SIO203C/MAE294C, Spring 2019, Final
 $3: 00 \mathrm{pm}$ to $6: 00 \mathrm{pm}$

Problem 1

Solve $\zeta_{t t}=\zeta_{x x}+\mathrm{e}^{x}$ with initial conditions $\zeta(x, 0)=\zeta_{t}(x, 0)=0$.

Problem 2

(i) Find two real solutions of Laplace's equation in the (x, y)-plane by fiddling around with the complex function $1 / z$, where $z=x+\mathrm{i} y$. (ii) Find a solution, $U(x, y)$, of Laplace's equation that is non-singular in the upper half-plane $y>0$, with the boundary condition

$$
\begin{equation*}
U(x, 0)=\frac{1}{a^{2}+x^{2}} . \tag{1}
\end{equation*}
$$

Problem 3

Consider an age-stratified population, with histogram $h(a, t)$ satisfying

$$
\begin{equation*}
h_{t}+h_{a}=-(1+t) h . \tag{2}
\end{equation*}
$$

The initial condition on the half-line $a>0$ is $h(a, 0)=N \mathrm{e}^{-a}$ and the birth rate $h(0, t)$ is adjusted so that the population,

$$
\begin{equation*}
N \stackrel{\text { def }}{=} \int_{0}^{\infty} h(a, t) \mathrm{d} a, \tag{3}
\end{equation*}
$$

is constant in time. Solve the PDE and exhibit $h(a, t)$. Check your answer by showing that $h(a, a)=N \exp \left(-a-\frac{1}{2} a^{2}\right)$.

Problem 4

The evolution of $\eta(x, t)$ is governed almost everywhere by the conservation law

$$
\begin{equation*}
\eta_{t}+\left(\frac{1}{2} \eta^{2}\right)_{x}=0 . \tag{4}
\end{equation*}
$$

The shock-tracking condition is used to prevent multi-valuedness of η, and ensure integral conservation. The initial condition is

$$
\eta(x, 0)= \begin{cases}1, & 0<x<1 \tag{5}\\ 0, & \text { otherwise }\end{cases}
$$

Find $\eta(x, t)$ and sketch snapshots of η as a function of x at $t=1$ and at $t=3$.

Problem 5

Consider the wave equation

$$
\begin{equation*}
\cosh x U_{t t}-\left(\operatorname{sech} x U_{x}\right)_{x}=0 \tag{6}
\end{equation*}
$$

Note:
$\operatorname{sech} x=\frac{1}{\cosh x}$
(i) Show that (6) has an energy conservation law,

$$
\begin{equation*}
E_{t}+J_{x}=0, \tag{7}
\end{equation*}
$$

and find expressions for the energy density E and flux J in terms of U_{t}, U_{x}, $\cosh x$ etc. (ii) Find the general solution of (6) in terms of two arbitrary functions. (iii) Solve (6) with the initial condition

$$
\begin{equation*}
U(x, 0)=\operatorname{sech} x, \quad U_{t}(x, 0)=0 . \tag{8}
\end{equation*}
$$

To check your answer, show that $U(0, t)=1 / \sqrt{1+t^{2}}$.

Problem 6

Consider heat conduction in a 2D, uniformly heated sheet of metal. The temperature at the boundary of the sheet is fixed at $T=0$. Poisson's equation for the steady-state temperature distribution, $T(x, y)$, is

$$
0=\kappa\left(T_{x x}+T_{y y}\right)+h,
$$

where the constant $h>0$ is the uniform heating. Define the "average temperature" at a point \boldsymbol{x} as

$$
\bar{T}(\boldsymbol{x}, r) \stackrel{\text { def }}{=} \oint T(\boldsymbol{x}+\boldsymbol{r}) \frac{\mathrm{d} \theta}{2 \pi},
$$

where $\boldsymbol{r} \stackrel{\text { def }}{=} r(\cos \theta, \sin \theta)$. Show that provided the circle $\boldsymbol{x}+\boldsymbol{r}$ lies within the sheet

$$
\bar{T}(\boldsymbol{x}, r)=T(\boldsymbol{x})-\frac{h r^{2}}{4 \kappa}
$$

