SIO203CMAE294C, Spring 2009, Mid-term

8:05am to 9:45am, closed book

Turn the page!

Problem 1

Find the function $u(x, y)$ defined by the PDE

$$
u_{x}=0
$$

with the condition that $u(x, y)=x$ on the curve $y=\ln x$.

Problem 2

Find the solution $u(x, y, z)$ of

$$
u_{x}+u_{y}+u_{z}=0, \quad \text { and } \quad u_{x}-u_{y}+2 u_{z}=0
$$

in terms of an arbitrary function of one variable.

Problem 3

(i) Consider the PDE

$$
u_{x}+2 x u_{y}=1
$$

with $u(-\infty<x<\infty, 0)=x$. Solve the PDE, and sketch the domain of definition of the solution in the (x, y)-plane.

Problem 4

Consider the PDE

$$
u_{t}+u u_{x}=0, \quad u(x, 0)=\frac{1}{1+\mathrm{e}^{x}}
$$

(i) Using sketches of the characteristic diagram and the "sliding construction", indicate how the solution evolves towards a shock. (ii) Find the time t_{s} at which $u(x, t)$ first becomes multivalued.

Problem 5

Consider the PDE:

$$
\rho_{t}+\rho_{x}=\mathrm{e}^{-x}\left(1-\int_{0}^{\infty} \rho(x, t) \mathrm{d} x\right), \quad \rho(x, 0)=0, \quad \rho(0, t)=0,
$$

in the domain $x>0$ and $t>0$. (i) Before attempting to solve the PDE, find

$$
m(t) \equiv \int_{0}^{\infty} \rho(x, t) \mathrm{d} x
$$

(ii) Solve the PDE, and sketch the solution as a function of x at $t=1$.

Problem 6

Consider the PDE

$$
u_{t}=\nu\left(x^{1 / 2} u_{x}\right)_{x}
$$

which is posed in the domain $x \geq 0$ and $t \geq 0$, with the initial and boundary conditions

$$
u(x, 0)=0, \quad \text { and } \quad u(0, t)=1
$$

(i) What are the dimensions of ν ? (ii) In thirty words or less, give a dimensional argument indicating that there is a similarity solution of the form

$$
u=U(\xi), \quad \text { with } \quad \xi \equiv \frac{x}{(\nu t)^{?}} .
$$

Your argument should determine the exponent "?" in (\&). (iii) Substitute the similarity solution in ($\boldsymbol{\leftrightarrow}$) into ($\boldsymbol{\oplus}$), and solve the resulting ordinary differential equation for $U(\xi)$ in terms of the function

$$
F(z, \alpha, \beta) \equiv \int_{z}^{\infty} \mathrm{e}^{-\alpha q^{\beta}} \frac{\mathrm{d} q}{\sqrt{q}} .
$$

Make sure your solution satisfies the initial and boundary conditions. (iv) Consider the related problem

$$
v_{t}=\nu\left(x^{1 / 2} v_{x}\right)_{x}
$$

with the initial and boundary conditions

$$
v(x, 0)=0, \quad \text { and } \quad v(0, t)= \begin{cases}1, & \text { if } 0<t<1 \\ 0, & \text { if } 1<t\end{cases}
$$

Express $v(x, t)$ in terms of $u(x, t)$.

