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ABSTRACT

It is argued that the ideal fluid thermocline equations have “weak” (i.e., nondifferentiable) solutions that
satisfy no mass-flux boundary conditions at the East. This conclusion is based on a local analysis of the eastern
“corner” of a subtropical gyre. Specifically we suppose that the surface density is uniform while the density on
the eastern boundary is either uniform (but different from that of the surface) or else is linearly stratified. The
surface density is injected into the interior by specified Ekman pumping. In the absence of dissipation the
resulting solution would have a discontinuity in density at some interior position. In the presence of small
vertical density diffusion, this discontinuity is “smoothed” and becomes an internal boundary layer which
separates the light fluid originating at the surface from the denser fluid which abuts the eastern boundary.

This solution, which is of the similarity type, illustrates the applicability of solutions of the ideal fluid thermocline
problem with discontinuities. It is these discontinuities which enable ideal fluid solutions to satisfy eastern
boundary conditions. Thus, contrary to statements in the literature, there is no a priori need for an eastern
boundary layer which exchanges mass with an ideal interior. ’

This concept of a weak solution is implicit in recent theories of the large-scale oceanic circulation. For
example, in the continuously stratified, quasigeostrophic model developed by Rhines and Young, the solution
is singular at the boundary between the moving pool of homogenized potential vorticity and the motionless
shadow region. Analogous surfaces of discontinuity enable the models discussed in previous studies to satisfy
eastern boundary conditions. The present study makes this assumption more explicit and shows how one
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particular dissipative mechanism (vertical density diffusion) heals the singularity.

1. Introduction

The thermocline equations [see (2.1) below] are a
well known, and generally accepted, model for the
large-scale, interior circulation of the ocean. However,
despite thirty years of theoretical effort and some recent
advances, there are still some unresolved questions
about the well-posedness of the “ideal” (i.e., nondis-
sipative) fluid model.

Specifically, Killworth (1983) has given a proof, see
appendix A, that if the density at the eastern boundary
varies smoothly with z then the ideal fluid model has
no solutions which satisfy a no-flux condition [#(0, y,
z) = 0] at the eastern boundary (x = 0). If this is ac-
cepted then no-flux is not an appropriate boundary
condition to apply to the ideal fluid equations. Instead
one might argue, for instance, that there is a dissipative
eastern boundary layer which accepts mass from the
ideal fluid interior at one position and returns it at
another. This was the philosophy adopted by Huang
(1986), and it is implicit in earlier thermocline models
(e.g. Needler, 1967, or Welander, 1971b).

On the other hand, there are solutions of the ideal
fluid equations which are smoothly stratified on the
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eastern boundary and do satisfy a no-flux condition
there. One such, taken from Pedlosky and Young
(1982), is illustrated in Fig. 1. If these are accepted as
valid then Killworth’s theorem, while mathematically
impeccable, is irrelevant because solutions of the ideal
fluid equations violate its premises.

From a mathematical view, there is no contradiction
here. Killworth’s proof assumes that the density field
is infinitely differentiable (see Appendix A) and the
solution in Fig. 1, and others in Pedlosky and Young
(1983), clearly violate this assumption. Because these
solutions are not infinitely differentiable, we shall refer
to them as “weak solutions”. Are weak solutions phys-
ical in the present context? The conclusion reached
here is that they are.

In summary, one might say there are two alterna-
tives. If one requires that the solutions of the ideal
problem be smooth (infinitely differentiable every-
where), then they cannot satisfy a no-flux condition at
the eastern boundary. Alternatively, one can construct
weak solutions and allow discontinuities in the density,
or its derivatives, at certain initially unknown positions
in the interior [e.g., the curve z = —D(x, y) in Fig. 1]
and satisfy a no-flux condition at the east. There are
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FIG. 1. A schematic density section in the subtropical gyre. The
region above z = —D(x, y) is fluid of uniform density p, injected
from the Ekman layer. Below z = —D the fluid is stratified and mo-
tionless. The dashed lines represent isopycnals. There is no flow
through the eastern boundary.

examples of both choices in the literature. Most re-
cently, Huang (1986) has made the first and Pedlosky
and Young (1982) the second.

It is probably true that if one remains strictly within
the mathematical framework of the ideal fluid model,
it is impossible to say if either of the two alternatives
above is physically preferable. If it could be shown that
the ideal fluid equations are strictly hyperbolic, then
discontinuities in the solutions would be expected and
acceptable. Arguments along these lines are inconclu-
sive (Huang, 1986).

The position taken here is that the ideal fluid model
must be understood as the limiting case of a dissipative
model. For example, if the density diffusivity, «, is
nonzero in (2.1¢), then the density must be infinitely
differentiable everywhere. Also, when « is nonzero,
Killworth’s proof does not generalize so one might ex-
pect that for a diffusive model a no-flux condition is
possible. Indeed some specific solutions of the diffusive
thermocline equations which have both of these de-
sireable properties are exhibited below. Now as the limit
x —> (0 is taken, do either of these properties (smoothness
and no-flux) survive?

We answer this question by showing as the diffusivity
becomes small the solutions continue to satisfy the
eastern no-flux boundary conditions, but also develop
regions of rapid variation in the interior which can be
clearly identified with surfaces of density discontinuity
in the ideal limit. Thus, no-flux at the eastern boundary
is a possible boundary condition for the ideal fluid
model. And correspondingly surfaces of discontinuity
in the interior are no cause for alarm.

This is not to say that eastern boundary layers which
exchange mass with an interior flow do not exist. Cox
and Bryan’s (1984) simulation shows that they do. The
issue is whether we fully understand the implications
of assuming that the interior flow is ideal. Here we
argue that if this is accepted as a working hypothesis
then, contrary to the straightforward interpretation of
Killworth’s theorem, no mass flux at the east is certainly
a possible boundary condition. And in the absence of
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an explicit model of the eastern boundary layer this is
probably the best choice because it makes the mildest
assumptions about the effects of unresolved physics.

Besides a discussion of eastern boundary conditions,
this paper has some secondary goals. First we present
a general class of similarity solutions which subsumes
several earlier studies. Specifically the full thermocline
equations, which have three independent variables (x,
¥, z), are reduced to a single partial differential equation
with two independent variables [y, { = —z/D(x, y)].
Reduction of dimensionality is characteristic of simi-
larity solutions, and the price paid for this simplification
is that some of the boundary conditions of the higher
dimensional system collapse onto one boundary con-
dition for the lower dimensional system. In the present
instance the eastern boundary (x = 0) and the abyssal
region (z = —o0) both correspond to { = oo. Conse-
quently no motion at the eastern boundary implies no
motion at great depths. We have thus eliminated the
possibility of a barotropic component (Needler, 1967)
and interaction with bottom topography. However,
generality and realism is not our goal here. We regard
these similarity solutions as local approximations of
the flow near the eastern boundary. They indicate what
physical assumptions about this region are acceptable
in more complete models.

Another secondary goal is to present a numerical
and analytic study of the similarity family found by
Robinson and Welander (1963). These are in fact spe-
cial cases (in which the partial differential equation in
y and { further reduces to an ordinary differential
equation in ¢{) of the general family introduced above.
Before attempting to solve this partial differential
equation we must understand the special cases in which
it becomes ordinary. Earlier investigators found isolated
exact solutions of this complicated ordinary differential
equation by dividing it into two parts, each of which
vanished identically (e.g., see the review by Veronis,
1969). Here we abandon this search for exact solutions
and confront the equation with a combination of nu-
merical and asymptotic analysis. We believe this effort
is worthwhile because Robinson and Welander’s model

FIG. 2. Curves of constant { = —z/D(x, y) in the x-z plane (sche-
matic). { = 0 is the surface (z = 0, x < 0). Because D > Qasx =0
the curves ¢ > 1 are at once the eastern and abyssal region.
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has some realistic features which the ad hoc exact so-
lutions fail to capture. In particular, it was never en-
tirely clear exactly what physical boundary conditions
these exact solutions were meant to satisfy. But this is
a failure of the exact solutions rather than the original
model.

An example may make this clearer. The Blasius
boundary layer on a flat plate (e.g., Batchelor, 1967) is
calculated by numerically solving the two-point
boundary value problem:

%ﬁ.”+fll’=0
f=f'=0 at =0 (1.1)
f'=1 as p—>© '

However, Eq. (1.1a) has some exact solutions (e.g., f
= —6/n) which do not satisfy the appropriate boundary
condition and have no obvious relationship to any
physical problem. Isolating these does not help one
solve (1.1) or understand its physical implications.
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Likewise, the failure of these exact solutions to corre-
spond to any physical problem is not a criticism of
(1.1) or the assumptions which led to it—it just means
that the solution which satisfies the boundary condi-
tions must be obtained numerically. And doing this is
the final test of the similarity hypothesis used to obtain
(1.1) in the first instance.

Robinson and Welander’s (1963) family has an
analogous structure; there is a complicated ordinary
differential equation (fourth-order and nonlinear) and
there are boundary conditions that essentially imply
that the density is specified at the surface ({ = 0) and
at the eastern boundary ({ = oo). It may be possible to
find exact solutions of the equation, but unless they
also satisfy the boundary conditions they are unphys-
ical. Unfortunately, solving the equation numerically
is not easy; it is a two-point boundary value problem
on the interval 0 to oo with two unknown initial values
at each end. Further, there are singular solutions (poles)
which appear spontaneously if there are slight errors
in guessing the initial values. These complications are
sufficient to defeat the shooting-Newton iteration rou-
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tines available in the Nottingham Algorithms Group

(NAG) library. A more sophisticated approach, using

global approximation, was needed, and this is described
in appendix B.

2. The thermocline equations and a family of solutions

In standard notation the thermocline equations are

Su=—py/po )

Jo=D«/po

0 =Dz + pg ro.

uy+v,+w,=0

2.1n

Upx+ Vpy,+ Wp, = Kp; J
This is the “B-plane” model:
S=8y. (2.2)

The use of spherical coordinates introduces only no-
tational changes. Some important, derived results used
below are
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Bv =fwz
Ju:=gpy/po 2.3)
Joz=—gpx/po

ugx+ vqy+ Wq; = Kqzz

where g = fp, is the potential vorticity.

The arguments here are based on a “similarity” so-
lution of (2.1). This solution is actually a special case
of those found by Robinson and Welander (1963).
However, we also show that Robinson and Welander’s
class of solutions is in turn subsumed by a still more
general family.

This general family consists of solutions of (2.1)
having the form

P =—po&Z+ pogeD™ ' I7"M(£,y)
§=—z/D(x,y) (2.49)

where D is a function of x and y with dimensions of
length, € is dimensionless, and /is a length scale. These
external parameters are associated with the eastern
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boundary condition (2.5). Substitution of (2.4) into
(2.1) ultimately leads to a partial differential equation
for M as a function of { and y. Essentially M is We-
lander’s potential function. To recover Robinson and
Welander’s reduction, one substitutes M(, y) = y'O({)
and obtains an ordinary differential equation for Q(¢)
[essentially (32) in Robinson and Welander}.

In (2.4) ¢is a similarity variable and, in anticipation
of the calculation below, some curves of constant { in
the (x, z) plane are shown in Fig. 2. At this stage one
should simply note that D — 0 as x — 0 so that the
eastern boundary is { = co. The implication is that if
the surface ({ = 0) density is a function of y, and the
density at the eastern boundary only depends on z,
then there is a discontinuity in the corner where the
similarity variable is degenerate. The solutions here
show how density diffusion smooths this discontinuity
in the interior of the fluid. Thus, physically, we are
investigating how diffusive thermocline dynamics
smooths density discontinuities imposed by boundary
conditions.
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At the eastern boundary the density is of the form:
p=po{l +e(—2z/1)"}, m=0. 2.5)

Here ¢ and / are introduced separately so that in the
important special case m = 0, the density at great
depths, and at the eastern boundary, is po(1 + ¢€). The
density field in (2.5) will be referred to as the “resting
stratification”. Only a limited class of eastern density
fields is admitted by the similarity solution (2.5). We
can explicitly demonstrate that for this class of bound-
ary conditions, density discontinuities arise in the ideal
limit. Despite these restrictions we assert it as plausible
that for arbitrary eastern density fields analogous dis-
continuities arise.

Note {—> o0 encompasses two boundary conditions
(eastern and abyssal) in physical space. This “collapse”
of two conditions in the three-dimensional (x, y, z)
space into one condition in the (3, {) space is typical
of similarity solutions. If this did not happen it would
be impossible for the lower dimensional system to sat-
isfy all the boundary conditions of the higher one.
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From (2.4) and the hydrostatic relation one can cal-
culate the density:

o= pll + «(D/I)"My). 2.6)

If the above is to satisfy the eastern boundary condition,
(2.5), then
M, $> + §' ™ as

> o0, 2.7

More precisely we require that the difference between
Mand {™ vanish as { = co. Generally this difference
will vanish as some algebraic power of { (e.g., {3). In
special cases (m = 0, 1) it is exponentially small.

Once the form of p has been specified, as in (2.4),
there is some straightforward, tedious algebra required
to calculate u, v and w from the equations of motion.
The density conservation relation finally leads to a
partial differential equation for M. Those not interested
in the details of the substitution can skip forward
to (2.12).

The horizontal velocities are given by the geostrophic
balance:
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Ju=—egDy(D/IY"[(m+ 1)M;— M) — egD™ ' 17" M,
fo=egDAD/™(m + DM~ {My).
(2.8)
The most direct way to calculate w is from (2.3a):
w=—(Beg/f*}(D/IY"DD{(m+2)M — {M;]. (2.9)

To obtain an equation for M, substitute (2.6), (2.8)
and (2.9) into (2.1e). Note the following intermediate
step

Sups+ fopy= €gpo(D/IV"Di{ { My Mty — My, M)
+ [(m + I)Mg-Mg-;y_ mMg'yM“]}
which shows that if M, = 0, then the horizontal ad-

vection vanishes. The result of the substitution is, fi-
nally

YEIM Moy — MMy + YI(m + DM My,
—mMy, M)+ [(m+2)M — (MM
=—{—f*I"/BegD™**Dx} M. (2.10)
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TABLE 1. Summary of the numerical results for m = 0. The first
three columns, together with N = —1, give the initial conditions
needed to ensure N'(c0) = 0. The constant value at infinity is given
in column 4 and this should be compared with the estimate obtained
from the asymptotic expansion (based on Ny — —o0) in column 5.
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No No Ng Ny N, from (3.7)
0 0.9592 0.7102 0.774800

-1 1.6222 0.1268 0.768215

-2 2.1860 0.0112 0.817250

-4 3.0166 0.00 0.895292 0913

-5 3.3487 0.00 0.925716 0.937

) 3.6482 0.00 0.952678 0.960

Now because M does not depend on x, the first term
.in curly brackets on the right hand side must be a func-
tion of y alone, say:

—BegD™ 2D, /f 1™ = A(y)
D3 =(m+ 3){ f*I"A(y)/Beg}(—x).
With the above, (2.10) is

AV VS [Me My — My M)
+y(m+ DM My, — mM My
+(m+2M— (MM} = —Meyr  (2.12)

or
(2.11)

and this is the most general result for M. Various other
reductions in the literature (e.g., Robinson and Stom-
mel, 1959; Robinson and Welander, 1963; Luyten et
al., 1983; Gill, 1985) are special cases of (2.10) and
(2.12). These connections are explored in appendix C
and sections 3 and 4.

Section 3 discusses in detail a special case of (2.12):
M, = 0. With this restriction 4(y) must be a constant,
say 1, and (2.12) is )

[(m+2)M — MMye = —Me. (2.13)
As was noted above, if M, = 0 then the horizontal
advective terms vanish identically. Hence (2.13) is
simply the vertical balance

WPz =Kpzz. (2.14)
It is convenient to rewrite (2.13) by putting M in the
form

ME)=["2/(m+ 1)(m+2)]+N$)  (2.15)

i.e., from (2.7) N is the difference between M and its
asymptotic value. For N one finds

[(m+2)N = SNJm{™ " + Ny

=—m(m—1){""?— Nz (2.16)

VOLUME 16
and the boundary conditions on N({) are
N(@©0)=N,
N'©0)=0 if m#0
. 2.17)
N'(0)=—-1 if m=0
N'(0)=0

Equations (2.8) and (2.9) give the velocity in terms of
M. 1t is easily verified that M can simply be replaced
by N in these results.

The first of (2.17) specifies the strength of the Ekman
pumping at z = 0. In dimensional terms one has from
(2.9) and (2.11)

- Wo=w(x,y,0)=(/DYm+2)No . (2.18)

so that as Ny — —oo with all other external boundaries
fixed, we anticipate recovering the ideal fluid limit.

The second boundary condition in (2.17) is that the
surface density is po. Specifically the density is given
in terms of N by

p=poll +d(—z/ly"+«D/I)"Ny]  (2.19)

-1.00.0 1.0 2.0 3.0 4.0

>
3
LI T T T T T
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
e
2
ST T
(=]
=
1
o
(“'—n
1
<
©
1 T T T T T T T T T 1
0.0 1.0 20 3.0 40 S50 60 7.0 80 9.0 104
o
S
oo
X 44
o w
]
(~]
L 1 i T T T T T T 1

0.0 1.0 2.0 3.0 4.0 s.0 6.0 7.0 8.0 8.0 10.0

LINEAR

FIG. 7. The linear solution from {4.2). (a) The horizontal velocities
(b) The vertical velocity (c) The density field, { + NoL{{ with Np
= —1. With this value of N, the linear theory has a slight density
inversion when { < Y.



NOVEMBER 1986

so that if the surface density is to be po, the case m = 0
must be distinguished. The third condition in (2.17) is
that deep density field, and the density on the eastern
boundary, is given by the resting stratification in (2.5).
This condition also implies that the horizontal veloc-
ities in (2.8) also vanish at great depth. More pre-
cise statements about the asymptotic behavior of N as
¢ = oo are given in the next sections.

3. Thecasem =0

We begin our discussion of (2.16) with the simplest,
and perhaps the most realistic, special case. This is
m = 0, and from (2.5) we see that the resting stratifi-
cation in (2.5) is uniform. When the density is uniform
on the eastern boundary, Killworth’s argument is in-
applicable [(A1) does not imply that w = 0] and so this
calculation does not assist us in deciding between the
two alternatives described in the introduction. None-
theless it is worthwhile discussing 7 = 0 in some detail,
both because of its intrinsic interest and because it is

W. R. YOUNG AND G. R.
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the simplest illustration of the mathematical techniques
used to understand the general case.

It is interesting that the equation of motion when
m = 0 [(3.1) below] is equivalent to the heuristic ther-
mocline model of Robinson and Stommel (1959) and
Stommel and Webster (1962). In these earlier models
certain horizontal advective terms were arbitrarily ne-
glected. The calculation in the previous section shows
that when M, = 0, they vanish identically. Thus, the
quasi-vertical balance (2.14), which these earlier works
assumed, is shown to be a consequence of the simplest
boundary conditions: p = pg at the surface ({ = 0) and
p = po(1 + ¢) at the eastern boundary (¢ = o).

Figures 3 through 6 show the numerical solution of

(CN— NNy =Nyt
N(0)= Ny, N"(0)=—1, N'(o0)=0 3.1)

for various values of N,. Of particular interest is the
constant

No=Moo0). (3.2)

NO) = ~1

P
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HG. 8. The numerical solution of (4.1) with N, = —1.0. There is
no density inversion in this full nonlinear solution. Also in contrast
to the m = 0 solution in Figs. 3 through 6 the vertical velocity vanishes
in the abyssal region.
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From (2.9) it follows that the deep upwelling velocity
is independent of z:

We =(x/D)2N,. 3.3)

In Table 1 the results of calculations with several dif-
ferent values of N, are summarized. It follows from
(2.14) that p exponentially approaches its asymptotic
value as z = —oo. This is a very familiar, classical
picture (e.g., Robinson and Welander, 1963) in which
uniform deep upwelling balances thermal diffusion
from the surface.

The numerical solutions in Fig. 3 suggest that
as Ny = —oo (i.e., the Ekman pumping becomes very
strong), the solution develops an internal boundary
layer at some position, say {,. We anticipate that the
right-hand side of (3.1) is very small everywhere
outside this boundary layer. In this case (3.1) reduces
to a choice:

Nie=0
or
(QN-{N)=0. 3.4)

(At the moment these arguments are heuristic, but they
suggest the scaling which ultimately formally justifies
them.) Now the numerical solutions, and physical
considerations, suggest that when { < ¢{,, (3.4a) applies
(i.e., the density is vertically uniform and equal to its
surface value). At { = {, there is an “exchange” and
(3.4b) applies, i.e., the vertical velocity is zero (or no
larger than the neglected term Ny.).
A simple calculation then gives

Ne {-(s‘—s“*)z/?,-, if {<{  (3.59)
0, if >4 (3.5b)
where {, is defined by
| fe=(-2No)'

as an “outer” solution. This satisfies the boundary
condition (3.1b) but has a discontinuous second deriv-
ative at { = {,. Physically, this is a discontinuity in
density. We expect to find an “inner” solution, in which
diffusion is important, which effects a smooth transition
between the ‘“‘upper outer” solution (3.5a) and the
“lower outer” (3.5b). This “inner” solution is an in-
ternal boundary layer located at {,. The transition is
discussed in detail in appendix D using matched
asymptotic expansions. The most important result is
the following asymptotic ({, — oo) estimate of N,:
No=044524+2 5314063, GB)
This is the correction to (3.5b) and from (3.3) it rep-
resents a deep upwelling velocity whose advective heat
transport balances downward diffusion from the
“bowl” of warm water injected by the Ekman pumping.
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In Table 1 the asymptotic prediction (3.7) is satisfac-
torily compared with the numerical solution of (3.1).

Some features of this asymptotic limit were antici-
pated by Welander’s (197 1a) scale analysis. He defined
a “diffusive depth” by

d=«/\wol=D/{ (3.8)
and an “advective depth” by
a={,D. (3.9

Thus, a(x, y) is the dimensional depth of the circulation
in (3.5) and d(x, y) was defined using wj in (2.18). As
Welander noted, D = a*3d'? is the vertical scale on
which advection and diffusion can balance. In fact this
is the depth of the circulation only when Ny, or equiv-
alently ¢, is order one. However, as {3 = 1/6 = a/d
becomes large, we have shown that the depth of the
circulation is a, i.e., most of the motion is confined
to a layer of thickness “a” whose density reflects its ori-
gin at the surface. The detailed asymptotics above
shows that this bowl of uniform fluid is bounded below
by a diffusive, internal boundary layer of thickness
a'?d'?, Heat diffuses out of the bowl, through the
boundary layer, and into the abyssal region. This dif-
fusive flux is balanced by a vertical upwelling which,

vav

i 1 )
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-3.0 L

F1G. 9. A comparison of the velocities predicted by the linear theory
with those of the nonlinear. Even though the linear theory predicts
a density inversion when N, = —1 its velocities closely resemble those
of the nonlinear solution. The linear solution is the dashed curve
and the nonlinear the solid curve.
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in the almost ideal limit (a¢/d > 1), is related to the
surface Ekman pumping by

W = —0.88(d/a) *wy. (3.10)

4. Thecasem =1

Now consider m = 1. In this case the density of fluid
at the eastern boundary increases linearly at depth—
see (2.5). This is also the stratification in the abyss,
below the influence of surface conditions. The equation
of motion, (2.16), and the associated boundary con-
ditions are

(BN = {NJ{1+ Nyi} = —Nigye

NO)=Ny, N"0)=0, Mow)=0. 4.1

A simple analysis of (4.1a) shows that, if {N; — 0 as
¢ = o0, then N must also vanish. Thus, in (4.1b) we
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require that N(co) = 0 rather than some unspecified
constant. Consequently the vertical velocity vanishes
at great depth (in fact exponentially quickly), and this
implies that the advective flux of heat also vanishes in
the abyss. The conclusion is that the constant abyssal
density gradient is maintained by a purely diffusive,
nondivergent, downwards heat flux. It must be imag-
ined that this flux is ultimately absorbed at great depths
by some unspecified, nonintrusive mechanism. This is
different from, and more artificial than, the previous
case in which the deep advective and diffusive fluxes
cancelled so that there was not net flux into or out of
the abyss. Global heat fluxes are discussed in more de-
tial in section 6 and the Conclusion.

One important consequence of this difference is that
when N, is small, (4.1) can be linearized. Physically,
one is supposing that the surface forcing is so weak
that the resting stratification is almost undisturbed. This
cannot be done with (3.1)—there is nothing to linearize
“about”.

N(OY = —2

P
00 05 10 15 20 25 30 35 40 43 30 35

NO) = -2

-3.0 -2

.0

30

-8.0

NO) = -2

15 20 25 30 33 40 45 50

-05 00 05 10

FIG. 10. Numerical solution of the nonlinear problem when N(0)
= —2. (a) The density field. At great depths the fluid is linearly strat-
ified. (b) The vertical velocity. Note that this vanishes at great depths.
(c) The horizontal velocities. The decay of the velocity at great depths
takes the form of exponentially damped oscillations.
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The linearized problem is
3L—¢L¢=—Lgt
LO)=1, L"0)=0, L(0)=0 4.2)

where N = NyL and N, < 1. The above is essentially
the diffusive thermocline model discussed by Gill
(1985). The formal apparatus required to solve (4.2)
was developed by Gill and Smith (1970). Figure 7 shows
the solution of (4.2) obtained using these results. There
is a slight density inversion because we have taken Ny
= —1 and used the linearized solution from (4.2). Ap-
parently this value of N is so large that the linear theory
incorrectly predicts a density inversion. The nonlinear
solution of (4.1) with Ny = —1 is shown in Fig. 8, and
there is no density inversion. However, the linear so-
lution does respectably predict the velocities: Fig. 9
compares the linear prediction with the nonlinear so-
lution.

Figures 10 and 11 show the solution with larger val-

ues of | No|. In Fig. 11, where Ny is —10, there is a large
region of fluid with uniform density po which originated
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at the surface. The bowl is bounded below at about {
= 3.5 by a region of rapid variation (an internal
boundary layer). At still greater depths there is the rest-
ing stratification in which the density increases linearly.
It is clear that as | Ny| becomes larger, the bowl of uni-
form fluid becomes deeper and the boundary layer
“sharper”. In the ideal limit the boundary layer has
vanishing thickness and the density discontinuously
changes from pq to the resting stratification. Through-
out this limiting process the no-flux condition at the
eastern boundary is satisfied.

The conclusion is that the ideal fluid equations have
“weak” (i.e. discontinuous) solutions which can be un-
derstood as the singular limit of a dissipative model.
In less artificial problems, where the Ekman pumping
and surface density are independently specified and no
similarity solutions exist, we may expect analogous be-
havior. And this is an important ingredient of the cir-
culation theories given by Rhines and Young (1982),
Luyten et al. (1983) and Pedlosky and Young (1983).
In all of these theories there are domain boundaries
that separate different flow regimes (e.g., Figs. 4, 9 and

~L0

00 03 fo 15 20 23 Jo Js 40 45 30 48 60 43 7o

30

NO) = 10

0.0

-10.0 -50

-850

-230

-30.0

00 io 20 Jo 40 50 60 7o 20 5.0 o

Mo %o

2.0

20

-20 00

FIG. 11. Numerical solution of the nonlinear problem when N(0)
= —10. In this case the vertical velocity is large enough to create a
“pycnostad” of density po which extends down to about { = 2.7. The
vertical velocity is a linear function of depth in this region. The pyc-
nostad is bounded below by an internal boundary layer at about {
= 3.6 [compare this with {, = 30" = 3.1 from (4.4).] At still greater
depths is found linearly stratified motionless fluid.
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TABLE 2. Summary of the numerical resuits for m = 1. These three
numbers, together with Ng = 0, are the initial conditions needed to
ensure that M o) =0. Row 1 is the linear solution (Gill, 1985), in
which Nj is equal to some small number, q, and the other starting
conditions are proportional to this.

W. R. YOUNG AND G. R.

No No Ny
a<l (—1.037051)a (1.838125)a
~1 0.90508 —0.892
-2 1.5854 -0.995
—4 2.6126 —1.00
-6 3.4483 -1.00
~10 4.8605 -1.00

10 in Pedlosky and Young). At these initially unknown
boundaries the solution is not analytic and the assertion
is that a slight amount of dissipation smooths these
discontinuities into internal boundary layers. Calcu-
lation of the detailed local structure of the boundary
layer may be quite involved (e.g., the analysis in section
3) and of course requires a specific model for the dis-
sipation (e.g., xp.;). However, the location of the
boundary layers (at least to zero order) and their im-
portant global role in satisfying the boundary condi-
tions can be simply understood from the ideal fluid
model.

For example, consider (4.1) and suppose that |Np|
> 1. As in section 3 we argue that in most of the flow
the diffusive term, Ny, is small. Consequently, outside
the boundary layers,

Ng—«"‘ 1=0. (43)

The solution of the above which satisfies the boundary
conditions is
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Ne —(E—EDHEH28)/6, if §<ia
[ 0, if ¢>6

e =(—3Np)'"”

The outer solution above is discontinuous at { = {,.
This is the location of the internal boundary layer. For
example, when Ny = —10, {, = 3.1, which compares
favorably with the location of the region of rapid vari-
ation in Fig. 11.

To aid visualization in physical space, we have plot-
ted a zonal density section in Fig. 12. In this figure N,
= —10, and there is a large bowl of uniform density
injected from the surface. The dashed curve is { = ¢,,
i.e., the prediction from (4.4c) of the location of the
transition from uniform to linearly stratified fluid. The
gentle undulations of the deep isopycnals are produced
by the oscillatory decay of Gill and Smith’s (1970) lin-
ear solutions. (Their analysis strictly applies in the deep
fluid where the isopycnals are displaced only slightly
from their resting positions.) This figure makes it clear
that the addition of a small amount of vertical density
diffusivity produces smooth fields that satisfy no-flux
boundary conditions at the east. Also clearly indicated
is the internal boundary layer which in the ideal limit
is a discontinuity.

A detailed asymptotic analysis of the internal
boundary layer at {, boundary layer might now pro-
ceed along the lines of that in section 3. Prompted by
human fatigability we do not undertake this chore, but
instead remain content with the numerical solutions
in Figs. 8, 10, 11 and 12, and the outer solution in
(4.4). Finally, Table 2 provides the extra initial con-
ditions needed to solve (4.1) numerically.

4.9)

FIG. 12. A zonal density section (i.e., Z + DNy, with D* oc x) from (2.11) when
N, = —10. The horizontal units are arbitrary. The solid curves are isopycnals at
equal intervals, say 6p = 1. Thus the linear stratification on the eastern boundary
is apparent. To emphasize the rapid density variation we’ve added two extra
isopycnals (the dotted curves) which intersect the eastern boundary at z = —%
and z = —'.. The dashed curve is { = {,, i.e. the location of the internal boundary
layer or from ideal fluid theory, the position of the density discontinuity.
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5. The general case and some remarks on global bal-
ances

The similarity solutions discussed in the previous
sections are not intended as global solutions. Their
scope is much more modest; they illustrate how vertical
diffusion smooths the density discontinuities produced
by Ekman pumping, which injects light fluid into a
sluggish abyssal region. This is shown in Fig. 12 where
the deep isopycnals are nearly flat until they strike the
intruding bowl of warm surface water.

But many central issues have been ignored. For in-
stance, what determines the resting stratification (2.5)?
The present family of similarity solutions assumes this
is given at the outset. This assumption hides some im-
portant, and perhaps unrealistic, assertions about the
global heat and mass fluxes required to establish this
resting stratification.

This is apparent if we examine the asymptotic (i.e.
¢ —> oo) behavior of N in (2.16). This can be done
linearly using

m(""_l>Nm and m(m_ l)g‘m—2>N§“§. (51)

(Clearly m cannot be equal to 0 or 1.) This calculation
is straightforward, but it is physically more transparent
to note that from (2.5) and (2.14) one can also calculate
was z —> —oo: .

w~ +k(m—1)/z (5.2)

provided m # 0, 1. A more careful analysis of (2.16)
shows that the error in the above is O(z™2), i.e., when
m#0 or 1, the velocities decay algebraically as
zZ=> —o0.

One can also calculate the deep heat flux associated -

with the resting stratification. Defining
0=(po— p)/po
the heat flux is proportional to
F=wl—«l,
=—ex(—2z)" Y/l

i.e. if m = 1, the heat flux is constant.

As Tziperman (1985) has recently emphasized, a
steady state requires that the integrated interior mass
and heat fluxes in (5.2) and (5.3) be balanced by equal
and opposite net fluxes elsewhere. Presumably these
fluxes are associated with penetrative deep-water for-
mation in marginal seas. The power law family in (2.5)
requires that these processes produce the net fluxes
~ given by (5.2) and (5.3). This may not be realistic, e.g.,
if m is greater than one, then (5.2) gives negative deep
vertical velocities. Given the arbitrariness of these as-
sumptions, we have not attempted a detailed investi-
gation of the general case, m # 0 or 1.

These cautionary remarks emphasize that the sim-
ilarity solutions lack some very important physics. They
are unable to help us understand how the deep density

(5.3)
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field is maintained by arbitrarily specified mass and
buoyancy sources (for which see Tziperman, 1985). In
the present study they are best thought of as local so-
lutions in the neighborhood of the eastern boundary.
As such they illustrate the nonlinear transition between
two different flow regimes and provide some clues as
to what physical assumptions are acceptable in more
ambitious, global models.

6. Conclusion

Solutions of the ideal fluid thermocline model that
satisfy no-flux eastern boundary conditions must be
singular (i.e., nondifferentiable) in the interior. It has
been shown here that these “weak solutions™ can be
understood as the limiting case of a dissipative model.

Specifically, if vertical density diffusion is used as
dissipation, then there are solutions that are both
smooth and satisfy no-flux boundary conditions. As
the diffusivity becomes small, or equivalently the Ek-
man pumping becomes large, the flow develops internal
boundary layers which effect an abrupt transition be-
tween fluid of two different densities. In the singular
limit, when the diffusion vanishes identically, these in-
ternal boundary layers are surfaces at which the density
is discontinuous. Throughout this limiting process the
flow continues to satisfy a no-flux boundary condition
at the east.

We emphasize that this conclusion may depend on
the choice of dissipative mechanism. If we used hori-
zontal rather than vertical diffusion, the boundary lay-
ers might shift to the eastern wall. In fact, there is some
evidence of this in the Cox and Bryan’s (1984) nu-
merical simulation. Their Figs. 2 and 5 show flow into
and out of an eastern boundary layer. However, the
velocities are much weaker than those in the interior
except in small pockets near the northern and southern
boundaries of the basin.

The one theoretical conclusion we can unequivocally
draw is that there are physically sensible, nondiffer-
entiable solutions of the ideal fluid thermocline equa-
tions (“weak solutions”). In other contexts (e.g., gas
dynamics) the concept of weak solutions, and the rec-
ognition that the singularity is associated with the fail-
ure of some physical idealization (e.g., no dissipation),
is familiar. The recent circulation theories of Rhines
and Young (1982) and Luyten et al. (1983) have im-
plicitly introduced this idea into thermocline theory.
The present article has attempted to make the as-
sumptions in these earlier studies both more explicit
and more palatable.
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APPENDIX A
Killworth’s Theorem

Killworth’s theorem states that the only solution of
the ideal fluid equations that satisfies

(i) pA0,y, 2) # 0, i.e., the fluid at the eastern bound-
ary is stratified;

(ii)) (0, y, z) = 0, i.e.,, no mass flux through the
eastern boundary;

(iii) All derivative of p exist everywhere

is the trivial solution u(x, y, z) = 0.

Begin by noting that if ¥ = 0 at x = 0, then from
thermal wind, p, must also be zero. Then the density
conservation equation reduces to

wp,=0. (A1)

Because of (i) it follows that w = Q at the eastern
boundary. However, 8v = fw, shows that v is then also
zero. Again because of thermal wind, it follows that p,
is zero at the eastern boundary. Now if we differentiate
(2.1e) with respect to x and evaluate the resulting
expression at x = 0, we find w, = 0 on the eastern
boundary. Again using the vertical vorticity equation
and the thermal wind we find p,, = 0. This process of
taking x derivatives of the density equation can be
continued indefinitely, and at the nth stage the con-
clusion is that 8"p/dx" is zero. Hence, if p is infinitely
differentiable it must be equal to its value at the eastern
boundary everywhere. Thus, the isopycnals are flat and
the fluid is motionless. (In fact, even this conclusion
needs qualification. For instance, the function e %" is
infinitely differentiable and all its derivatives vanish at
the origin, yet it is nonzero. Perhaps one should say
that if (i), (i) and (iii) above are satisfied, then the only
“nonpathological” solution is u = 0.)

APPENDIX B
Numerical Methods

Several factors mitigate against the use of standard
shooting methods for the nonlinear boundary value
problems solved here. First, the problem requires a two-
parameter shoot for unknown constants at the origin,
and second, the occurrence of spontaneous singularities
in the form of first-order poles poses a problem of severe
numerical instability, indeed, only as the values of both
parameters are accurately established does the pole re-
cede to infinity. (The nature of the difficulties encoun-
tered here is quite similar to those found in a nonlinear
boundary value problem discussed by Ierley and Ruehr,
1985, and a more complete discussion appears there.)
The computation time required to find a solution of
given accuracy is substantially diminished by the use
of spectral methods, and the global character of the
solution permits a simple application of the boundary
conditions as £ = oo, obviating the need for an ad hoc
heuristic approach tailored to the numerical instabil-
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ities of the conventional shooting approach. The draw-
back of this approach lies in the relatively greater pro-
gramming time required, and, to a degree, in the dif-
ficulty of adapting the program to minor changes in
the problem.

A spectral representation of the solution is

K
f&) = 2 fuTu(z(§)) (B1)

n=0

_af—1
Z(E)—aE_H-

Here T, is the nth Chebyshev polynomial. The “map-
ping parameter” « is adjusted so that the Chebyshev
resolution is evenly distributed. With this variable
change, (3.1) becomes

((z— 1)‘D4+3(z— 1)3D3+9(Z_ 1)2D2+3(z— I)D)f

where

16 4 4 2

(o =) NE=1 3=, 3
—(a+ > Df)( D= D+4D)f

where the boundary conditions are:
== 0]
=) =f1(=1)=0

and D denotes a z derivative. An analogous equation
for m = 1 can be derived. Imposing f”(c0) = 0 is a little

tricky because
&_dfdz
dt dzdt

and dz/dt tends to zero as £ = oo. However, because
we expect dffdf to vanish exponentially rather than
simply algebraically, we can still impose
4
dz

(B3)

=0
=1

which is easily implemented. For more general m, f
will decay only algebraically at co and more care is
required in the solution, but in any case the problem
ought then to be reformulated with a decomposition
other than that given in the body of the paper which
introduces artificial singularities at the origin. It is per-
haps best then to solve directly for M imposing a con-
dition on the asymptotic growth.

The strategy is now to determine the f,, in (B1) by
substituting this representation into (B2) and solving
the resulting Kth order system using Newton’s method.
In the examples presented here K = 41.

The solution for m = 0 poses the problem of finding
a suitable initial guess for Newton’s method because
there is no linearization of the problem. To handle
this, the problem

Lf=Nf
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where L represents the linear (diffusive) term, and N
the nonlinear terms, is written as a time dependent
problem:

6.+ 1)Lf= Nf

whose solution is evolved several hundred steps until
reasonably equilibrated, and the output then used as
an initial guess in Newton’s method, which converges
in three or four steps. This approach works acceptably
for values of Ny = —6, but instabilities observed in
both the time dependent problem and Newton’s
method for values of N, smaller than this have not
been satisfactorily resolved. For m = 1, solution of the
related linear problem provides an adequate starting
guess for Newton’s method for all values of N, at-
tempted.

After these rather complex methods, the solution of
(3.15) is pleasantly straightforward. Define

b=A
A'=T. (B4)

Then (3.15a) is
I'=—-Q,T. (B5)

Equations (B4) and (B5) are equivalent to the original
equation. Now use A as a new independent variable.
After some rearrangement:

Taa="A

and a little thought shows that the boundary conditions,
(3.15b), are

(B6)

I'=0 at A=0

I'=0 at A=1. (B7)
The first of these corresponds to n = oo in (3.15) while
the second is » = —oo. The unknown constant ¢ in
(3.16) is the shooting parameter dI'(0)/dA required to
ensure that I'(1) = 0.
We observe that (B6) is unchanged by the transfor-
mation:
=k, A=k?A, (B8)

numerically solve the initial value problem

d’r
MigaE= A
T
I'0)=0, gdzl&—(l(» =1

and find that I';(1.3039059221) = 0. From (B8) this
zero will be at A = 1if (1.3039)k% = 1 or k = 0.87574
and this is also 4T'(0)/dA. Thus the unknown constant
cin (3.16) is calculated without trial-and-error shooting.
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APPENDIX C
Connections with Earlier Solutions

One of the secondary goals of this paper was to pre-
sent a new class of similarity solutions. For this class
the partial differential equations in (Xx, y, z) are reduced
to a single partial differential equation in y and { [see
(2.12)]. In much of the earlier work an ordinary dif-
ferential in the similarity variable was the goal (e.g.,
Robinson and Welander, 1963). While less general than
the present approach this has the primary virtue of
simplicity. Indeed the detailed calculations in the pres-
ent article have been confined to the case in which
(2.12) reduces to an ordinary differential equation.
Further, we show below that our analysis has certainly
not exhausted the instances in which this additional
reduction of (2.12) is possible. The purpose of this ap-
pendix is to unify the various results in the literature
and indicate those that are special cases of (2.12). )

First consider (2.10). At this stage of the development
D has not been chosen to eliminate the x-dependence.
In fact, we note that if x = 0, then the x-dependent
term on the right-hand side vanishes! The implication
is that for an ideal fluid problem, D(x, y) can be selected
to satisfy another boundary condition. Suppose for in-
stance that 7 = 0. Then from (2.6) we have a boundary
condition for M at { = 0.

p(x,3,0) = po[1 + eM(0, y)]

i.e., the surface density can be an arbitrary function of
y. Now from (2.9)at { =0

w(x, ,0) = —(Beg/f >)2DDM(0, y)

so that by selecting D(x, y) and M(0, y) an arbitrary
pattern of Ekman pumping can be accommodated. The
freedom to satisfy these two surface boundary condi-
tions independently depends crucially on the assump-
tion that x = 0. Otherwise one is forced to choose D
asin (2.11), and consequently from (2.18) the pattern
of Ekman pumping is determined. Investigation of this
particular simplification of the ideal fluid thermocline
would take us too far afield. For the present we spec-
ulate that this may be a route to a continuously strat-
ified model of the ventilated thermocline. Indeed Luy-
ten et al.’s (1983) solution for the density field also has
the form (2.6) with m = 0 if the depth of their first
moving layer at the eastern boundary (H, in their no-
tation) is zero.

Our present concern is not ideal fluid models but
rather the diffusive case in which the choice of D is
dictated by (2.11). In this instance M must be found
by solving the rather complicated Eq. (2.12). However,
this equation simplifies greatly if we look for solutions
of the form

My, $) = (y/ay G(§),

(&)

(C2)

Ay)=Wlay”  (C3)
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where a has the dimensions of length. With the above
the ordinary differential equation for G is

rg-(Gle — G/12) + rG/GI/ + [(m + 2)G _ g-GI]G"' = ._Giv
(C4)

where the dash is a {~derivative. The above is essentially
Eq. (32) in Robinson and Welander (1963). There are
apparently two arbitrary parameters, r and m. How-
ever, the boundary conditions introduce a difficulty.
From (C3) and (2.6) we note that the density is

p = poll +e(D/IY"(y/ay G (§)] (&)

and, thus no matter what the asymptotic behavior of
Gy as § — oo, it is impossible to recover the resting
stratification (2.5) at great depths. If one accepts this
as an appropriate boundary condition as { —> oo, then
(C3) cannot be used to simplify the partial differential
equation (2.12). Thus, (C4) is not consistent with the
boundary conditions.

To circumvent this difficulty one might attempt to
generalize (2.15) by combining it with (C3)

M(y,§)=[§""2/(m+ 1)(m+ 2)] + (y/ay N({)
A(y)=(y/a)™” (C6)

so that once again N is essentially the difference between
M and its asymptotic ({ = oo) value. Substitution of
(C6) into (2.12) shows that the y dependence ‘““cancels™
only if m = (, i.e. only if the abyssal fluid has uniform
density po(1 + €). The equation for N is then

r{(N'N” —N")+ rN'N" + QN — {N')N" = —N*® (C7)
and the boundary conditions are
NO)=Ny, N"0)=-1, N'(0)=0. (C8)

The first boundary condition controls the strength of
the Ekman pumping. The second two concern the
density field. In terms of N this is

0 =po[l + e+ e(y/a)yN"($)]

so that from (C8b), p = pp at y = a, z = 0. Because of
(C8¢c) p = po(1 + €) as { = oo. If r > 0 then (unreal-
istically) the surface density decreases as one moves
northwards. If 7 < 0 then the density increases to the
north and approaches the abyssal value, po(1 + ¢). In
this case however the distribution becomes unrealistic
as one moves towards the equator and there is a sin-
gularity at the equator.

It is difficult to decide whether these difficulties are
intrinsic to (2.12) or if they follow from an “unnatural”
assumption about the structure of the solution [Eq.
(C3) or (C6)] which artificially restricts the boundary
conditions. We're inclined to speculate that this latter
alternative is the case. After all, (2.12) with M, = 0
does reduce to the physically sensible problems dis-
cussed in sections 2 through 4. More general and re-
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alistic surface density distributions may unavoidably
require solving the partial differential equation (2.12)
numerically.

APPENDIX D

Details of the Transition Region (m = 0)

This appendix discusses the mathematical details
used to obtain (3.7).

To analyze the transition region at { = {,, begin by
rescaling (3.1), guided by (3.5)

P=Ny/¢2
/¢ .} ' 1)
=0/
One finds
(2P— £PYPy; = — 0Py
b=(=2Ng) 2= {32 (D2)
as the rescaled equation.
Now it is convenient to use
w=2P—tP, (D3)

as a new independent variable. Essentially w is the ver-
tical velocity and, in terms of this variable, (D2) is re-
duced to a third-order equation

(0 — Ew)wy = Sbwyy
w(0)=-1, «'(c0)=0. (D4)

It is now straightforward to recover the equivalent
of (3.5a) in terms of w and £. A regular perturbation
expansion of (D4) is

w=wytow + - (Ds)
and the leading order solution is
wo=—14+§ §E<1. (D6)

Further, one finds that all the higher order terms are
zero. Thus the corrections to (D6), which are intro-
duced by the internal boundary layer at £ = 1, are
exponentially small.

A precise analysis of the “lower outer” solution
(3.5b) is straightforward and will be deferred until after
the treatment of the “inner boundary layer” at £ = 1.

In this region one searches for a balance in (D4)
using the simplest possible rescaling

w=0"Q(n) }
n=(—1)8"

The scaling exponents, m and n, are determined by
two requirements. First, the most highly differentiated
terms in (D4) balance, and this implies m + n = 1.
Second, the outer limit of the inner solution (n ~>» — )
must match the inner limit of the outer solution
(¢ — 1). This implies m = nsothat m = n = Y2 in

(D7)
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(D7). The inner problem is now reduced using a regular
perturbation expansion

Q=0+82Q+ - (D8)
and the leading order equation is
Q% =—2%

0(00)—>0 and Q(—c0)—>n (DY)

where the prime denotes an n-derivative. The boundary
conditions in (D9b) are that “above” the internal
boundary layer (¢ < 1 or n = —o0) one matches (D6)
or equivalently (3.5). Below the internal boundary layer
(> 1orn— o)

(D10)

where ¢ is an unknown constant determined by nu-
merically solving (3.15). After reversing the various
scalings which led to (D9) this constant is related to
the asymptotic value of the vertical velocity at z = —co.
The numerical calculation of ¢ from (D9) is very easy
and in fact can be done using an initial value method,
i.e., (D9) can be rearranged so as to avoid the numerical
solution of a two-point boundary value problem. The
details have been relegated to appendix C and the result
of the calculation is ¢ = 0.87574.
The problem for Q, is now linear:

QY + QoQ7 + 9,9 =
Q(—0)=>0, Q(c0)—0.
By inspection, the solution of this equation is
Q=1-9

so that Q; = 1 as n = oo. This exact solution is really
not as remarkable as it first seems. Specifically, note
that

Q—>c as n—=>o©

Q= Qo+ 61 — D)+ O(5)
= Qo(n — 8') + 62+ O(d)

and the implication of this Taylor series “reconstitu-
tion” is that the zero-order solution made an O(5'/%)
error in the location of the boundary layer. This error
is corrected at next order. Aside from this we also have
an improved estimate of the asymptotic value of Q as
n—> 00, 1.e.

Q—>0.87574 + 8" (D11)

The constant ¢ in (D10), and the correction in (D11),
are “inner boundary conditions™ for the lower, outer
problem. Because m = %2 in (D12), and Q@ — ¢ as
n —> oo, we see that

w—>c'? as

E—>1. (D13)
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Hence, in the lower outer region, £ > 1, w must be
expanded as

w=08"w;+ 8wyt + « - (D14)
The leading term from (D4a) is then
-—Ewlwles =0 (DIS)

and so to satisfy the boundary condition in (D13),
w; = ¢ and the deep velocity is a constant. Likewise
wy = 1.

This completes our analysis of the almost-ideal limit.
In order to compare the results of this theory with the
numerical solution of (3.1) in Figs. 3 to 5 we must
reverse the various scalings. It is sufficient to note that
the asymptotic value of N as { = oo is given by

Nop =357, =2 {4700 (D16)

1
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