# SIO203C/MAE294C, Spring 2010, Final 

8:00am to 11:00am

## Problem 1

Solve the PDE $u_{t}+x u_{x}=0$ with the initial condition $u(x, 0)=\cos x$.

## Problem 2

Consider the PDE

$$
u_{t}=\left(\beta|x| u_{x}\right)_{x}, \quad u(x, 0)=\delta(x) .
$$

(i) What are the dimensions of $\beta$ and the dimensions of $u(x, t)$ ? (ii) Determine

$$
m(t) \equiv \int_{-\infty}^{\infty} u(x, t) \mathrm{d} x
$$

(iii) The PDE might have a similarity solution of the form

$$
\begin{equation*}
u(x, t)=t^{a} U\left(\frac{|x|}{\beta t^{b}}\right) . \tag{1}
\end{equation*}
$$

Find the exponents $a$ and $b$ that are consistent with the PDE and with the initial condition. (iv) Find this similarity solution.

## Problem 3

(i) Starting with

$$
\begin{equation*}
\mathrm{e}^{-\frac{1}{2} k^{2}}=\mathcal{F}\left[\frac{\mathrm{e}^{-\frac{1}{2} x^{2}}}{\sqrt{2 \pi}} ; x \rightarrow k\right]=\int_{-\infty}^{\infty} \frac{\mathrm{e}^{-\frac{1}{2} x^{2}}}{\sqrt{2 \pi}} \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} x \tag{2}
\end{equation*}
$$

evaluate the related Fourier transforms

$$
\begin{equation*}
\mathcal{F}\left[x \frac{\mathrm{e}^{-\frac{1}{2} x^{2}}}{\sqrt{2 \pi}}\right], \quad \text { and } \quad \mathcal{F}\left[\frac{\mathrm{e}^{-\frac{1}{2} x^{2}-x}}{\sqrt{2 \pi}}\right] \tag{3}
\end{equation*}
$$

$\mathcal{F}$ is the Fourier transform and $\mathcal{F}^{-1}$ the inverse Fourier transform.
(ii) Consider Laplace's equation

$$
u_{x x}+u_{y y}=0
$$

in the upper half-plane $0<y<\infty$, with the condition that $u(x, y) \rightarrow 0$ as $|x| \rightarrow \infty$ and $y \rightarrow \infty$. There is a prescribed boundary value $u(x, 0)=f(x)$. Express the normal derivative at the boundary, that is $u_{y}(x, 0)$, in terms of the Fourier transform of the boundary function

$$
\tilde{f}(k) \equiv \mathcal{F}[f ; x \rightarrow k]=\int_{-\infty}^{\infty} \mathrm{e}^{-\mathrm{i} k x} f(x) \mathrm{d} x .
$$

(An unevaluated inverse Fourier transform for $u_{y}(x, 0)$ is fine - no convolutions required here.) (iii) Now suppose that the boundary function is

$$
\begin{equation*}
u(x, 0)=\underbrace{\frac{\mathrm{e}^{-x^{2} / 2}}{\sqrt{2 \pi}}}_{=f(x)} . \tag{4}
\end{equation*}
$$

Find $u_{y}(0,0)$. Hint: the answer is not zero. If you get zero, check your answer to part (ii).

## Problem 4

Evaluate the two-dimensional line integral

$$
J=\int_{\mathcal{C}} \ln r \mathrm{~d} \ell
$$

$$
r=\sqrt{x^{2}+y^{2}}
$$

where the path of integration $\mathcal{C}$ is a circle with radius one centered on the point $(x, y)=(3,4)$ i.e., $\mathcal{C}$ is the curve $(x-3)^{2}+(x-4)^{2}=1$.

## Problem 5

Suppose that $u(x, t)$ is a conserved density satisfying the conservation equation

$$
\begin{equation*}
u_{t}+\left(\frac{1}{2} u^{2}\right)_{x}=0, \quad \text { with initial condition } \quad u(x, 0)=-x \mathrm{e}^{-x^{2}} . \tag{6}
\end{equation*}
$$

At what time and location does the shock first form? Find the location and strength of the developed shock.


Figure 1: Figure for problem 6.

## Problem 6

Figure 1 shows a function $f(x)$ defined on the interval $-\pi<x<\pi$. The function can be represented by a Fourier series

$$
\begin{equation*}
f(x)=a_{0}+\sum_{k=1}^{\infty} a_{k} \cos k x+b_{k} \sin k x \tag{7}
\end{equation*}
$$

Identify the non-zero coefficients in (7). Explain your reasoning in twenty or thirty words.

## Problem 7

(i) Find the general solution of the PDE

$$
\begin{equation*}
\cosh x u_{t t}-\left(\frac{u_{x}}{\cosh x}\right)_{x}=0 \tag{8}
\end{equation*}
$$

in terms of two arbitrary functions. (ii) Solve the PDE with the initial condition

$$
\begin{equation*}
u(x, 0)=\frac{1}{\cosh x}, \quad u_{t}(x, 0)=0 \tag{9}
\end{equation*}
$$

To check your answer, show that $u(0, t)=1 / \sqrt{1+t^{2}}$. (iii) Show that the PDE in (8) has an energy conservation law,

$$
\begin{equation*}
E_{t}+J_{x}=0, \tag{10}
\end{equation*}
$$

and find expressions for the energy density $E$ and flux $J$ in terms of $u_{t}, u_{x}$, $\cosh x$ etc.

