SIO203CMAE294C, Spring 2019, Mid-term
 $3: 30 \mathrm{pm}$ to $\sim 4: 50 \mathrm{pm}$, open notes

Problem 1

(i) Find the general solution of the PDE $x u_{x}+y u_{y}=0$ in terms of an arbitrary function. (ii) Find the solution $u(x, y)$ that satisfies the data $u\left(x, x^{2}\right)=\mathrm{e}^{x}$.

Problem 2

Find the time at which the PDE $u_{t}+u u_{x}=0$, with the initial condition $u(x, 0)=-x /\left(1+x^{2}\right)$, first becomes multi-valued i.e., the shock-time, t_{s}. Assuming that $u(x, t)$ is a conserved density, find the location and the strength of the shock when $t>t_{s}$.

Problem 3

In class we solved Stokes's second problem: the diffusion equation $u_{t}=\kappa u_{x x}$, on the half-line $(x>0)$, with boundary and initial conditions

$$
\begin{equation*}
u(0, t)=1, \quad \text { and } \quad u(x, 0)=0 \tag{1}
\end{equation*}
$$

In terms of the similarity variable, $\eta=x / 2 \sqrt{\kappa t}$, here is the solution:

$$
\begin{equation*}
u(x, t)=\frac{2}{\sqrt{\pi}} \int_{\eta}^{\infty} \mathrm{e}^{-\alpha^{2}} \mathrm{~d} \alpha=\operatorname{erfc}(\eta) \tag{2}
\end{equation*}
$$

(i) Using the result above, solve the half-line $(x>0)$ problem $v_{t}=\kappa v_{x x}$, Hint: with boundary and initial conditions

$$
\begin{equation*}
v(0, t)=0, \quad \text { and } \quad v(x, 0)=1 \tag{3}
\end{equation*}
$$

(ii) Now solve the half-line $(x>0)$ problem

$$
\begin{equation*}
w_{t}=\kappa w_{x x}+1 \tag{4}
\end{equation*}
$$

with boundary and initial conditions

$$
\begin{equation*}
w(0, t)=0, \quad w(x, 0)=0 \tag{5}
\end{equation*}
$$

(iii) Show that

$$
\begin{equation*}
\kappa w_{x}(0, t)=\beta \sqrt{\kappa t} \tag{6}
\end{equation*}
$$

and find the value of the constant β.

Problem 4

In recitation, and in the notes, we obtained the Fourier series

$$
\begin{equation*}
\mathrm{e}^{-\alpha x}=\frac{\sinh \alpha \pi}{\pi} \sum_{m=-\infty}^{\infty} \frac{(-1)^{m} \mathrm{e}^{\mathrm{i} m x}}{\alpha+\mathrm{i} m}, \quad \text { for } \quad-\pi<x<\pi \tag{7}
\end{equation*}
$$

(i) Show that

$$
\begin{equation*}
\pi \operatorname{coth} \alpha \pi=\sum_{m=-\infty}^{\infty} \frac{\alpha}{\alpha^{2}+m^{2}} \tag{8}
\end{equation*}
$$

(ii) On the interval $-\pi<x<\pi$, the Fourier series representation of ($x^{2}-$ $\left.\pi^{2}\right) \mathrm{e}^{\alpha x}$ might be

$$
\begin{equation*}
\left(x^{2}-\pi^{2}\right) \mathrm{e}^{-\alpha x} \stackrel{?}{=} 2 \sum_{m=-\infty}^{\infty} \frac{(-1)^{m} \mathrm{e}^{\mathrm{i} m x}}{(\alpha+\mathrm{i} m)^{2}}\left[\frac{\sinh \pi \alpha}{\pi}-\frac{\cosh \pi \alpha}{\alpha+\mathrm{i} m}\right] \tag{9}
\end{equation*}
$$

Or perhaps it should be

$$
\begin{equation*}
\left(x^{2}-\pi^{2}\right) \mathrm{e}^{-\alpha x} \stackrel{?}{=} 2 \sum_{m=-\infty}^{\infty} \frac{(-1)^{m} \mathrm{e}^{\mathrm{i} m x}}{\alpha+\mathrm{i} m}\left[\frac{\sinh \pi \alpha}{\pi}-\frac{\cosh \pi \alpha}{\alpha+\mathrm{i} m}\right] ? \tag{10}
\end{equation*}
$$

Which expression, (9) or (10), might be correct? Lucky guesses don't count, so explain your reasoning in ten or twenty words. (Little or no algebra here.)

Problem 5

Consider an age-stratified population, with histogram $h(a, t)$ satisfying

$$
\begin{equation*}
h_{t}+h_{a}=-\mathrm{e}^{-t} h \tag{11}
\end{equation*}
$$

The initial condition is

$$
\begin{equation*}
h(a, 0)=N \mathrm{e}^{-a} \tag{12}
\end{equation*}
$$

and the birth rate $h(0, t)$ is adjusted so that the population is constant:

$$
\begin{equation*}
\forall t \geq 0: \quad N=\int_{0}^{\infty} h(a, t) \mathrm{d} a \tag{13}
\end{equation*}
$$

Solve the PDE and exhibit $h(a, t)$.

