SIO203C/MAE294C, Spring 2009, Final

8:00am to 11:00am, closed book

Problem 1

Consider the PDE:

$$\rho_t + \rho_x = e^{-x} \left(1 - \int_0^\infty \rho(x, t) dx \right), \quad \rho(x, 0) = 0, \quad \rho(0, t) = 0,$$

in the domain x > 0 and t > 0. (i) Before attempting to solve the PDE, find

$$m(t) \equiv \int_0^\infty \rho(x,t) \,\mathrm{d}x$$

and

$$\bar{x}(t) \equiv m^{-1} \int_0^\infty x \rho(x,t) \,\mathrm{d}x \,.$$

(ii) Solve the PDE, and sketch the solution as a function of x at t = 1.

Problem 2

Here are four PDE's

(1)
$$u_{1t} + u_1 u_{1x} = x$$
, (2) $u_{2t} + u_2 u_{2x} = \alpha u_2$,
(3) $u_{3t} + u_3 u_{3x} = -\alpha u_3^2$, (4) $u_{4t} + u_4 u_{4x} = 0$.

In PDE's (2) and (3), α is a positive constant. Figure 1 shows four characteristic diagrams; the initial condition is

$$u_n(x,0) = \frac{1}{1+x^2}$$

in every case. Match the diagram with the PDE. Lucky guesses don't count, so explain your reasoning in thirty words or less.

SIO203C, W.R. Young, May 30, 2011

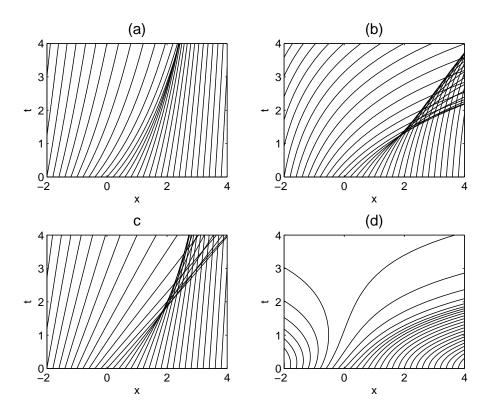


Figure 1: Match the characteristic diagram to the PDE's in **problem 2**.

SIO203C, W.R. Young, May 30, 2011

Problem 3

If a is a positive real number then

$$\frac{1}{x^2 + a^2} = \mathcal{F}^{-1}\left[\frac{\pi}{a}e^{-a|k|}\right] = \frac{\pi}{a}\int_{-\infty}^{\infty} e^{ikx - a|k|} \frac{\mathrm{d}k}{2\pi}.$$

(i) Use the information above to evaluate the related inverse Fourier transforms

$$f_1(x) \equiv \mathcal{F}^{-1} \left[ik \times \frac{\pi}{a} e^{-a|k|} \right],$$

$$f_2(x) \equiv \mathcal{F}^{-1} \left[|k| \times \frac{\pi}{a} e^{-a|k|} \right].$$

(*ii*) Consider Laplace's equation

$$u_{xx} + u_{yy} = 0,$$

in the half-plane $-\infty < x < \infty$ and $0 < y < \infty$, with the condition that $u \to 0$ as $|x| \to \infty$ and $y \to \infty$. There is a prescribed boundary value u(x,0) = f(x). Express u(x,y) in terms of the Fourier transform of the boundary function

$$\tilde{f}(k) \equiv \mathcal{F}[f; x \to k] = \int_{-\infty}^{\infty} e^{-ikx} f(x) dx.$$

(An unevaluated inverse Fourier transform for u(x, y) is fine — no convolutions required here.) *(iii)* Now suppose that the boundary condition is

$$f(x) = \frac{1}{x^2 + a^2}$$
, with the transform $\tilde{f}(k) = \frac{\pi}{a} e^{-a|k|}$.

Find u(x, y) by inverting the Fourier transform $\tilde{u}(k, y)$.

Problem 4

Consider the initial value problem

$$u_{tt} = u_{xx}, \quad u(x,0) = u_t(x,0) = 0, \quad u(0,t) = te^{-t}.$$

 $e^{-5} \approx 0.0067$

The domain is x > 0 and t > 0. (i) Sketch the function $u(0,t) = t \exp(-t)$ on the interval 0 < t < 5. Find the time t_* at which this function is a maximum, and indicate this on your sketch. (ii) Solve the PDE. Your solution should include an x-t diagram showing the separation between region in which u(x,t) = 0 and the region in which u(x,t) is nonzero. (iii) Sketch u as a function of x at t = 5. (iv) Find the position, x_* , at which u(x,5) achieves its maximum value and indicate this position on your sketch of u(x,5).

SIO203C, W.R. Young, May 30, 2011

 \mathcal{F} is the fourier transform and \mathcal{F}^{-1} the inverse Fourier transform.

Problem 5

The PDE

$$\psi_{tt} + \psi_{xxxx} = 0$$

has an energy conservation law of the form

$$\mathcal{E}_t + \mathcal{J}_x = 0$$

where the energy density is $\mathcal{E} = \frac{1}{2}\psi_t^2 + \cdots$ and the energy flux is $\mathcal{J} = \cdots$. Find complete expression for \mathcal{E} and \mathcal{J} (i.e., fill in the \cdots).