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A two-dimensional vortex condensate at high
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We investigate solutions of the two-dimensional Navier–Stokes equation in a π × π
square box with stress-free boundary conditions. The flow is steadily forced by the
addition of a source sin nx sin ny to the vorticity equation; attention is restricted to even
n so that the forcing has zero integral. Numerical solutions with n = 2 and 6 show
that at high Reynolds numbers the solution is a domain-scale vortex condensate with a
strong projection on the gravest mode, sin x sin y. The sign of the vortex condensate is
selected by a symmetry-breaking instability. We show that the amplitude of the vortex
condensate has a finite limit as ν→ 0. Using a quasilinear approximation we make an
analytic prediction of the amplitude of the condensate and show that the amplitude is
determined by viscous selection of a particular solution from a family of solutions to
the forced two-dimensional Euler equation. This theory indicates that the condensate
amplitude will depend sensitively on the form of the dissipation, even in the undamped
limit. This prediction is verified by considering the addition of a drag term to the
Navier–Stokes equation and comparing the quasilinear theory with numerical solution.
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1. Introduction
A well-known characteristic of two-dimensional fluid mechanics is the spontaneous

emergence of vortices and jets that are significantly larger than the scale of the
forcing. In the geophysical and astrophysical context, where the vertical extension of
the system is much smaller than the horizontal, these large-scale eddies correspond to
global circulations containing a significant part of the total kinetic energy of the flow.
Predicting the magnitude of these coherent large-scale structures is a key issue.

Apart from these motivational natural examples, two-dimensional flows have
attracted attention because of the simpler form of the equations of motion and
the much lighter computational effort required to access the statistically steady
state at high Reynolds number. Despite these simplifications, the phenomenology of
two-dimensional turbulence is more complex than its three-dimensional counterpart.
According to the theories of Kraichnan and Batchelor, the conservation of both energy
and enstrophy leads to a forward cascade of enstrophy, from the scale of the forcing to
smaller scales, while energy is transferred from the scale of the forcing to larger scales.
If energy is steadily injected into a finite-size system, the inverse cascade results in
larger and larger eddies, which eventually expand to reach the size of the domain.
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Then kinetic energy accumulates in a coherent domain-scale vortex, which, according
to Kraichnan (1967), is analogous to Bose–Einstein condensation.

Numerical and experimental studies aimed at studying the statistically steady state of
forced and dissipative two-dimensional turbulence have used several different types of
forcing. Most popular in numerical studies is white-in-time random forcing acting on
a narrow band of wavenumbers (Lilly 1969; Maltrud & Vallis 1991; Smith & Yakhot
1994; Boffetta 2007; Chertkov et al. 2007). White-noise forcing has the property that
the rate at which energy is injected into the flow is a control parameter, i.e. watts per
kilogram delivered to the fluid by the forcing is constant no matter how energetic the
flow becomes. Thus at first the amplitude of the condensate increases as the square
root of time (Chertkov et al. 2007; Chertkov, Kolokolov & Lebedev 2010). At times of
order ν−1 (ν is the small viscosity) saturation is achieved when viscous damping of the
gravest mode is significant, which requires that large-scale velocities are of order ν−1/2.
To avoid this runaway and achieve a statistically steady state with subsonic velocities,
one must prevent accumulation of energy on scales comparable to the domain by
adding ‘large-scale dissipation’ to the problem. Unfortunately, important characteristics
of the statistically steady flow are strongly sensitive to how this large-scale damping is
implemented (Tsang 2010).

On the other hand, in some experimental studies the fluid is driven via the Lorentz
force, which is equivalent to prescribing a body force (Sommeria 1986; Paret &
Tabeling 1997; Paret, Jullien & Tabeling 1999). The forcing is either steady or varies
on a time scale of a few seconds. In this circumstance the rate of working of the force
(the product of force and fluid velocity) is not fixed a priori. If the large-scale flow
becomes more energetic, then advection by large eddies disrupts the phase relation
between the force and forcing-scale eddies and thus reduces the energy injection rate
(Tsang & Young 2009). This phase disruption is a crucial difference between steady
forcing and white-noise forcing. We show here that phase disruption saturates the
energy input so that large-scale dissipation is not required to achieve a statistically
steady flow. Moreover, the amplitude of the saturated condensate is independent of ν.

We use analytic and numerical techniques to study the large-scale condensate of a
two-dimensional flow inside a square domain (a box) driven by a steady body force.
We focus on the case in which the only damping is via Navier–Stokes viscosity.
The planform of the forcing is a single Helmholtz eigenmode of the box. Previous
studies of these ‘Kolmogorov flows’ have focused on weakly nonlinear regimes close
to the threshold of instability of the viscous laminar solution (Meshalkin & Sinai 1961;
Thess 1992; Gama, Vergassola & Frisch 1994), where amplitude equations can be
obtained for the large-scale flow (Sivashinsky 1985). By contrast, our study extends
to the strongly nonlinear regime corresponding to very low values of ν. In this latter
regime, the condensate dominates the flow, and expansion around the condensate opens
an analytic avenue. In particular, we compute the amplitude of the condensate, and
show that this amplitude is independent of viscosity in the inviscid limit. This high-
Reynolds-number scaling regime might give the incorrect impression that viscosity is
unimportant. However, the realized solution is determined via viscous selection of a
preferred solution from a family of solutions to the inviscid problem (the forced Euler
equation). In this sense, viscosity is vital.

In § 2 we introduce the system and provide numerical evidence for condensation:
at low viscosity the system settles in a time-independent state with a large-scale
condensate. In § 3 we introduce the quasilinear approximation, under which we
provide an analytical description of these steady solutions. We compute a continuous
family of solutions to the inviscid problem and consideration of infinitesimal ν

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

52
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.524


A two-dimensional vortex condensate at high Re 361

then provides a selection criterion that determines the amplitude of the condensate.
Section 4 is a boundary-layer analysis. Solving for the boundary layers that develop
on the sidewalls of the square domain extends the analytical results to small
but finite viscosity. Section 5 compares the analytic predictions of the condensate
amplitude with numerical solution. We discuss the selection mechanism in greater
details in § 6. Although the amplitude of the condensate is selected by viscosity,
the amplitude is independent of ν. Using symmetry considerations, we show that
this selection mechanism is relevant to a class of weakly damped triadic systems
in which an unstable degree of freedom is driven by a steady external force. We
consider an elementary mechanical system that illustrates the key features of the
selection mechanism without the involved algebra of the fluid problem. The selected
solution is independent of the damping coefficient but strongly dependent on the
form of the damping term. To illustrate this point, we consider in § 7 bottom drag
and hyperviscosity in the Navier–Stokes equation. Section 8 is the conclusion, and
technical details are contained in three appendices.

2. Forced Kolmogorov flows in a square domain
We consider the two-dimensional motion of a fluid in a square box. We non-

dimensionalize the length so that the domain is (x, y) ∈ [0,π]2. The streamfunction is
denoted as ψ(x, y, t), and vorticity is −1ψ , where 1 = ∂2

x + ∂2
y is the Laplacian. The

two-dimensional Navier–Stokes equation is then

1ψt + J(1ψ,ψ)= sin nx sin ny+ ν12ψ, (2.1)

where J(a, b)= axby−aybx is the Jacobian and ν is the inverse of the Reynolds number.
The first term on the right of (2.1) is the curl of a body force, which drives n × n
counter-rotating vortices with n an even integer. We restrict attention to even n so that
the forcing does not apply a net torque on the fluid, i.e. the integral of the forcing over
the domain is zero. In the following we focus on the cases n = 2 and n = 6, although
similar results apply to arbitrary even n. In fact, n = 2 is the simplest example,
and n = 6 was the electromagnetic forcing protocol used by Sommeria (1986) in an
experimental study.

We use no-penetration, stress-free boundary conditions, so that the streamfunction ψ
and the vorticity −1ψ vanish on the boundary. The streamfunction is thus efficiently
projected onto the basis sin px sin qy, where p and q are positive integers. We use a
standard pseudo-spectral method to solve (2.1).

At high values of viscosity, the laminar solution

ψL =−sin nx sin ny

4νn4
(2.2)

is stable; provided the viscosity is large enough, ψL is an attractor (see figure 1). For
lower values of ν, the laminar solution ψL is unstable, and then a global circulation
with a single vortex filling the domain is observed; see figure 2.

With even n, the sense of rotation of the global circulation is an accident of initial
conditions, i.e. there is a symmetry-breaking instability. Following Kraichnan (1967),
the spontaneous formation of a single large-scale vortex is known as ‘condensation’.
Condensation is usually regarded as the end-point of a turbulent inverse cascade of
energy. However, in figure 2 the flow is steady. Indeed, although there are small-scale
structures in the vorticity field, the global circulation is a steady and stable solution
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FIGURE 1. (Colour online) Streamfunction attained after the transient, in numerical solutions
with relatively large viscosity: (a) n = 2 and ν−1 = 10; (b) n = 6 and ν−1 = 50. At these
values of ν, the laminar solution in (2.2) is stable.
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FIGURE 2. (Colour online) Snapshots of the stationary solution reached at large times in a
direct numerical solution of (2.1): (a) n = 2 and ν−1 = 2000; (b) n = 6 and ν−1 = 1000. The
panels on the left show the streamfunction, which is dominated by a large-scale condensate;
those on the right show the vorticity. The latter exhibit structures of typical size n−1 that
coexist with the condensate.
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of (2.1) even for very low values of viscosity (a few times 10−5 for n = 2, and 10−3

for n= 6). We discuss the transition to time dependence further in § 5.
As ν decreases, the amplitude of the condensate increases and saturates to a ν-

independent asymptotic value. The goal of the present study is to understand in
mechanistic detail how energy is transferred from the n × n forcing in (2.1) to the
vortex condensate, and to determine the amplitude of the condensate as a function of
the parameter ν, with an emphasis on the limit ν→ 0.

3. Quasi-linear approximation
As anticipated by the Kraichnan–Batchelor theory, there is strong accumulation of

energy in the gravest mode,

χ(x, y)
def= sin x sin y, (3.1)

when ν is small. The streamfunction is then dominated by the grave mode χ , and
substantial analytic progress is made by assuming that ψ can be expanded around this
solution of the Euler equation. We thus write

ψ(x, y, t)= a(t)χ(x, y)+ φ(x, y, t), (3.2)

where a is the amplitude of the condensate and, by definition, φ has no projection on
the gravest mode χ . The condition of no projection is

〈φχ〉 = 0, (3.3)

where 〈 〉 denotes the average over the box. The field φ will be referred to as the
‘remainder’, or the ‘small-scale remainder’, although the latter denomination is strictly
justified only for large n.

Inserting the decomposition equation (3.2) into the Navier–Stokes equation (2.1),
using 1χ =−2χ and the no-projection condition (3.3) leads to

1φt + J(1φ + 2φ, aχ)+N = sin nx sin ny+ ν12φ, (3.4)
1
2 at = 〈J(1φ, φ)χ〉 − νa. (3.5)

In (3.4) the nonlinear term corresponding to self-interaction of the small-scale
remainder is

N
def= J(1φ, φ)− 4χ〈J(1φ, φ)χ〉. (3.6)

Notice that the remainder equation (3.4) has no projection on the grave mode χ .
The quasilinear (QL) approximation consists in discarding the nonlinear term

N in (3.4). The motivation for the QL approximation is that, if there is strong
condensation into the grave mode χ , then in (3.4) J(1φ, aχ)�N . We make the
QL approximation, N → 0, and assess its validity via comparison with numerical
solutions of the full system.

3.1. A family of solutions in the inviscid limit
Let us consider the QL problem with very weak viscosity, ν� 1. In the interior of the
domain we can seek a solution of the form

φ = φ0 + νφ1 + ν2φ2 + · · · . (3.7)

We write

q(x, y)
def= 1φ0 + 2φ0, (3.8)
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so that at leading order the QL version of (3.4) is

a(qx sin x cos y− qy cos x sin y)= sin nx sin ny. (3.9)

One can divide this equation by cos x cos y and make use of the change of variables
X = ln(sin x) and Y = ln(sin y) to get

qX − qY = sin nx sin ny

a cos x cos y
= 1

a
Un−1(eX)Un−1(eY), (3.10)

where Un−1 is the Chebyshev polynomial of the second kind of order n − 1. Upon
developing the product on the right-hand side of this equation for a given n, one
gets a sum of exponentials in X and Y , each of which can be easily integrated. For
instance, for n = 2 the right-hand side product is eX+Y4/a, which by integration yields
[2(X − Y)/a]eX+Y .

Thus, with n= 2, the solution of (3.9) is

q= 2
a
χ ln

(
sin x

sin y

)
. (3.11)

With n= 6, the solution of (3.9) is

q= 12
a

[
ln
(

sin x

sin y

)
(9χ + 256χ 3 + 256χ 5)

+ (sin2y− sin2x)(48χ + 256χ 3)+ 24χ(sin4x− sin4y)

]
. (3.12)

One can add a homogeneous solution, f (χ), with f an arbitrary function, to (3.11)
and (3.12). However, we determine that f (χ) = 0 using symmetry considerations
described in figure 9: under a rotation of angle π/2 around the centre of the square
domain (denoted as R in figure 9), the forcing term changes sign, but χ does
not. According to (3.4), we thus expect φ0 to change sign under this transformation.
Hence q must change sign under the transformation (x, y)→ (π − y, x), which implies
f (χ) = 0. This conclusion, that f (χ) = 0, is also reached using the Prandtl–Batchelor
theorem as a solvability condition at next order in ν.

The streamfunction and vorticity fields of the leading-order remainder φ0 can be
obtained from the expressions in (3.11) and (3.12) by inverting q = 1φ0 + 2φ0. The
solution can be accomplished either numerically or analytically using a Fourier series
(see appendix A). The vorticity −1φ0 of the remainder is presented in figure 3. A
comparison with figure 2 shows that the QL remainder vorticity, −a1φ0, captures the
main structures of the total vorticity field, −1ψ , of the full nonlinear problem.

The symmetry considerations outlined above also show that

〈χJ(1φ0, φ0)〉 = 0. (3.13)

Thus the steady version of the amplitude equation (3.5) is satisfied at leading order by
any value of amplitude a.

Note, too, that the rate of working of the force in (2.1) is

ε
def= −〈ψ sin nx sin ny〉, (3.14)

and symmetry also shows that 〈(aχ + φ0) sin nx sin ny〉 = 0. That is, the inviscid
solution in (3.11) and (3.12) is not extracting energy (nor enstrophy) from the applied
n× n force.
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FIGURE 3. (Colour online) The inviscid solution for the vorticity of the remainder in the QL
approximation. We plot −a1φ0 for (a) n = 2 and (b) n = 6. One observes the same small-
scale vorticity structures as in figure 2, without the large-scale vorticity of the condensate.

To summarize, we have obtained a continuous family of solutions to the forced,
inviscid QL problem. The streamfunction in (3.2) consists of a condensate of
amplitude a together with a remainder of amplitude 1/a. Any value of a is acceptable
at this stage, and, provided a is large enough for the QL approximation to be valid,
this solution is a good approximation to a solution of the full nonlinear forced inviscid
equation.

3.2. Selection by viscosity of a ν-independent solution
Viscosity is required to select one solution from the continuous family of solutions
parametrized by a. A straightforward approach is to consider the O(ν) terms from the
remainder equation (3.4), and solve to obtain φ1. The average Jacobians 〈χJ(1φ0, φ1)〉
and 〈χJ(1φ0, φ1)〉 are non-zero, and thus the amplitude equation (3.5) determines a at
order O(ν).

To avoid the direct assault outlined above, we consider the energy and enstrophy
budgets obtained by multiplying the stationary version of (2.1) respectively with ψ and
1ψ :

0= 〈ψ sin nx sin ny〉 + ν〈(1ψ)2〉, (3.15)

0= 〈1ψ sin nx sin ny〉 + ν〈12ψ1ψ〉. (3.16)

Integrating by parts the first term on the right of (3.16) gives −2n2〈ψ sin nx sin ny〉,
which can be expressed using (3.15) to give

2n2〈(1ψ)2〉 = 〈|∇1ψ |2〉. (3.17)

This crucial relation traces back to the harmonic forcing having production rates of
enstrophy and energy in a ratio 2n2. Therefore any acceptable solution of the problem
must have the same ratio 2n2 between its rates of dissipation of enstrophy and energy.
Inserting ψ = aχ + φ into (3.17) gives the amplitude of the global circulation as

a=±
√
〈|∇1φ|2〉 − 2n2〈(1φ)2〉

2(n2 − 1)
. (3.18)

The averages on the right of (3.18), and thus the value of a, are computed using φ0 in
appendix A for n= 2. For n= 6, these averages are computed numerically from (3.12).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

52
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.524


366 B. Gallet and W. R. Young

The analytic result for n= 2 is

|a| = 2−3/43−1/2

(
75− 4π2 − π

4

5

)1/4

' 0.687, (3.19)

and for n= 6 is

|a| ' 0.682. (3.20)

These results are compared with numerical results for the full nonlinear systems in § 5;
a in (3.19) is within 10 % of the full nonlinear value, and a in (3.20) is within 30 % of
the full nonlinear value. Although the error in the case with n = 6 is rather large, the
QL approximation gives accurate predictions for the velocity near the periphery of the
domain where the velocity associated with χ is large.

We emphasize that the amplitude of the condensate is selected by the viscous
term of the Navier–Stokes equation even though a has a finite limit, given by (3.19)
and (3.20), as ν→ 0. A detailed discussion of this selection mechanism is given in
§ 6. This section also presents a much simpler system exhibiting the same selection
mechanism: a spinning solid driven by a constant torque in the limit of weak damping.
The reader desiring more insight into the selection mechanism can move directly to
§ 6.

4. Viscous solution and boundary layers
In (3.19) and (3.20) the amplitude a is computed using the inviscid solution φ0.

However, the expressions (3.11) and (3.12) indicate that the leading-order vorticity is

−1φ0 ∝ y ln y as y→ 0. (4.1)

(There are analogous expressions for 1φ0 at the other three walls.) Although the
leading-order vorticity 1φ0 vanishes at the boundary, the derivatives are singular, and

12φ0 ∝ y−1 as y→ 0. (4.2)

In fact, evaluating (3.4) on the boundary shows that 12φ = 0 is the correct boundary
condition. The singularity in 12φ0 indicates that there are viscous boundary layers at
the walls.

This divergence in (4.2) originates because the velocity field associated with χ

has stagnation points in each of the four corners. At leading order, the inviscid QL
problem (3.9) is a balance between advection by χ and the forcing sin nx sin ny; a
fluid element passing close to a corner moves slowly and accumulates a lot of vorticity
from the forcing in this region.

To heal the boundary singularity in (4.2), it is necessary to include the viscous term
at leading order, e.g. with a boundary-layer analysis. The solution of this boundary-
layer problem is well behaved at the boundaries of the square domain and provides
the viscous corrections to the inviscid results in (3.19) and (3.20). This boundary-layer
analysis amounts to solving an advection–diffusion problem with sources and sinks in
the high-Péclet-number limit.

4.1. Inner solution
We focus on n = 2, which is simpler from a mathematical point of view but easy to
generalize to arbitrary even n. For small viscosity, the viscous term can be neglected in
the bulk of the domain (the outer region) to arrive at the outer solution for q in (3.11).
This approximation fails close to the boundaries, where there are boundary layers. One
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FIGURE 4. (Colour online) In the vicinity of a corner, a streamline of constant χ ∼√ν
connects a wall inner region of width O(

√
ν) to a corner patch of spatial extension O(ν1/4).

must distinguish between the wall regions, where there is fast variation with respect
to the coordinate perpendicular to the wall, and the corner regions, where there is fast
variation with respect to both coordinates. Indeed, close to a wall, say the southern
wall at y = 0, the viscous term must be taken into account in a boundary layer of
thickness y = O(

√
ν), with x = O(1). The corresponding streamlines have χ = O(

√
ν).

As we follow such a streamline into the neighbourhood of the corner (0, 0), x and y
become of the same order of magnitude, so that x∼ y∼√χ ∼ ν1/4 (see e.g. Childress
1979). Thus the wall boundary layer is thinner than the corner ‘patch’. The wall
boundary layer and the corner patch are sketched in figure 4. These considerations
motivate the following asymptotic analysis.

The remainder φ varies rapidly inside the boundary layers, hence 1φ � φ

and 1q ' 12φ. The QL equation for the inner problem thus reduces to an
advection–diffusion equation for the inner solution q(i):

aJ(q(i), χ)= sin 2x sin 2y+ ν1q(i). (4.3)

A standard technique to solve this boundary-layer problem close to a wall is the
von Mises transformation, which turns the advection–diffusion problem into a heat
equation. Furthermore, close to a corner, conformal mapping can be used to map
the corner region into a half-plane. The flow becomes uniform and parallel after the
conformal transformation, so that the advection–diffusion problem is again turned into
a heat equation. In the following, we make use of a convenient change of coordinates,
which reduces to the von Mises variables close to a wall, and to the conformal
mapping variables close to a corner. This conveniently unifies the analysis of the
corner patches and the wall layers, resulting in a heat equation, with a source term
arising from the sin 2x sin 2y forcing.

Thus let us consider a> 0 and introduce the function

τ
def= cos y− cos x. (4.4)
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We change coordinates from (x, y) to (τ, χ): τ describes variations of q(i) along
the peripheral streamlines, while χ tracks variations of q(i) across the streamlines.
Rosenbluth et al. (1987) used a similar coordinate transform to solve the problem of
advection–diffusion of a tracer by a cellular flow at high Péclet number. The present
analysis differs from that of Rosenbluth et al. by the presence of a source term in
(4.3). Denoting by J the Jacobian of the change of variables, the three terms in (4.3)
are

J(q(i), χ)=J qτ , (4.5)

sin(2x) sin(2y)= 4χ(1−
√
χ 2 + τ 2) (4.6)

and

1q(i) =−τqτ − 2χqχ − 2χτqτχ + (2
√
χ 2 + τ 2 − τ 2)qττ

+ (2
√
χ 2 + τ 2 − τ 2 − 2χ 2)qχχ . (4.7)

A drawback of this change of variables is that there are two points in the square
domain that correspond to a single value of (τ, χ). These two points are symmetric
with respect to the diagonal y = π − x of the square. We thus focus on the southwest
half of the square, y< π− x, where the value of the Jacobian is

J =
√
(χ 2 + τ 2)[τ 2 + 4(1−

√
χ 2 + τ 2)]. (4.8)

The solution in the northeast half of the square is obtained via symmetry.
All the expressions above simplify very considerably in the peripheral region, where

χ � 1.

4.2. The wall boundary layer
Close to a wall and away from the corners, the inner solution varies rapidly across
the streamlines, and slowly along the streamlines. We thus introduce an inner variable
χ =√νχ̃ , with χ̃ = O(1) and τ = O(1), and scale the inner solution as q(i) =√νq̃. It
proves efficient to solve (4.3) for the viscous term 1q(i) instead of q(i). To lowest order
in ν this field is

1q(i) = q(i)χχ(sin2x+ sin2y), (4.9)

with sin2y� sin2x close to the eastern and western walls, while sin2x� sin2y close to

the northern and southern walls. We thus introduce s
def= q(i)χχ and look for the solution

for s. The scaling s = s̃/
√
ν follows from the scalings for q(i) and χ , i.e. s̃ = q̃χ̃ χ̃ .

Keeping the leading order only in expressions (4.5)–(4.7) leads to

q̃τ = 4χ̃
1− |τ |

2|τ | − τ 2
+ q̃χ̃ χ̃ . (4.10)

We get rid of the source term in this heat equation by differentiating twice with respect
to χ̃ . This leads to the homogeneous heat equation

as̃τ = s̃χ̃ χ̃ . (4.11)

Solving for the field 1q(i) (instead of q(i)) amounts to solving a homogeneous heat
equation close to the walls, instead of an inhomogeneous one. The main balance in
(4.11) is thus between advection and diffusion, the forcing being negligible.
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4.3. The corner patches

Close to the corners, where τ � 1, the denominator of the source term in (4.10)
becomes small and the wall approximation breaks down. In these regions the inner
solution evolves rapidly with respect to both τ and χ . We focus on the corner at
(x, y)= (0, 0) (the southwest corner), and introduce the corner region scalings through
the inner variables χ = √νχ̃ and τ = √ντ̃ . Keeping the leading order in expressions
(4.5)–(4.7) leads to

aq̃τ̃ = 2χ̃√
τ̃ 2 + χ̃ 2

. (4.12)

The main balance in the corners is between advection and forcing, while the viscous
term is negligible. Similar equations can be constructed at the other three corners.
Note particularly that, because n is even, the sign of the source on the right-hand side
of (4.12) is reversed at the southeast and northwest corners.

Because the integral from τ = −∞ to τ = +∞ of the source on the right of (4.12)
is divergent, it is once again easier to deal with the field s̃= q̃χ̃ χ̃ . Differentiating (4.12)
twice with respect to χ̃ yields

as̃τ̃ =− 6τ̃ 2χ̃

(τ̃ 2 + χ̃ 2)
5/2 . (4.13)

We can now integrate (4.13) around the corner, that is, from τ̃ = −∞ to τ̃ = +∞ at
constant χ̃ , to get a finite corner-turning jump:

a(s̃|(τ̃=+∞,χ̃) − s̃|(τ̃=−∞,χ̃))=−
∫ ∞
−∞

6τ̃ 2χ̃

(τ̃ 2 + χ̃ 2)
5/2 dτ̃ =− 4

χ̃
. (4.14)

Thus each corner injects a non-integrable singularity, ±4/χ̃ , into the field s. These
singular injections alternate in sign, and are smoothed by diffusive evolution along the
wall boundary layers, and the boundary condition φ = q= s= 0 at χ̃ = 0.

4.4. A periodically forced heat equation

Now we construct the full peripheral solution for s(τ, χ) by ‘unwrapping’ the
boundary layer and considering the time-like variable τ in (4.11) to run from −∞ to
∞. The corner singularities are injected whenever the flow turns a corner with singular
structure −4/χ at τ = 0, ±4, ±8, . . . , and with +4/χ at τ = ±2, ±6, ±10, . . . .

This periodic-in-τ version of the problem enforces the correct boundary conditions
on s. The restriction of the solution to the interval τ ∈ [0, 2] is the boundary-layer
solution close to the southern wall. Thus the peripheral distribution is determined by
solving the periodically forced diffusion equation:

asτ =− 4
χ

∞∑
p=−∞

(−1)p δ(τ − 2p)+ νsχχ . (4.15)

Considering only the p= 0 term in the series in (4.15), we have the forced diffusion
equation

afτ =− 4
χ
δ(τ)+ νfχχ , (4.16)
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with a similarity solution

f (τ, χ)=− 4√
aντ

D

(
χ

2

√
a

ντ

)
H(τ ). (4.17)

Above, H(τ ) is the step function, and

D(x)= e−x2
∫ x

0
et2 dt (4.18)

is Dawson’s integral. The solution (4.17) shows how the χ−1 initial singularity in
(4.16) is healed by diffusion. The solution to (4.15) can now be expressed as an
infinite sum of these Dawson similarity solutions. In particular, near the wall at y = 0,
this solution is

s(τ, χ)= 4
∞∑

p=0

(−1)p+1

√
aν(τ + 2p)

D

(
χ

2
√
(ν/a)(τ + 2p)

)
. (4.19)

4.5. Matching

From this expression for s, the diffusive term 1q(i) ' s(τ, χ) sin2x is obtained for the
inner solution close to y = 0. In the QL approximation, 1q is odd under a rotation of
π/2 around the centre of the square (see figure 9), and this rotation can be used to get
the boundary layers near the other walls. One obtains the following final expression
for 1q(i), which includes the four boundary layers:

1q(i) = sin2x s(1− cos x cos y, sin x sin y)− sin2y s(1+ cos x cos y, sin x sin y)

= sin2y
∞∑

p=0

4 (−1)p√
aν(cos x cos y+ 2p+ 1)

D

(
sin x sin y

2
√
(ν/a)(cos x cos y+ 2p+ 1)

)

− sin2x
∞∑

p=0

4 (−1)p√
aν(− cos x cos y+ 2p+ 1)

D

(
sin x sin y

2
√
(ν/a)(− cos x cos y+ 2p+ 1)

)
.

(4.20)

Although the series expression for s converges slowly, its asymptotic behaviour
for small and large χ can be computed using Mellin’s transform, as described in
appendix B: it behaves as χ for χ �√ν, and as χ−1 for χ �√ν. The corresponding
1q(i) is thus compatible with the boundary conditions at χ = 0, where it must vanish,
and it matches the divergence of the outer solution for 1q at large χ/

√
ν.

In order to achieve the matching of 1q, we add to (4.20) all the terms in the
Laplacian of the outer solution (3.11) that do not diverge at the boundaries. This final
expression for 1q can then be inverted numerically in Fourier space to get q, the
vorticity and the streamfunction of the stationary solution. Note that the procedure is
exactly the same for arbitrary even n: the y−1 divergence of the outer solution for
1q always originates from a term of the form sin x sin y ln(sin x/ sin y) in q. Up to
a prefactor, the same boundary-layer solution for s can be obtained, and the same
matching procedure can be used to get the total 1q.

We compare in figure 5 the viscous term 12ψ obtained from the boundary-layer
analysis to numerical solutions of the QL and full nonlinear (NL) systems: the inner
solution reproduces very accurately the boundary layers of the QL solution. These
boundary layers resemble those of the NL system. There is one main difference: a
rotation by angle π/2 around the centre of the square together with a sign change
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FIGURE 5. (Colour online) The viscous term 12ψ from the numerical solution of the
full nonlinear (NL) system (a,b) is compared to 12ψ from a numerical solution of the
quasilinear (QL) system of equations (c,d) and to that from the solution of the boundary-layer
analysis (e,f ). Left-hand panels (a,c,e) n= 2 and ν−1 = 2000; right-hand panels (b,d,f ) n= 6
and ν−1 = 4000. The inner solution reproduces very accurately the boundary layers of the QL
solution. These boundary layers resemble those of the NL solution. However, there is a slight
advection of these latter by the small-scale velocity, which cannot be described by the QL
approximation.

of φ is a symmetry of the QL system, but not of the NL system. Therefore, the
boundary layers close to walls in x and y are not identical up to a change in sign of
the NL solution. The NL system includes advection of these boundary layers by the
small-scale flow: for n = 2 and positive a, this small-scale flow pulls the boundary
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layers in x away from the walls and pushes the boundary layers in y against the walls,
as can be seen in figure 5(a).

5. Amplitude of the condensate
The amplitude a of the condensate in the boundary-layer approximation is given by

(3.18) and we can now evaluate the right-hand side using a φ that is improved by the
viscous boundary-layer correction calculated in § 4. Note that, if one multiplies (3.18)
by a, then, according to (4.20), the right-hand side is a function of a/ν only. For any
value of a/ν we can thus compute a and then divide the two to get the corresponding
ν. The value of a is then a good approximation to the QL value provided that ν is
small enough.

In order to get a complete picture of the change in a as ν is decreased, we
also carried out the linear stability analysis of the laminar solution and the weakly
nonlinear analysis close to the onset of bifurcation where the condensate appears.
These were performed on the QL system of equations and are described in appendix C.
Although the amplitude of the condensate is small in the range of validity of the
weakly nonlinear regime, results from this analysis of the QL equations agree very
well with the NL solution and with the results in Thess (1992).

The amplitude a of the condensate is plotted as a function of ν−1 in figure 6,
together with the different approximate solutions presented so far. The behaviour is
qualitatively the same for n = 2 and n = 6: at high values of ν, the laminar solution
in (2.2) is stable and there is no large-scale flow. The condensate appears through a
supercritical bifurcation above a critical value of ν−1. Close to onset, the bifurcation
curve is very well captured by the weakly nonlinear analysis of the QL system in
appendix C. The QL and NL values of a are monotonically increasing functions of
ν−1, which eventually saturate at very small viscosity. The asymptotic value of a for
the QL system is given by (3.19) and (3.20), and the approach to this value as ν
decreases closely follows the curve predicted by the boundary-layer analysis. This
curve is fairly close to the NL curve for n = 2, and the QL approximation allows us
to compute the amplitude of the large-scale flow within an error of only 7 % whatever
the value of viscosity. Unfortunately, the error in the QL a increases to 30 % for n= 6.
Note that for n = 6 the stationary condensate solution of the Navier–Stokes equation
is unstable when ν−1 is greater than a critical value. Since the solution becomes
time-dependent above this value, we followed the unstable fixed point to demonstrate
saturation of the amplitude of the condensate.

5.1. Transition to time-dependent regime
For n = 2, the condensate solution is a stable fixed point at all the values of ν we
examined: with n = 2 all the nonlinear numerical solutions presented in figure 6 are
stable and steady. The situation is different for n = 6: the fixed point loses stability
through a Hopf bifurcation above a critical value of ν−1, which is between 1000 and
2000. Time series of the amplitude a of the condensate are displayed in figure 7 for
small values of viscosity. When ν−1 = 1000 the amplitude relaxes from the initial
condition to the fixed point corresponding to the condensate. This fixed point is stable
and the solution becomes time-independent at large time. However, for ν−1 = 2000
the fixed point is slightly unstable. The amplitude a oscillates periodically, as can be
seen in the inset of figure 7. The oscillation is very weak, a having a mean value
around 0.465 and a standard deviation smaller than 10−5. The system thus remains
close to the fixed point. As we move to smaller values of ν, this periodic behaviour
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FIGURE 6. (Colour online) Amplitude of the condensate as a function of inverse viscosity
(•, simulations of the NL system; �, simulations of the QL system): (a) n = 2; (b) n = 6.
The solid line close to onset is the result of the weakly nonlinear analysis. The solid line
at low viscosity corresponds to the boundary-layer approximation from § 4. The dashed line
on the far right corresponds to the ν→ 0, QL predictions in (3.19) and (3.20). In panel (b)
the crossed symbols correspond to unstable fixed points that we followed to demonstrate
saturation of the amplitude.

becomes quasi-periodic, until the system switches to the bursting behaviour illustrated
in figure 7(c) for ν−1 = 4000: the amplitude relaxes until it gets very close to the fixed
point. However, this fixed point is slightly unstable and a ‘turbulent’ burst occurs. The
burst is characterized by a very rapid increase in the amplitude a and a disorganized
vorticity field. Close to the maximum value of a, the system settles back onto the
family of inviscid solutions to the problem: vorticity becomes organized again, with a
structure similar to figure 2, but with an amplitude of the condensate much larger than
what viscosity would select. Subsequently a(t) relaxes back towards the fixed point
until another burst occurs. Similar bursting behaviour was reported in several nonlinear

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

52
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.524


374 B. Gallet and W. R. Young

0.44

0.46

0.48

4000
t

0 8000

0.5

0.6

0.7

0.8

0.46552

0.46553

2000
t

t

0 4000

0.44

0.45

0.46

5950
t

5900 6000

a

0.43

0.47

0.4

0.9

a

0 1 2

(a)

(c)

(b)

(× 104)3 4

FIGURE 7. (Colour online) Amplitude of the condensate as a function of time. (a) At
ν−1 = 1000 the system relaxes to a steady solution. (b) With ν−1 = 2000 there is weak time
dependence; the inset is an expanded view showing the small oscillations in a(t). (c) With
ν−1 = 4000 there is bursting; the system goes very close to the unstable fixed point between
bursts.

dynamical systems with triadic interactions, for instance in the framework of thermal
convection (Hughes & Proctor 1990; Kumar, Pal & Fauve 2006).

One way of obtaining information on a dynamical system consists in computing
its unstable periodic orbits. Statistical properties of the system can then be obtained
through weighted averages on these periodic orbits (Cvitanović 1988). This strategy
has been applied recently to two-dimensional body-forced turbulence, considered as a
dynamical system with very many degrees of freedom (Chandler & Kerswell 2012).
While this approach is still limited by computational power, it could be efficient to
describe the chaotic dynamical regime illustrated in figure 7, which shares common
features with low-dimensional chaos.

In an unsteady situation, such as the one shown in figure 7(c), the theory from §§ 3
and 4 describes the amplitude of the unstable fixed point. To determine this amplitude
numerically, we discovered that computations started with energy only in the gravest
Fourier mode quickly converged to the unstable fixed point.
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FIGURE 8. (Colour online) Boundary velocities as a function of inverse viscosity (•, Vx; �,
Vy), for the same numerical simulations as in figure 6: (a) n= 2; (b) n= 6. Filled symbols are
results from simulations of the NL system of equations, whereas empty symbols are results
from simulations of the QL system. The solid lines correspond to the theoretical predictions
from the boundary-layer approximation. The dashed lines on the far right correspond to the
QL predictions in the ν→ 0 limit. See figure 6 for the stability of the corresponding fixed
points.

5.2. Velocity of the large-scale circulation
The 30 % error in the QL estimate of a for n = 6 comes from the fact that a is a
global quantity that is sensitive to the central region of the square domain, where the
velocity associated with χ vanishes. The quasilinear approximation is justified only
where the large-scale flow dominates, and we expect it to give reliable predictions
for the large-scale velocity field only where this velocity is large. To illustrate this
matter, we now focus on the velocity of the large-scale circulation, which we evaluate
as Vx = ψy|(x=π/2,y=0) and Vy = −ψx|(x=0,y=π/2). These quantities are the tangential
velocities measured, respectively, at the middle of the y= 0 and of the x= 0 walls. We
show them in figure 8 as functions of inverse viscosity. As expected, the agreement
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is good in these peripheral regions, the error being around a few per cent for n = 2
and around 10 % for n = 6. The boundary-layer analysis provides reliable predictions
of the velocities Vx and Vy at small viscosity. As ν goes to zero, these velocities
saturate to asymptotic values, which can be computed in the QL approximation using
the inviscid solution for φ. This is done numerically for n = 6 and analytically in
appendix A for n= 2.

6. Triadic selection mechanism
The previous results show that the velocity of this forced two-dimensional

condensate has a finite limit as ν→ 0. One might say that the velocity follows a high-
Reynolds-number or ‘turbulent’ scaling law, in contrast with the velocity field being
proportional to ν−1 in the viscous laminar regime of (2.2). However, the condensate
remains organized and steady at small viscosity, hence our description of it as a
laminar condensate. Let us investigate further how this ν-independent scaling arises in
the equations.

In the framework of the quasilinear approximation, we described the low-viscosity
solution as the selection by the viscous term of one solution from a continuous
family of solutions to the Euler equation. Similar selection mechanisms occur in
soliton equations with weak forcing and dissipation (Fauve & Thual 1990; Hakim,
Jakobsen & Pomeau 1990): dissipation selects the size of a soliton inside a continuous
family of soliton solutions to the non-dissipative equation. However, there is one major
difference between these studies and the present problem: the size of the selected
soliton then depends explicitly on the relative amplitudes of the forcing and dissipative
coefficients, whereas here the selected velocity field becomes independent of viscosity
as ν→ 0.

6.1. A generic selection mechanism for forced triadic systems
We now wish to generalize the selection criterion (3.17) to forcing functions that are
not necessarily harmonic. Let us consider the two following transformations: S is
the reflection with respect to y = π/2, and R is the rotation of angle π/2 around
the centre of the square domain. We decompose the QL streamfunction into three
components:

(i) aχ is the large-scale condensate, which does not change sign under R or S ;
(ii) φ(−1) is the part of the remainder that changes sign under R and S ; and

(iii) φ(1) is the part of the remainder that changes sign under R but is invariant under
S .

Figure 9 illustrates the symmetries of these three components and of the forcing
function. For two components g and h of the streamfunction, one can prove the
following relations for the symmetries of a nonlinear term:

R(J(g, h))= J(R(g),R(h)), (6.1)
S (J(g, h))=−J(S (g),S (h)). (6.2)

Using these symmetries, the QL system of equations becomes

(1φ(−1))t =−J(1φ(1) + 2φ(1), aχ)+ sin nx sin ny+ ν12φ(−1), (6.3)

(1φ(1))t =−J(1φ(−1) + 2φ(−1), aχ)+ ν12φ(1) (6.4)

at = 2〈(J(1φ(−1), φ(1))+ J(1φ(1), φ(−1)))χ〉 − 2νa. (6.5)
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(a) (b) (c)

FIGURE 9. Sketch of the symmetries of the different components of the streamfunction: S is
reflection with respect to y= π/2; R is rotation by angle π/2 around the centre of the square
domain. (a) The forcing term, together with component φ(−1) of the remainder, changes sign
under these two transformations. (b) The inviscid solution for the remainder or component
φ(1) changes sign under R but not under S . (c) The large-scale condensate aχ does not
change sign under R nor S .

Let us consider the limit of small viscosity ν� 1 and expand φ(1) and φ(−1) following
(3.7). To order O(1), a solution is given by

φ
(−1)
0 = 0, a 6= 0 and J(1φ(1)0 + 2φ(1)0 , aχ)= sin nx sin ny. (6.6)

This corresponds to the continuous family of inviscid solutions, with φ(1)0 ∼ 1/a. The
component φ(−1) comes into play at order O(ν). Equation (6.4) to order O(ν) yields

J(1φ(−1)
1 + 2φ(−1)

1 , aχ)=12φ
(1)
0 . (6.7)

The interplay between the components φ(−1) and φ(1) then forces the condensate, as
follows from (6.5) to order O(ν):

〈[J(1φ(−1)
1 , φ

(1)
0 )+ J(1φ(1)0 , φ

(−1)
1 )]χ〉 = a. (6.8)

Both sides of the equation are independent of ν, and a ν-independent amplitude is
selected by viscosity. In contrast with (3.17), the alternate selection criterion (6.8) does
not require a harmonic forcing, but it does require a small enough viscosity. These two
criteria are equivalent for harmonic forcing and small enough viscosity.

Equations (6.3)–(6.5) highlight the fact that this selection mechanism occurs in
a triadic system of equations. It is indeed a generic selection mechanism for a
triad whose unstable degree of freedom is forced. The simplest example of such
a system may be a solid, for which rotation about the axis with intermediate
moment of inertia is unstable. We thus consider a solid that has angular velocities
of rotation [Ω1,Ω2,Ω3] around its principal axes of rotation, with moments of inertia,
respectively, I1 < I2 < I3. We assume that a constant torque drives the spin around the
axis of intermediate moment of inertia I2. An appropriate scaling of time, and of the
three components of the rotation vector, allows us to set this torque to unity and the
nonlinear coefficients to ±1, so that the motion of the solid follows

Ω̇1 =−Ω2Ω3 − ανΩ1, (6.9)
Ω̇2 = 1+Ω1Ω3 − νΩ2, (6.10)
Ω̇3 =−Ω1Ω2 − βνΩ3. (6.11)

We assumed a fluid friction term in each equation, proportional to some coefficient
ν. When ν is large, the solution to this system is Ω1 = Ω3 = 0 and Ω2 = 1/ν: the
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FIGURE 10. (Colour online) Steady-state solution of the system of equations (6.9)–(6.11)
as a function of ν−1, for α = 1 and β = 2. The thick black lines on the right-hand side
correspond to the solution (6.12), which is selected inside the continuous family of non-
dissipative solutions.

solid spins around the axis of the applied torque. This is the equivalent of the viscous
laminar solution to the fluid problem, where the viscous term balances the forcing.
When ν decreases, this solution becomes unstable, so that Ω1 and Ω3 spontaneously
become non-zero.

Let us now consider the non-dissipative problem, which is obtained by setting ν to
zero. A solution is then [Ω1,Ω2,Ω3] = [Ω1, 0,−1/Ω1], where at this stage any value
of Ω1 is acceptable. This is the equivalent of the continuous family of solutions to the
inviscid fluid problem, with a condensate amplitude a and a remainder proportional to
1/a. A small value of ν can then be taken into account perturbatively: Ω2 is eliminated
from the stationary versions of (6.9) and (6.11), and Ω3 is replaced by its expression
in terms of Ω1 computed for ν = 0, to give

Ω1 =±
(
β

α

)1/4

. (6.12)

The small dissipative term selects one solution out of the continuous family of
solutions, and this solution is independent of ν. We show in figure 10 how the
steady state of the system of equations (6.9)–(6.11) evolves from the ‘laminar’ solution
Ω2 = 1/ν to the ν-independent solution as ν decreases.

One may argue that many physical systems saturate to a solution independent of
the damping coefficient as the latter goes to zero. Consider, for instance, a damped
harmonic oscillator that is forced sinusoidally away from resonance: as the dissipation
coefficient goes to zero, the amplitude of oscillation saturates to a finite value,
independent of the small damping coefficient. There is, however, one major difference
between such systems and the triadic systems we are dealing with in this study: the
damped harmonic oscillator has only one asymptotic amplitude when dissipation is
set to zero. No matter the structure of the dissipative term of the equation (it can
be proportional to velocity, to some higher-order time derivative of position, or it can
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even be nonlinear), the system will eventually saturate to this asymptotic amplitude,
computed for the non-damped problem, as the damping coefficient goes to zero. But
in triadic systems one cannot predict the asymptotic solution by studying only the
non-damped problem: there is a continuous family of solutions, and the selected
solution strongly depends on the structure of the dissipative terms of the equations.
An illustration of this phenomenon is given by (6.12), where the selected amplitude
depends on α and β. A different structure of the dissipative term, given by different
values of α and β, will select another solution out of the continuous family of
solutions to the non-damped problem.

7. Dependence of the condensate on the form of dissipation
To show that the triadic mechanism described in § 6 operates in the nonlinear

Navier–Stokes equation, as well as in the QL approximation, we demonstrate in this
section that the amplitude of the condensate depends on the form of the dissipation.

7.1. Bottom drag
We first consider a combination of viscosity and bottom drag:

1ψt + J(1ψ,ψ)= sin nx sin ny+ ν12ψ − νγ1ψ. (7.1)

The drag coefficient is denoted as νγ , where γ = 0 corresponds to the Navier–Stokes
equation without drag, and increasing γ allows us to modify the structure of the
dissipative term continuously. Although the physically relevant regime is γ > 0, we
can consider negative values of γ provided γ > −2. This condition ensures that the
dissipative term of (7.1) linearly damps every Fourier mode of the square domain.

We are interested in the solution of this equation as ν goes to zero. We thus
followed the fixed point obtained for γ = 0 into the γ 6= 0 regime, and we plot in
figure 11 the amplitudes of the condensate and boundary velocities as a function of γ
for several (small) values of ν. We observe that:

(i) the amplitude is almost independent of ν for these small values of ν; and
(ii) the amplitude strongly depends on γ , and thus on the structure of the dissipative

term.

In the framework of the quasilinear approximation, we can compute the dependence
of the amplitude a of the condensate as a function of γ , for ν → 0. We include
bottom drag in the QL system of equations before computing the energy and enstrophy
budgets to get the equivalents of (3.15) and (3.16). Eliminating injection of energy and
enstrophy from the forcing leads to the following expression for the amplitude of the
condensate:

a=±
√
〈|∇1φ|2〉 − 2n2γ 〈|∇φ|2〉 + (γ − 2n2)〈(1φ)2〉

(2+ γ )(n2 − 1)
, (7.2)

where φ can be replaced by the inviscid solution for the remainder, φ0. For a given n,
this expression for a only depends on γ and thus on the structure, but not the strength,
of the dissipative term. For n = 2 the spatial averages are computed in appendix A,
which yields

|a(γ )| =
[
(795− 70π2 − π4)γ + (750− 40π2 − 2π4)

360(γ + 2)

]1/4

. (7.3)
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FIGURE 11. (Colour online) Dependence of the condensate’s amplitude and boundary
velocities on the ratio γ of bottom drag to viscosity, for n = 2 forcing. The curve is rather
independent of ν−1 for these low values of ν and the selected solution depends only on the
structure of the dissipative term (•, ν−1 = 2000; �, ν−1 = 4000; ?, ν−1 = 8000; solid lines,
predictions from QL theory). Numerical points computed for strictly positive γ are unstable
fixed points (see text). (a) Amplitude of the condensate. The inset is a log–log representation
of this amplitude as a function of γ + 2, to demonstrate the asymptotic validity of the QL
theory. (b) Boundary velocities.

The boundary velocities are then given by Vx = (ln 2 − 1)/a(γ ) + a(γ ) and Vy =
(ln 2 − 1)/a(γ ) − a(γ ). These predictions are compared to the numerical results
in figure 11. As expected, the agreement between the NL simulations and the
QL predictions is better for the boundary velocities than for the amplitude of the
condensate. The amplitude a(γ ) diverges in the limit γ →−2, for which the total
linear damping on the gravest mode vanishes in (7.1). The condensate then strongly
dominates the remainder, meaning that the quasilinear approximation is asymptotically
exact in the limit γ →−2. Indeed, the QL solution captures exactly the asymptotic
behaviour of the full nonlinear system in this limit, as can be seen in the inset of
figure 11. It provides fairly accurate estimates for the boundary velocities all the way
to the physically relevant domain of positive γ .
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We stress that even a slight (positive) bottom drag can make the fixed point unstable,
so that the solution becomes time-dependent. Time dependence induced by drag can be
more dramatic than the bursting shown in figure 7: with large enough drag the sign
of the vortex condensate episodically reverses (Sommeria 1986; Gallet et al. 2011).
We then followed the fixed point, starting the simulations with energy in the gravest
mode only. The results in figure 11 should thus be considered more as a proof that the
amplitude of the condensate depends on the structure of the dissipative term, than as
predictions of the behaviour of two-dimensional flows with bottom-drag damping.

7.2. Hyperviscosity
A common approximation in numerical simulations consists in replacing the usual
viscous term of the Navier–Stokes equation (2.1) by a hyperviscosity, νp1

2pψ . The
Navier–Stokes case is p = 1, but larger values of p are often used. This seems rather
harmless when viscosity is only expected to remove energy and enstrophy in the
high-wavenumber modes, at the end of a forward turbulent cascade. However, in
the present study there is no such cascade. Indeed, the nonlinear interaction is non-
local in Fourier space, between a condensate with wavenumber O(1) and a smaller-
scale remainder with wavenumber O(n). Although the flow becomes independent of
viscosity when ν → 0, we stress the fact that the flow depends strongly on the
structure of the dissipative term. Therefore, we expect that replacing the viscous term
by a hyperviscosity might modify the amplitude of the condensate. Indeed, with a
hyperviscous term νp1

2pψ , (3.18) for the condensate amplitude becomes

a=±
√
〈|∇1pφ |2〉 − 2n2〈(1pφ)2〉

22p−1(n2 − 1)
, (7.4)

which we consider for p > 2. The situation is then problematic in the limit νp→ 0,
since the integrals corresponding to the spatial averages on the right-hand side of (7.4)
do not converge if φ is replaced by the inviscid solution φ0: hyperviscous boundary
layers must always be included in the expression for φ, and the amplitude a always
depends explicitly on νp. If p> 2 then the amplitude of the condensate tends to infinity
as νp → 0. To summarize, our conclusion that the amplitude of the condensate is
independent of viscosity as ν → 0 depends crucially on the dissipative term being
of standard Navier–Stokes type with p = 1. Hyperviscosity entails an unfortunate
dependence of condensate amplitude on the magnitude of the unphysical parameter νp.

8. Conclusion
Direct numerical solutions of the two-dimensional Navier–Stokes equation, driven

by steady forcing applied to a single mode, show the formation of a steady vortex
condensate. The streamfunction of the condensate projects strongly onto the gravest
mode of the square container, and this observation motivates the development of a
quasilinear approximation that roughly determines the amplitude of the condensate.
Although the viscous term of the Navier–Stokes equation is crucial in selecting the
amplitude from a continuous family of solutions to the forced Euler equation, the
selected solution is independent of ν as ν→ 0.

A common belief in forced two-dimensional turbulence is that energy accumulates
in the gravest mode until either the numerical simulation diverges, or the large-scale
velocity reaches extremely large values (infinitely large as viscosity goes to zero).
This is indeed the case for flows driven by white-noise-in-time forcing. Such forcing
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injects energy at a constant rate, ε in (3.14), and this energy eventually accumulates
in a large-scale condensate. The system saturates when viscous dissipation acting
on the large-scale velocity balances energy injection, resulting in a typical velocity
proportional to (ε/ν)1/2. By contrast, this study shows that, for a steady forcing,
energy injection switches off when the large-scale flow is vigorous enough, so that
the large-scale vortex saturates to a ν-independent value. The mechanism by which
this saturation occurs is described in Tsang & Young (2009): at small viscosity,
advection of forcing-scale eddies by the large-scale vortex breaks the phase relation
between these structures and the forcing, and so limits energy injection. In the present
study, with steady Kolmogorov forcing, we have shown that energy injection ε is
proportional to ν as ν→ 0. This scaling is consistent with the rigorous bounds on ε
derived by Alexakis & Doering (2006), who showed that ε goes to zero proportionally
to ν as ν → 0 for constant root-mean-square velocity. However, the scaling in this
paper is a significantly stronger result: energy injection goes to zero proportionally
to ν for constant forcing amplitude. This is a key difference between the time-
independent forcing protocols most often used in experiments and the white-noise
forcing used in many numerical simulations.

These conclusions challenge the applicability of statistical theories of the two-
dimensional Euler equation to real two-dimensional flows with weak injection and
dissipation of energy. Indeed, the rationale behind these theories is that the vanishingly
small injection and dissipation of energy can be largely ignored in computing the
final state of the flow using statistical mechanics. Our analytical and numerical
computations show that, although energy dissipation is small for small damping
coefficient, the final state of the flow strongly depends on the ‘form’ of the damping
(whether it is usual viscosity, bottom drag, or a combination of both), regardless of
how small the damping coefficients and energy dissipation are. Indeed, the dependence
of the amplitude of the large-scale vortex with the form of the dissipative term,
represented in figure 11, cannot be captured by a theory that neglects all dissipative
terms at the outset. It remains to be investigated whether the triadic selection
mechanism described in this paper could select one solution out of a family of
solutions computed using statistical mechanics of the Euler equation, thus reconciling
the two approaches.
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Appendix A. Analytic expression of the QL streamfunction for n= 2
Starting with the n = 2 inviscid solution in (3.11), we need to solve the forced

Helmholtz equation:

1(aφ0)+ 2(aφ0)= 2 sin x sin y ln(sin x)− 2 sin x sin y ln(sin y). (A 1)

The structure of the right-hand side suggests looking for a solution aφ0 = P(x) sin y −
P(y) sin x. Substitution into (A 1) yields

P′′(x)+ P(x)= 2 sin(x) ln(sin x)+ C sin x, (A 2)

where C is a separation constant. The last term, C sin x, does not contribute to the
left-hand side of (A 1). It is however necessary to fulfil the solvability condition
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imposed by multiplying (A 2) by sin x and integrating from 0 to π: C must be chosen
to cancel out with the first term in the Fourier series of 2 sin(x) ln(sin x), so that the
right-hand side of the equation has no resonant term. This Fourier series is

2 sin(x) ln(sin x)= 1− 2 ln 2
2

sin x−
∞∑

p=1

sin((2p+ 1)x)
p(p+ 1)

. (A 3)

Hence C = (2 ln 2− 1)/2 and

P(x)=
∞∑

p=1

sin((2p+ 1)x)

4p2 (p+ 1)2
. (A 4)

With the function P in hand, expressions for the remainder aφ0, its vorticity and the
viscous term are then obtained as

aφ0 =
∞∑

p=1

1

4p2 (p+ 1)2
[sin y sin((2p+ 1)x)− sin x sin((2p+ 1)y)], (A 5)

1(aφ0)=−
∞∑

p=1

(2p+ 1)2+1

4p2 (p+ 1)2
[sin y sin((2p+ 1)x)− sin x sin((2p+ 1)y)], (A 6)

12(aφ0)=
∞∑

p=1

((2p+ 1)2+1)
2

4p2 (p+ 1)2
[sin y sin((2p+ 1)x)− sin x sin((2p+ 1)y)]. (A 7)

The averages involved in the determination of a can now be evaluated:

〈aφ01(aφ0)〉 = − 1
32

∞∑
p=1

1+ (2p+ 1)2

p4 (p+ 1)4
= 675− 60π2 − π4

720
, (A 8)

〈[1(aφ0)]2〉 = 1
2

∞∑
p=1

[
1+ (2p+ 1)2

4p2 (p+ 1)2

]2

= −315+ 30π2 + π4

360
, (A 9)

〈12(aφ0)1(aφ0)〉 = − 1
32

∞∑
p=1

[1+ (2p+ 1)2]3
p4 (p+ 1)4

= 135− 60π2 − π4

180
. (A 10)

Substitution into (3.18) gives the asymptotic amplitude of the condensate as ν goes to
zero:

|a| =

(
75− 4π2 − π

4

5

)1/4

23/4
√

3
' 0.687. (A 11)

The boundary velocities Vx = a+ φy|(x=π/2,y=0) and Vy =−a− φx|(x=0,y=π/2) are finally

Vx = a+ 1
a

∞∑
p=1

(−1)p−(2p+ 1)

4p2 (p+ 1)2
= a+ ln 2− 1

a
' 0.2404, (A 12)

Vy =−a+ ln 2− 1
a
'−1.1337, (A 13)

where the numerical values are given for positive a.
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If bottom friction is included, this asymptotic amplitude is given by (7.2), which
reduces to

|a(γ )| =
[
(795− 70π2 − π4)γ + (750− 40π2 − 2π4)

360(γ + 2)

]1/4

. (A 14)

This expression gives (A 11) for γ = 0. The boundary velocities are still given by

Vx = a(γ )+ ln 2− 1
a(γ )

, (A 15)

Vy =−a(γ )+ ln 2− 1
a(γ )

. (A 16)

For n = 6 and no bottom drag, the inversion of expression (3.12) is performed
numerically in Fourier space to get the streamfunction. Then the integrals (A 9)
and (A 10) are computed together with the derivative of φ at the middle point of
a boundary. This yields the following approximate values for the solution of the
quasilinear problem in the ν→ 0 limit:

|a| ' 0.682, (A 17)
Vx ' 0.642, (A 18)
Vy '−0.722, (A 19)

where the numerical values of the velocities are given for positive a.

Appendix B. Asymptotic behaviour of the inner solution
To characterize the behaviour of s in (4.19) for small and large χ/

√
ν, we study the

function

f (x, b)
def=

∞∑
p=0

(−1)p√
p+ b

D

(
x√

p+ b

)
, (B 1)

with b> 0. In (B 1), D is Dawson’s integral defined in (4.18).
For small x, each term of the series (B 1) can be expanded to give

f (x, b)= x
∞∑

p=0

(−1)p

p+ b
+ O(x3). (B 2)

For large x , the behaviour of the function in (B 1) can be computed using Mellin’s
transform (Davies 2000), which is defined by

f ∗(z, b)=
∫ ∞

0
f (x, b)xz−1 dx. (B 3)

The Mellin transform factors the sum in (B 1):

f ∗(z, b)=D∗(z)
∞∑

p=0

(−1)p
(√

p+ b
)z−1

(B 4)

=D∗(z)2(z−1)/2

[
H

(
1− z

2
,

b

2

)
−H

(
1− z

2
,

1+ b

2

)]
, (B 5)
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where

D∗(z)=
√
π

4
tan
(πz

2

)
Γ
( z

2

)
(B 6)

is Mellin’s transform of Dawson’s integral. Equation (B 5) involves the Hurwitz zeta
function H , which permits an analytic continuation of the infinite sum to z> 1. Each
pole of Mellin’s transform corresponds to a term in the asymptotic development of
the corresponding function. A simple pole on the real axis at a value z0 corresponds
to a term proportional to x−z0 in the expansion of the function, the prefactor being
proportional to the residue. Poles on the negative real axis therefore determine the
Taylor expansion of the function around x = 0 in powers of x, whereas poles on the
positive real axis determine its asymptotic expansion for large x in terms of inverse
powers of x.

Dawson’s integral D(x) admits a regular asymptotic expansion at infinity in terms
of odd powers of 1/x, the first and dominant term being 1/(2x). Its Mellin transform
therefore has poles at each odd positive integer. The essential property of the Hurwitz
zeta function that we invoke is that the bracketed term in (B 5) has no poles in the
complex plane, so that f ∗ has the same poles as D∗. Hence f (x) behaves as 1/x for
large x, the prefactor being the 1/x coefficient of D multiplied by the bracketed term
evaluated at z= 1. The behaviour of f (x, b) at large x is finally

f (x, b)= 1
2x

[
H

(
0,

b

2

)
−H

(
0,

1+ b

2

)]
+ O(1/x3)= 1

4x
+ O(1/x3). (B 7)

The behaviour of s for large χ is then computed using

s(τ, χ)=− 4√
2aν

f

(
χ

2

√
a

2ν
,
τ

2

)
∼− 2

aχ
, (B 8)

so that the inner solution (4.20) away from the boundary layers is approximately

1q(i) ' 2
a

(
sin y

sin x
− sin x

sin y

)
. (B 9)

This matches the dominant behaviour of the outer solution – the Laplacian of (3.11)
– close to the boundaries.

Appendix C. Weakly nonlinear analysis around the viscous laminar solution
When viscosity decreases, the viscous laminar solution (2.2) becomes unstable and

a large-scale condensate appears. A linear stability analysis allows one to compute
the threshold of instability, and a weakly nonlinear expansion gives access to the
amplitude of the condensate as a function of the departure from onset. For simplicity,
we perform these analyses on the QL system of equations (3.4) and (3.5). We
are looking for stationary bifurcations to stationary solutions of the system, so we
discard time derivatives in these equations. The laminar solution of the system is
ψL = −sin nx sin ny/(4νn4), and ψL becomes unstable when the viscosity is below a
critical value νc. Let us consider a small parameter ε� 1 and introduce the scalings

ν = νc − ε2δ, (C 1)

a= εa(0) + ε2a(1) + ε3a(2) + · · · , (C 2)

φ = ψL + εφ(0) + ε2φ(1) + ε3φ(2) + · · · , (C 3)
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where νc is still to be determined. At order ε0, the forcing is balanced by the viscous
term from the laminar solution. At order ε1, (3.4) gives the spatial structure of the
eigenmode for the remainder

νc1
2φ(0) = a(0)J(1ψL + 2ψL, χ)= a(0)(n2 − 1)

2n4νc
J(sin nx sin ny, χ), (C 4)

where

J(sin nx sin ny, χ)= n

2
[sin((n+ 1)x) sin((n− 1)y)− sin((n− 1)x) sin((n+ 1)y)] (C 5)

and 1(J(sin nx sin ny, χ)) = −2(n2 + 1)J(sin nx sin ny, χ). The Laplacian applied to
φ(0) is therefore simply a multiplication by −2(n2 + 1). In the following we write
φ(0) = a(0)P0, where

P0 = n2 − 1

8n4 (n2 + 1)2 ν2
c

J(sin nx sin ny, χ). (C 6)

Equation (3.5) at order ε1 is

〈J(1ψL, φ
(0))+ J(1φ(0), ψL)〉 = νca

(0), (C 7)

which reduces to

νca
(0) =−2〈J(ψL, χ)φ

(0)〉 = νc

a(0)(n2 − 1)
〈(1φ(0))2〉 = a(0)

(n2 − 1)

128ν3
c (n2 + 1)2 n6

. (C 8)

Asking for a non-trivial solution a(0) 6= 0 yields the critical value of viscosity

νc =
[

n2 − 1

128n6 (n2 + 1)2

]1/4

, (C 9)

under which the viscous laminar solution is unstable.
At order ε2 (3.4) becomes

νc1
2φ(1) = δ12ψL + a(1)J(1ψL + 2ψL, χ)+ a(0)J(1φ(0) + 2φ(0), χ), (C 10)

with solution

φ(1) = δ

νc
ψL + a(1)P0 + (a(0))2 P1, (C 11)

where

P1 = n2 − 1

4ν3
c (n2 + 1)2

1−2 {J(J(sin nx sin ny, χ), χ)} (C 12)

is a function of x and y only for a given n. Equation (3.5) is automatically satisfied at
order ε2.

Equation (3.4) gives at order ε3

νc1
2φ(2) = δ12φ(0) + a(2)J(1ψL + 2ψL, χ)+ a(1)J(1φ(0) + 2φ(0), χ)

+ a(0)J(1φ(1) + 2φ(1), χ), (C 13)

the solution of which is

φ(2) =
(

a(2) + 2δa(0)

νc

)
P0 + (term prop. to P1)+ (a(0))3 P2, (C 14)
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where the term proportional to P1 has no contribution in what follows, and

P2 = 1
νc
1−2{J(1P1 + 2P1, χ)} (C 15)

is a function of x and y only for a given n. Equation (3.5) at order ε3 finally gives the
amplitude a(0) as a function of the distance from onset:

(a(0))
2 =−4δ [〈χJ(1P1 + 2(n2 + 1)P1,P0)〉 + 〈χJ(1P2 + 2n2P2, ψL)〉]−1

, (C 16)

which we rewrite in terms of the control parameter ν−1 as

a'± 2νc

√
ν−1 − ν−1

c√〈χJ(P0,1P1 + 2(n2 + 1)P1)〉 + 〈χJ(ψL,1P2 + 2n2P2)〉
. (C 17)

Numerical values are

ν−1
c = 16.164 and a' 0.1795

√
ν−1 − ν−1

c for n= 2; (C 18)

ν−1
c = 123.63 and a' 0.02127

√
ν−1 − ν−1

c for n= 6. (C 19)

The results of this analysis are presented in figure 6. Close to onset, the good
agreement with results from the simulation of the NL system is an a posteriori
justification for using the QL system of equations. For n = 2 the threshold can
be compared to the linear stability analysis performed by Thess (1992) on the full
Navier–Stokes equation. Using our notation, Thess’s result translates into ν−1

c = 16.43:
the QL approximation predicts the threshold with a 2 % error.
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