: (7.10)

This veri�es that on D1 the integrand decreases monotonically away from the maximum at z = 1.
On D1 we strive towards a Laplace integral in (7.9) by making the change of variable

iz2 = i � v ; or z =
p

1 + i v : (7.11)

Thus Z

D1

ei �z 2
dz = �

i
2

ei �
Z 1

0

e� �v
p

1 + i v
dv : (7.12)

The minus sign is because we integrate alongD1 starting at v = 1 .
Assembling the results above

B (� ) =
1
2

r
�
�

ei �= 4 �
i
2

ei �
Z 1

0

e� �v
p

1 + i v
dv : (7.13)

Watson's lemma delivers the full asymptotic expansion of the �nal integral in (7.13).
There is an alternative derivation that using the contour F in Figure ??. F is tangent to D1

at z = 1, so that Z

D1

ei �z 2
dz �

Z

F
ei �z 2

dz as � ! 1 . (7.14)

Now in the neighbourhood ofz = 1:
z = 1 + i y (7.15)

Thus Z

F
ei �z 2

dz � � ei �
Z 1

0
e� 2�y ei �y 2

dy : (7.16)
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Figure 7.1: The contoursD0 and D1. On D0, x = y and the phase is constant.

7.2 Problems

Problem 7.1. Show that if p > 1 and 0< a :
Z 1

0
e� iap vp

dv =
1
a

�
�

1 +
1
p

�
e� i �= 2p : (7.17)

The casep = 2 is the Fresnel integral and p = 3 is the example in (1.42).

Problem 7.2. Consider the integral

P(a; b) def=
Z 1

0
e� ax2

cosbxdx = 1
2

Z

C
e� ax2+i bx dx ; (7.18)

where C is the real axis, �1 < x < 1 . Complete the square in the exponential and show that
the line y = b=2a is a contour D on which the integrand is not oscillatory. Evaluate P exactly by
integration along D.

Problem 7.3. Use a constant phase contour to asymptotically evaluate

Q(� ) def=
Z �

0
ei �x ln x dx (7.19)

as � ! 1 .
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Lecture 8

The saddle-point method

The saddle-point method is a combination of the method of steepest descents and Laplace's method
in the complex plane.

In the previous lecture we considered integrals along constant-phase contoursD. In those those
earlier examples the maximum of� on D was at the endpoints of the contour. But it is possible
that the maximum of � is in the middle of the contour. If s is the arclength along the contour then

d�
ds

= r � � �̂ D (8.1)

where �̂ D is the unit tangent to D. In fact, from the Cauchy-Riemann equations,

�̂ D =
r �
jr � j

; so that
d�
ds

= jr � j : (8.2)

Thus if there is an interior maximum on D at that point z� then

d�
ds

�
�
�
�
�
z�

= 0 ; which requires jr � j = 0 at z� . (8.3)

However from the Cauchy-Riemann equations

jr � j = jr  j =

�
�
�
�
�
df
dz

�
�
�
�
�
: (8.4)

So at the point z� , jr � j, jr  j and jdf=dzj are all zero. In short, we can locate the saddle points
by solving

df
dz

= 0 : (8.5)

8.1 The Airy function as x ! 1

Let's recall our Fourier transform representation of the Airy function:

Ai( x) =
Z 1

�1
ei( kx + k3=3) dk

2�
(8.6)

In an earlier lecture we used stationary phase to investigate the x ! �1 behaviour of Ai. Now
consider what happens ifx ! 1 . In this case the stationary point is in the complex k-plane, at
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Figure 8.1: The contoursD+ and D� .

k = �
p

xi. We'll use this to illustrate the saddle-point method. But �rst we make the change of
variable

k =
p

x� (8.7)

so that

Ai( x) =
p

x
2�

Z

C
eXf (� ) d� ; (8.8)

where C is the real axis and

X def= x3=2 ; and f (� ) def= i
�

� +
� 3

3

�
: (8.9)

If � = p + i q then in this problem we can write f (� ) explicitly without too much work:

f (� ) = � q � p2q +
q3

3| {z }
�

+i
�

p +
p3

3
� pq2

�

| {z }
 

: (8.10)

Contours of constant  are shown in Figure 8.1.
The saddle points at � = � � are located by

df
dk

= 0 ; or � � = � i : (8.11)

Notice that
f (i) = �

2
3

; (8.12)

and thus the constant-phase contours passing through� = i are determined by = f = 0, implying
that

p = 0 ; and
p3

3
� q2 + 1 = 0 : (8.13)
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Our attention is drawn to the saddle at +i, and we deform C onto the contour D+ passing
through � = +i. We can parameterize the integral on D+ via

p =
p

3 sinht ; and q = cosh t : (8.14)

Notice then that
� =

2
3

�
3 cosht � 4 cosh3 t

�
= �

2
3

cosh 3t ; (8.15)

and
d�
dt

=
p

3 cosht + i sinh t : (8.16)

Thus we have a new integral representation for the Airy function

Ai( x) =

p
3x

2�

Z 1

�1
cosht e� 2X

3 cosh 3t dt : (8.17)

Laplace's method applied to this integral quickly gives theleading-order result

Ai( x) �
e� 2x 3=2

3

2
p

�x 1=4
: (8.18)

Notice that if we had to numerically evaluate Ai( x) for positive x the representation in (8.14) would
be very useful.

We were distracted by the exciting parameterization (8.14). A better way to obtain the asymp-
totic approximation of Ai( x) is to use a path that is tangent to the true steepest-descentpath at
� = i i.e., the path

� = i + p ; on which f = �
2
3

� p2 + i
p3

3
: (8.19)

This is not a path of constant phase (notice the ip3=3) but that doesn't matter. We then have

Ai( x) �
p

x
2�

e
2
3 X

Z 1

�1
e� Xp 2

eX i p3

3 dp : (8.20)

Watson's lemma now delivers the full asymptotic expansion of the Airy function:

Ai( x) �
e� 2x 3=2

3

2
p

�x 1=4

1X

n=0

�(3 n + 1
2)

(2n)!

�
�

1
9X

� n

; as x ! 1 . (8.21)

8.2 The Laplace transform of a rapidly oscillatory function

As an another example, consider the large-s behaviour of the Laplace transform

L
�
sin

1
t

�
=

Z 1

0
e� st sin

�
1
t

�
dt : (8.22)

Although this is a real integral, we make an excursion into the complex plane by writing

L
�
sin

1
t

�
= =

Z 1

0
e� st+i t � 1

dt : (8.23)

Our previous experience with Laplace's method suggests considering the function

� def=
i
t

� st ; (8.24)
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Figure 8.2: The green curves show< (iz� 1 � z), and the black curve is = (iz� 1 � z) = �
p

2s. The
saddle point S is atz = e � i �= 4, and the curve of steepest descent is OSR.

in the complex t-plane. Our attention focusses on saddle points, which are located by

d�
dt

= 0 ; ) t? = �
e� i �= 4

p
s

: (8.25)

Studying t?, we're motivated to introduce a complex variable z = x + i y de�ned by

z def=
p

st and therefore � =
p

s
�

i
z

� z
�

| {z }
def
= �̂ (z)

: (8.26)

In terms of z, the Laplace transform in (8.23) is therefore

L
�
sin

1
t

�
= =

1
p

s

Z 1

0
e

p
s�̂ dz : (8.27)

Back in (8.26), the
p

s in the de�nition of z ensures that the saddle points are atz = ! and
z = � ! , where

! def= e � i �= 4 =
p

� i =
1 � i
p

2
: (8.28)

That is, as s ! 1 the saddle points don't move in the z-plane. < �̂ is shown in the z-plane as
green contours in Figure 8.2. The black curves in Figure 8.2 are = �̂ = �

p
2 and the saddle point

at z = ! is indicated by S. The curve of steepest descent, which goes through S, is OSR.
Invoking Cauchy's theorem on the closed curve OURSO:

1
p

s

Z

OURSO
e

p
s�̂ dz = 0 ; (8.29)

and therefore, taking the points R and U to in�nity,

L
�
sin

1
t

�
= =

1
p

s

Z

OSR
e

p
s�̂ dz : (8.30)

When s � 1 we can evaluate the integral on the right of (8.30) using

�̂ (z) = � 2! + ! 3(z � ! )2 + O(z � ! )3 : (8.31)
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To go over the saddle point on OSR

z � ! = ! 1=2� so that ! 3(z � ! )2 = � � 2 : (8.32)

Thus

L
�
sin

1
t

�
� =

p
�

s3=4
! 1=2e� 2!

p
s =

p
�

s3=4
e�

p
2s cos

� p
2s +

�
8

�
: (8.33)

Must check!
The saddle point method requires careful scrutiny of the real and imaginary parts of analytic

functions. It is comforting to contour these functions with MATLAB. The script that generates
Figure 8.2 is in the box, and it can be adapted to other examples we encounter.
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%% Saddle point plot
%% phi = 1i/t - s t with t = z/sqrt(s)
%% phi = sqrt(2s)(1i/z - z)
close all
clc
clear
s = 10; a=sqrt(2*s);
x = linspace(-1,8,200); y = linspace(-2,1,200);
[xx,yy] = meshgrid(x,y); z = xx + 1i*yy;
phi = sqrt(s)*( 1i./z - z);
phImag = imag(phi);
phReal = real(phi);
% contour levels for real(phi):
V=[-6 :0.4: 2]*a;
subplot(2,1,1)
contour(xx,yy,phReal, V,'g' )
hold on
% plot the saddle point contour
contour( xx , yy , phImag, [-a a],'k' )
axis equal%best for analytic functions
hold on
xlabel('$x$','interpreter','latex')
ylabel('$y$','interpreter','latex')
axis([min(x) max(x) min(y) max(y) ] )
%% plot the x-axis:
plot([min(x) max(x)],[0 0],'k','linewidth',1.0)
%% plot the y-axis:
plot([0 0] , [min(y) max(y)],'k','linewidth',1.0)
title('real($\phi$) and imag($\phi)=\sqrt{2 s}$','inte rpreter','latex')
%label the steepest descent contour
text(-0.05 , 0 , 'O')
b = 1/sqrt(2);
text(1*b, -1.2*b , 'S')
text(8.1 , -1.3 ,'R')

Note the use of1i for
p

� 1 in MATLAB, and the use of meshgrid to set up the complex matrix
z = xx + 1i*yy . To get a good plot you have to supply some analytic information to contour e.g.,
we make MATLAB plot the saddle point contours = � = �

p
2s in the second call tocontour . And

you can't trust MATLAB to pick sensible contour levels because the pole atz = 0 means that there
are some very large values in the domain | so the vector V determines the contour levels using
the convenient scale

p
2s. Since the real and imaginary parts of the analytic function � intersect

at right angles (recall r � r � r � i = 0), we preserve angles with the commandaxis equal .
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8.3 Inversion of a Laplace transform

We can further illustrate the saddle-point method by considering the problem of inverting a Laplace
transforms using the Bromwich method. Recall again that theLaplace transform of a function f (t)
is

�f (s) def=
Z 1

0
f (t)e� st : (8.34)

We refuse to Laplace transform functions with nonintegrable singularities, such asf (t) = ( t � 1)� 2

and 1=ln t.
The inversion theorem says that

f (t) =
1

2� i

Z

B
est �f (s) ds ; (8.35)

where the \Bromwich contour" B is a straight line parallel to the si -axis and to the right of all
singularities of �f (s). The theorem requires that f (t) is absolutely integrable over all �nite integrals
i.e., that Z T

0
jf (t)j dt < 1 ; for 0 � T < 1 . (8.36)

Absolute integrability over the in�nite interval is not req uired: e� st takes care of that.
Now consider the Laplace transform

�f (x; s) =
ex

p
s

s
: (8.37)

According to the inversion theorem

f (x; t ) =
1

2� i

Z

B
est� x

p
s ds

s
: (8.38)

The Bromwich contour must be in the RHP, to the right of the pol e at s = 0.
Suppose we don't have enough initiative to look up this inverse transform in a book, or to

evaluate it exactly by deformation of B to a branch-line integral (see problems). Suppose further
that we don't notice that f (x; t ) is a similarity solution of the highly regarded di�usion pro blem

f t = f xx ; f (0; t) = 1 ; f (x; 0) = 0 : (8.39)

We're dim-witted, and thus we try to obtain the t ! 1 asymptotic expansion off (x; t ).
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Lecture 9

Evaluating integrals by matching

9.1 Singularity subtraction

Considering

F (� ) =
Z �

0

cosx
p

x2 + � 2
dx ; as � ! 0, (9.1)

we cannot set� = 0 because the resulting integral is logarithmically divergent at x = 0. An easy
way to make sense of this limit is to write

F (� ) = �
Z �

0

1 � cosx
p

x2 + � 2
dx +

Z �

0

dx
p

x2 + � 2
| {z }

an elementary integral

; (9.2)

� �
Z �

0

1 � cosx
x

dx + ln
�

� +
p

� 2 + � 2
�

� ln � ; (9.3)

� ln
1
�

�
Z �

0

1 � cosx
x

dx + ln 2 � ; (9.4)

with errors probably ord( � ). This worked nicely because we could exactly evaluate the elementary
integral above. This method is calledsingularity subtraction | to evaluate a complicated nearly-
singular integral one �nds an elementary integral with the same nearly-singular structure and
subtracts the elementary integral from the complicated integral. To apply this method one needs
a repertoire of elementary nearly singular integrals.

Exercise: generalize the example above to

F (� ) =
Z a

0

f (x)
p

x2 + � 2
dx : (9.5)

Example: �nd the small x behaviour of the exponential integral

E (x) =
Z 1

x

e� t

t
dt : (9.6)

Notice that
dE
dx

= �
e� x

x
= �

1
x

+ 1 �
x
2

+ � � � (9.7)

If we integrate this series we have

E (x) = � ln x + C + x �
x2

4
+ ord( x3) : (9.8)

The problem has devolved to determining the constant of inte gration C. We do this by subtracting the
singularity. We use an elementary nearly-singular-as x ! 0 integral:

ln x = �
Z 1

x

dt
t

: (9.9)
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We use this elementary integral to subtract the logarithmic singularity from (9.6):

E (x) + ln x = �
Z 1

x

1 � e� t

t
dt +

Z 1

1

e� t

t
dt : (9.10)

Now we take the limit x ! 0 and encounter only convergent integrals:

C = lim
x ! 0

[E (x) + ln x] ; (9.11)

= �
Z 1

0

1 � e� t

t
dt +

Z 1

1

e� t

t
dt ; (9.12)

= � 
 E : (9.13)

Above, we've used the result from problem 1.7 to recognize Euler's constant 
 E � 0:57721. To summarize, as
x ! 0

E (x) � � ln x � 
 E + x �
x2

4
+ ord

�
x3 �

: (9.14)

9.2 Local and global contributions

Consider

A(� ) def=
Z 1

0

ex dx
p

� + x
: (9.15)

The integrand is shown in Figure 9.1. How does the functionA(� ) behave as� ! 0? The leading
order behaviour is perfectly pleasant:

A(0) =
Z 1

0

ex dx
p

x
: (9.16)

This integral is well behaved and we can just evaluate it, forexample as

A(0) =
Z 1

0

1
p

x
+ x1=2 +

x3=2

2!
+

x5=2

3!
+ � � � dx ;

� 2 +
2
3

+
1
5

+
2
21

;

= 2 :91429: (9.17)

Alternatively, with the mathematica command NIntegrate , we �nd A(0) = 2 :9253.
To get the �rst dependence of A on � , we try taking the derivative:

dA
d�

= �
1
2

Z 1

0

ex dx
(� + x)3=2

: (9.18)

But now setting � = 0 we encounter a divergent integral. We've just learnt that the function A(� )
is not di�erentiable at � = 0. Why is this?

Referring to Figure 9.1, we can argue that the peak contribution to the integral in (9.15) is

peak width, ord(� ) � peak height, ord(� � 1=2) = ord
�

� 1=2
�

: (9.19)

Therefore the total integral is

A(� ) = an ord(1) global contribution

+ an ord
�
� 1=2�

contribution from the peak

+ higher-order terms | probably a series in
p

� . (9.20)

The ord
�
� 1=2

�
is not di�erentiable at � = 0 | this is why the integral on the right of (9.18) is

divergent. Ths argument suggests that

A(� ) = 2 :9253 + c
p

� + higher-order terms: (9.21)

How can we obtain the constantc above?
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Figure 9.1: The integrand in (9.15) with � = 0 :01. There is a peak with height� � 1=2 � 1 and width
� � 1 at x = 0. The peak area scales as� 1=2, while the outer region makes anO(1) contribution to
the integral.

Method 1: subtraction

We have

A(� ) � A(0) =
Z 1

0
ex

�
1

p
� + x

�
1

p
x

�
dx ; (9.22)

�
Z 1

0

1
p

� + x
�

1
p

x
dx ; (9.23)

=
p

�
Z 1

0

1
p

1 + t
�

1
p

t
dt ; (9.24)

= � 2
p

� : (9.25)

Exercise: Explain the transition from (9.22) to (9.23).

Although this worked very nicely, it is di�cult to get furthe r terms in the series with subtraction.

Method 2: range splitting and asymptotic matching

We split the range at x = � , where
� � � � 1 ; (9.26)

and write the integral as

A(� ) def=
Z �

0

ex dx
p

� + x
| {z }

A 1(�;� )

+
Z 1

�

ex dx
p

� + x
| {z }

A 2 (�;� )

: (9.27)

We can simplify A1(�; � ) and A2(�; � ) and add the results together to recoverA(� ). Of course, the
arti�cial parameter � must disappear from the �nal answer. This cancellation provides a good
check on the consistency of our argument and the correctnessof algebra.

To simplify A1 note

A1 =
Z �

0

1 + x + ord( x2) dx
p

� + x
: (9.28)

This is a splendid approximation becausex is small everywhere in the range of integration. The
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integrals are elementary, and we obtain

A1 = 2
p

� + � � 2
p

� +
1
3

� 3=2 +
2
3

�
p

� + � �
1
3

�
p

� + � + ord( � 5=2) ; (9.29)

= 2
p

� +
�

p
�

� 2
p

� +
1
3

� 3=2 +
2
3

� 3=2 + ord
�

� 5=2;
� 2

� 3=2
; � 1=2�

�
: (9.30)

To be consistent about which terms are discarded wegear by saying that � = ord( � 1=2). Then all
the terms in ord garbage heap in (9.30) are of order� 5=4.

To simplify A2 we use the approximation

A2 =
Z 1

�
ex

�
1

p
x

�
�

2x3=2
+ ord( � 2x � 5=2)

�
dx : (9.31)

This approximation is good becausex � � � � everywherein the range of integration. Now we can
evaluate some elementary integrals:

A2 =
Z 1

0

ex
p

x
dx �

Z �

0

ex
p

x
dx + �

Z 1

�
ex d

dx
x � 1=2 + ord

�
� 2

� 3=2

�
; (9.32)

= A(0) �
Z �

0
x � 1=2 + x1=2 dx + �

�
x � 1=2ex � 1

� � �
Z 1

�
x � 1=2ex dx + ord

�
� 2

� 3=2
; � 5=2

�
; (9.33)

= A(0) � 2
p

� �
2
3

� 3=2 + � e �
�

p
�

� �A (0) + ord
�

� 2

� 3=2
; � 5=2; �� 1=2

�
: (9.34)

The proof of the pudding is when we sum (9.30) and (9.34) and three terms containing the
arbitrary parameter � , namely

2
p

� ;
2
3

� 3=2 ; and
�

p
�

; (9.35)

all cancel. We are left with

A(� ) = A(0) � 2� 1=2 + [e � A(0)] � +
1
3

� 3=2 + ord( � 2) : (9.36)

The terms of order � 0 and � 1 come from the outer region, while the terms of order� 1=2 and � 3=2

came from the inner region (the peak).

Another example of matching

Let us complete problem 1.5 by �nding a few terms in the t ! 0 asymptotic expansion of

_x(t) =
Z 1

0

ve� vt

1 + v2 dv : (9.37)

If we simply set t = 0 then the integral diverges logarithmically. We suspect _x � ln t. Let's calculate
_x(t) at small t precisely by splitting the range at v = a, where

1 � a �
1
t

: (9.38)

For instance, we could takea = ord( t � 1=2). Then we have

_x =
Z a

0

v � v2t + � � �
1 + v2 dv +

Z 1

a
e� vt

�
1
v

�
1
v3 + � � �

�
dv (9.39)
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Now we have a variety of integrals that can be evaluated by elementary means, and by recognizing
the exponential integral:

_x � 1
2 ln(1 + a2) � at + t tan � 1 a + E(at) + � � � (9.40)

� ln a � at +
�t
2

� ln(at) � 
 E + at
| {z }

from E (at)

+ord
�

a2t2;
t
a

; a� 2
�

; (9.41)

= ln
1
t

� 
 E +
�t
2

+ ord( t2) : (9.42)

9.3 An electrostatic problem | H section 3.5

Here is a crash course in the electrostatics of conductors:

r � e = � ; and r � e = 0 : (9.43)

Above e(x ) is the electric �eld at point x and � (x ) is the density of charges (electrons per cubic
meter). Both equations can be satis�ed at once by introducing the electrostatic potential � :

e = � r � ; and therefore r 2� = � � : (9.44)

To obtain the electrostatic potential � we must solve Poisson's equation above.
This is accomplished using the Green's function

r 2g = � � (x ) ; ) g =
1

4�r
; (9.45)

where r def= jx j is the distance from the singularity (the point charge). Hence if there are no
boundaries

� (x ) =
1

4�

Z
� (x 0)

jx � x 0j
dx : (9.46)

So far, so good: in free space, given� (x ), we must evaluate the three dimensional integral above.
The charged rod at the end of this section is a non-trivial example.

If there are boundaries then we need to worry about about boundary conditions e.g., on the
surface of a charged conductor (think of a silver spoon) the potential is constant, else charges would

ow along the surface. In terms of the electric �eld e, the boundary condition on the surface of a
conducting body B is that

e � t B = 0 ; and e � n B = � (9.47)

where t B is any tangent to the surface ofB, n B is the unit normal, pointing out of B, and � is the
charge density (electrons per square meter) sitting on the surface of B.

Example: a sphere. The simplest example is sphere of radius a carrying a total charge q, with surface charge
density

� =
q

4�a 2
: (9.48)

Outside the sphere � = 0 and the potential is

� =
q

4�r
; so that e =

qr
4�r 2

; (9.49)

where r is a unit vector pointing in the radial direction (i.e., our n otation is x = r r ). The solution above is
the same as if all the charge is moved to the center of the sphere.
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For a non-spherical conducting bodyB things aren't so simple. We must solver 2� = 0 outside
the body with � = � B on the surfaceB of the body, where � B is an unknown constant. (We are
considering an isolated body sitting in free space so that� (x ) ! 0 asr ! 1 .)

We don't know the surface charge density� (x ), but only the total charge q, which is the surface
integral of � (x ):

q =
Z

B
� dS =

Z

B
e � n B dS : (9.50)

This is a linear problem, so the solution� (x ) will be proportional to the total charge q. We de�ne
the capacity CB of the body as

q = CB � B : (9.51)

The capacity is an important electrical property of B.
Example The electrostatic energy is de�ned via the volume integral

E def=
1
2

Z
jej2 dV ; (9.52)

where the integral is over the region outside of B. Show that

E =
1
2

CB � B : (9.53)

If you have a sign error, consider that the outward normal to b ody, n B , is the inward normal to free space.

Example: a charged rod. Find the potential due to a line distribution of charge with d ensity � (electrons per
meter) along � a < z < a .

In this example the charge density is

� = �
� (s)� (z)

2�s
; (9.54)

where s =
p

x2 + y2 is the cylindrical radius. The signature function � (z) is one if � a < z < + a, and zero
otherwise.

We now evaluate the integral in (9.46) using cylindrical coo rdinates, ( �; s; z ) i.e., dx = d �s dsdz. The s and �
integrals are trivial, and the potential is therefore

� (s; z) =
�

4�

Z a

� a

d�
p

(z � � )2 + s2
; (9.55)

=
�

4�

Z +( a � z ) =s

� ( a+ z ) =s

dt
p

1 + t2
; (9.56)

=
�

4�

h
ln( t +

p
1 + t2)

i +( a � z ) =s

� ( a+ z ) =s
; (9.57)

=
�

4�
ln

�
r + � z + a
r � � z � a

�
; (9.58)

where
r � �

p
s2 + ( a � z)2 : (9.59)

r � is the distance between x and the end of the rod at z = � a.

Using

z =
r 2

� � r 2
+

4a
; (9.60)

the expression in (9.58) can alternatively be written as

� =
�

4�
ln

�
r + + r � + 2 a
r + + r � � 2a

�
: (9.61)

If you dutifully perform this algebra you'll be rewarded by s ome remarkable cancellations. The expression in
(9.61) shows that the equipotential surfaces are confocal ellipsoids | the foci are at z = � a. The solution is
shown in Figure 9.2.
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Figure 9.2: Equipotential contours, � (x; z) in (9.61), surrounding a charged rod that lies along the
z-axis betweenz = � a and z = a. The surfaces are confocal ellipsoids.

A slender body

In section 5.3, H considers an axisymmetric bodyB de�ned in cylindrical coordinates by
p

x2 + y2
| {z }

def= s

= �B (z) : (9.62)

(I'm using di�erent notation from H : above s is the cylindrical radius.) The integral equation in
H is then

1 =
1

4�

Z 1

� 1

f (� ; � ) d�
p

(z � � )2 + � 2B (z)2
: (9.63)

I think it is easiest to attack this integral equation by �rst asymptotically estimating the integral

� (s; z) =
1

4�

Z 1

� 1

f (� ; � ) d�
p

(z � � )2 + s2
; as s ! 0. (9.64)

Notice that we can't simply set s = 0 in (9.64) because the \simpli�ed" integral,

1
4�

Z 1

� 1

f (� ; � ) d�
jz � � j

;

is divergent. Instead, using the example below, we can show that

� (s; z) =
f (z)
2�

ln

 
2
p

1 � z2

s

!

+
1

4�

Z 1

� 1

f (� ) � f (z)
j� � zj

d� + O(s) : (9.65)

Thus the integral equation (9.63) is approximated by

1 �
f (z; � )

2�
ln

 
2
p

1 � z2

�B (z)

!

+
1

4�

Z 1

� 1

f (� ; � ) � f (z; � )
j� � zj

d� : (9.66)
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As � ! 0 there is a dominant balance between the left hand side and the �rst term on the right,
leading to

f (z; � ) �
2�

ln
�

2
p

1� z2

�B (z)

� ; (9.67)

=
2�

L � ln
�

B (z)
2
p

1� z2

� ; (9.68)

where L def= ln 1
� � 1. Thus expanding the denominator in (9.68) we have

f (z; � ) �
2�
L

+
2�
L 2 ln

�
B (z)

2
p

1 � z2

�
+ ord

�
L � 3�

: (9.69)

This is the solution given by H . For many purposes we might as well stop at (9.67), which provides
the sum to in�nite order in L � n . However if we need a nice explicit result for the capacity,

C(� ) =
Z 1

� 1
f (z; � ) dz ; (9.70)

then the series in (9.69) is our best hope.

Example: obtain the approximation (9.66). This is a good example of si ngularity subtraction. We subtract the
nearly singular part from (9.64):

� (s; z) =
1

4�

Z 1

� 1

f (� ) � f (z)
p

(z � � )2 + s2
d� +

f (z)
4�

Z 1

� 1

d�
p

(z � � )2 + s2
: (9.71)

In the �rst integral on the right of (9.71) we can set s = 0 without creating a divergent integral: this move
produces the �nal term in (9.66), with the denominator jz � � j.

The �nal term in (9.71) is the potential of a uniform line dens ity of charges on the segment � 1 < z < 1 i.e.,
the potential of a charged rod back in (9.58) (but now with a = 1). We don't need (9.58) in its full glory |
we're taking s ! 0 with � 1 < z < 1. In this limit (9.61) simpli�es to

1
4�

Z 1

� 1

d�
p

(z � � )2 + s2
�

1
2�

ln
�

2
p

1 � z2

s

�
: (9.72)

Thus we have

� (s; z) =
1

4�

Z 1

� 1

f (� ) � f (z)
jz � � j

d� +
f (z)
2�

ln
�

2
p

1 � z2

s

�
: (9.73)

9.4 Problems

Problem 9.1. Find the leading-order behavior of

H (� ) =
Z �

0

cosx
x2 + � 2 dx ; as � ! 0. (9.74)

Problem 9.2. Consider the integral

I (x) �
Z 1

x

W (z)
z

dz ; (9.75)

where W (x) is a smooth function that decays at x = 1 and has a Taylor series expansion about
x = 0:

W (x) = W0 + xW 0
0 +

1
2

x2W 00
0 + � � � (9.76)
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Some examples are:W (z) = exp( � z), W (z) = sech(z), W (z) = (1 + z2)� 1 etc. (i) Show that the
integral in (4) has an expansion aboutx = 0 of the form

I (x) = W0 ln
�

1
x

�
+ C � W 0

0x �
1
4

W 00
0 x2 + O(x3) ; (9.77)

where the constant C is

C =
Z 1

0
[W (z) + W (1=z) � W0]

dx
z

: (9.78)

(ii) Evaluate C if W (z) = (1 + z2)� 1. (iii) Evaluate the integral exactly with W (z) = (1 + z2)� 1,
and show that the expansion of the exact solution agrees withthe formula above.

Problem 9.3. Find useful approximations to

F (x) def=
Z 1

0

du
p

x2 + u2 + u4
(9.79)

as (i) x ! 0; (ii) x ! 1 .

Problem 9.4. Find the �rst two terms in the � ! 0 asymptotic expansion of

F (� ) def=
Z 1

0

dy
(1 + y)1=2(� 2 + y)

: (9.80)

Problem 9.5. Consider

H (r ) def=
Z 1

0

x dx
(r 2 + x)3=2(1 + x)

: (9.81)

(i) First, with r ! 0, �nd the �rst two non-zero terms in the expansion of H . (ii) With r ! 1 ,
�nd the �rst two non-zero terms, counting constants and ln r as the same order.

Problem 9.6. Find two terms in the expansion the elliptic integral

K (m) def=
Z �= 2

0

d�
p

1 � m2 sin2 �
; (9.82)

as m " 1.

Problem 9.7. Find three terms (counting � n and � n ln � as di�erent orders) in the expansion of
the elliptic integral

J (m) def=
Z �= 2

0

p
1 � m cos2 � d� : (9.83)

as m " 1.

Problem 9.8. This is H exercise 3.8. Consider the integral equation

x =
Z 1

� 1

f (t; � ) dt
� 2 + ( t � x)2 ; (9.84)

posed in the interval � 1 � x � 1. Assuming that f (x; � ) is O(� ) in the end regions where 1� j t j =
ord(� ), obtain the �rst two terms in an asymptotic expansion of f (x; � ) as � ! 0.

Problem 9.9. Show that as � ! 0:
Z 1

0

ln x
� + x

dx = �
1
2

ln2
�

1
�

�
�

� 2

6
+ �

�
1 �

�
4

+
� 2

9
�

� 3

16
+ � � �

�
: (9.85)
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