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AssuTing there is a separation in scale between the mean flow and fluctuations, the 
linearized potential vorticity equation is solved using the WKB method. Attention is focused 
on wave properties such as action and enstrophy which in some circumstances are conserved. 
In the most general case of Rossby waves supported by an arbitrary mean potential vorticity 
field, @=J/h,  and propagating through a forced mean flow neither action nor enstrophy is 
conserved. It is shown that action is produced by the forcing which drives mean flow across 
4 contours, while enstrophy is produced both by complicated 9 contours and by horizontal 
divergence of the mean flow. 

1. INTRODUCTION 
The interaction of Rossby waves with zonal mean flow has been exten- 
sively studied (see Dickinson, 1978, for a review). The energy density E of 
a Rossby wave train on a P-plane is not conserved as it propagates 
through a slowly varying mean flow. Instead, if the mean flow is zonal (i.e. 
unforced), the action density A =O- 'E defined by Bretherton and Garrett 
(1968) is conserved, 

aA/at+V . (CA)=O, (1) 

where C is the group velocity and O the intrinsic frequency. 
If the mean fiow is for& the problem is more complicated. Müller 

(1978) proved that A is not conserved by waves propagating through a 
slowly varying, forced mean flow on a homogeneous, constant depth, 8- 
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40 W. R.  YOUNG AND P. B. RHINES 

plane ocean. However, it is shown below that in this case the enstrophy 
density of the wave packet, 

P = ( k 2  + /')E 
= -PkA,  

is conserved and that the analogous wave-potential enstrophy is conserved 
in a stratified, forced flow. When the mean flow is independent of x, k (the 
x-wavenumber) is constant and P is proportional to A.  

The purpose of this investigation is to derive the equations governing 
the change of quadratic wave properties such as E, A and P in the general 
case of Rossby waves propagating through a forced mean flow in an 
ocean with slow depth variation. In particular our results are relevant in 
the gently forced interior of a homogeneous ocean where the Sverdrup 
balance for the mean flow ( U , U )  with depth h(x, y ) ,  

li& + Uci, = F ,  

4 = Cfo + PyYh (x, YX 

(3) 

(4) 

obtains. As will be seen in Section 4 depth variations introduce severa1 
complications; in Section 2 we discuss the simpler problem of Rossby 
waves propagating vertically through a stratified incompressible fluid. In 
Section 3 a simple example illustrating the nonconservation of action in a 
forced mean flow is given. 

2. ROSSBY WAVE TRAINS IN THREE DIMENSIONS 

On a mid-latitude P-plane the linearized perturbation geostrophic poten- 
tiai vorticity equation in the Boussinesq approximation (see, e.g. Holton, 
1975) is 

Assume that there is a separation in scale between the mean flow and the 
perturbations and look for a wlution of ( 5 )  using the WKB ansatz 

S '=a(X,  I:Z, T)exp{ip-lB(X, i :Z,  T ) ) .  (4) 
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ROSSBY WAVE ACTION 41 

where 

and 

Length (or time) scale of perturbations 
4 1. 

'=Length (or time) scale of waves 

Equation (6 )  is substituted into ( 5 )  and equal powers of p collected to 
produce the hierarchy (dropping capitals) 

(7) po : O (k2  + 1' + f O N -  m2) + p k  = O, 

- 
where 

and 

(it has been assumed that the Brunt-Vaisala frequency N varies on the 
same scale as the mean flow.) Eq. (7) is just the dispersion relation 

W = w i- $,, k - $x 1 = - fi k/( kZ + 1' + f 0 N - mZ ). 

Eq. (8) describes the variation in amplitude of the wave packet, after a 
little algebra it can be put in the more intuitive form 

aEpt  + v  . ( c ~ ) = ~ a ~ K , K ~ ~ ~ , ~ + ~ a ~ K , K ~ a ü , / a z ,  

E = $ ( k 2  + i z +  f i N - 2 m 2 ) u 2 ,  

(613 fiz)= ( -  $p $J 
the geostrophic part of =i the mean velocity field, (9) 

where i and j equal 1 and 2. The first term on the right-hand side of (9) is 
the conversion of mean kinetic energy to E by. horizontal Reynolds 
stresses while the second term is the conversion due to vertical buoyancy 
flux. The derivation of (9) from the basic equations is given in Appendix 
A. 
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42 W. R. YOUNG AND P. B. RHINES 

Surprisingly, the energy conversion terms on the right-hand side of (9) 
can be further simplified using the standard expressions for the rate of 
change of wavenumber along a packet trajectory (Lighthill, 1978) 

with analogous expressions for i and in. Since 6 has no explicit x or y 
dependence it follows that 

d 
- ( K z )  = - 2KiKjüi, dt i, j = 1,2, 

- dt d (f ;N-’rn’ )= - 2 K , K t ( 2 ) ,  

and so (9) can be rewritten as 

w/a t  + v . ( C P )  =o, 
P = ( k 2 + 1 2 + f ~ N - 2 m 2 ) E .  

Note that since 

P =  -PkA, 

it follows that 

a A / a t + v . ( c ~ ) =  -~(d/dr)( ink)  

= k- AKiaüJax, i = 1,2; 

A is conserved when the mean flow is unforced. 

one finds 
Integrating (11) over a volume which properly contains the wave train 

P d v  = O, 

so that the total enstrophy is conserved. It is instructive to derive this 
result directly from (5). Multiply (5) by q‘ and average over a period to 
obtain 
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ROSSBY WAVE ACTION 

The crucial scale separation assumption implies 

43 

so that (13) simplifies to 

Integrating (14) over a large volume containing the train reproduces (12). 
This derivation emphasises the importance of the scale separation assump- 
tion which ensures that A 4  is constant over the wave train. This 
restriction is also inherent in the WKB derivation, note how (7) and (8) 
are unchanged if 4 is simply taken to be py. This does not rnean that the 
shear in the mean flow has been completely neglected; from (9) the WKB 
approximation accounts for the energy conversion associated with mean 
shear. 

3. AN EXAMPLE OF NONCONSERVATION OF ACTION 

As a concrete example of nonconservation of wave action (but con- 
servation of wave enstrophy) consider Rossby waves superimposed on a 
meridional flow in a homogeneous, constant depth ocean. Geisler and 
Dickinson (1975) analysed the critica1 leve1 absorption of Rossby waves in 
such a flow. Because the fluid is homogeneous we can employ con- 
servation of barotropic potential vorticity (see Appendix B) rather than 
the less exact conservation of geostrophic potential vorticity used in 
Section 2. 

Since the mean flow is meridional the iinearized potential vorticity 
equation is 

The coeficients of (15) are independent of y and t, so a solution can be 
found in the form 

Yj'= p(X)exp i(ly -ot), 

x = p x ,  

where w and 1 are constants and cp satisfies 

ip d d2U 
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44 W. R. YOUNG AND P. B. RHINES 

The WKB soiution of (17) is (see, e.g., Bender and Orszag, 1978) 

where k,  and k, are the solutions of the quadratic equation 

W =O - Iü(X ) = - pk(k2  + i2)-’ .  (19) 

For a linear shear, w- Zü=uX, k ,  and k, are plotted in Figure 1. From 
(18) and (19) it follows that 

A ( X ) = G - ’ E =  -$(Bkl ) - ’ (k2+12)2 ,  (20) 

so that 

C,A is proportional to k- ’  ( X ) .  (21) 

i.e. action is not conserved [cf. (i)] but 

P= - 8 k A  

is conserved. This can be deduced from the more general results of Section 
2: simply suppreçs the term f ; N - ’ m 2 .  

It is interesting to solve the ray tracing problem for a wave packet in 
the linear shear o - l5= ctX; the ray equations are (Lighthill, 1978) 

so 

and 

k =  k,  -üt, 

so 

The x wavenumber decreases linearly with time. A wave packet which 
starts at A on Figure 1 moves East initially, is reflected at €3, passes 
through the critical layer at C unscathed (Geisler and Dickinson, 1975), is 
reflected again at D and is finally absorbed at the critical layer near E. 
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ROSSBY WAVE ACTION 45 

FIGURE 1 The solutions of (19) when O = a X .  For each value of X there are two X 
wavenumbers; the waves on DCE have group velocity directed Westward while those on AB 
and DE have Eastward pointing group velocities. The critical layer is at x = O, as explained in 
Geisler and Dickinson (1975) only the short Eastward travelling waves suffer critical layer 
absorption. 
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46 W. R. YOUNG AND P. B. RHINES 

The WKB solution (18) is, of course, invalid at the turning points and the 
critica1 layer where (18) is singular. 

4. ROSSBY WAVE TRAINS IN AN OCEAN OF 
VARYING DEPTH 

In Section 2 we considered waves in a stratified fluid and used con- 
servation of geostrophic potential vorticity. In this section we discuss 
waves in a homogeneous fluid and use the more exact conservation of 
barotropic potential vorticity (see Appendix B), 

dq‘/dt + V * V  4‘ + V’ . V 2 q  = - q’h- ’ S, (22) 

(23,24) 
where 

q’ = l’/h, 4 = ( J / h  1 + 0 ( p 2  ), 

V, . (hv’) = O ,  V 2 .  (hV) = S,  
and 

8 ,  a ,  v 2 =- x +- y. ax ay 

The fluid source S in (26) is produced by the wind stress curl which 
pumps fluid out of the upper Ekman layer into the interior of the ocean. 
This is the forcing mechanism which gently drives mean flow across 
contours accarding to the classical Sverdrup balance (see Appendix B) 

(27) y . \ 7  2 q  - _  - h -  ’ {V x M .Z - 4s). 

The mean forcing term S appears in the perturbation vorticity equation 
(22). This is in contradistinction to (5) where mean forcing, such as 
diabatic heating and mechanical stress M, appears only in the mean 
vorticity equation (3). Thus M and S are not equivalent, S can produce 
perturbation enstrophy (e.g. Appendix C )  but M cannot.1 

Because of (25), we can introduce a mass streamfunction 

hv’ = Z x V I,!/’, 

4‘=h- 1Cr=h-2 { V:I,!/’- V, ln h . V, $ I } .  

(28) 

(29) 
and 

The WKB ansatz 
$ ’ = a ( X ,  y, T)exp {ip-IO(X, I: T ) ) ,  

fAlthough, this distinction between M and S disappears at the leve1 of quasi-geostrophic 
dynamics. 
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ROSSBY WAVE ACTION 47 

leads to 

O (po): 6 = h (&l- 4, k ) / (  kz + 1* ), (30) 

O (p' ): (c /& + Y .V,)(KZa) - &(aV, . K - aK - V, ln h + 2K V,a) 

+ (S /h  -2Y. V, ln h)(aK2) + hq,a, - hgp, = O, (31) 

where it.has been assumed that the depth h varies on the same scale as 
the mean flow and 

K = (k, i). 

After considerable algebra (31) can be transformed into an energy 
equation (see Appeiidix A) 

?E/?t + V , . (CE ) = 2EK - 'KiK { Ui,  - $SijVz . Y} + EY . V in h, (32) 

where 

The right-hand side of (32) is the conversion of mean flow kinetic energy 
to wave energy by Reynolds stresses. 

Eq. (25) can be rewritten using standard ray tracing results in two ways. 
Firstly using 

(see Lighthill, 1978) one obtains 

- - 
P = ( k 2 + I Z ) E = ~ h r ' 2 = ~ h 3 q ' 2 .  

Secondly using 

d&/dt = - eiKjüi, + ü&,i, 
(LighthilI, 1978) one has 

(34) 

JA/Jt + V,. ( C A )  = - A  (kF, - IFx)(kQy - Z&)- ', (35) 

where 
A = 0- ' E ,  
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48 W. R. YOUNG AND P. B. RHINES 

P in ( 3 3 )  is the vertically integrated relatiue enstrophy in contrast to the 
integrated potential enstrophy appearing in (1 1). The right-hand side of 
(33)  simplifíes in two circumstances. If h is constant ( 3 3 )  becomes 

aP/at + v, . ( Ç P )  = - v2 . (Y)P, (37) 

while if p = O and h = h, exp (- ax - 84') then 

8P/dt+V2.(CP)= - h V , .  ( h - ' v ) P .  (38) 

In both cases the production of P is related to the horizontal divergence 
of the mean flow; simple scale analysis gives: 

fractional rate of change of P - V  . Y - ) Y I  (Radius of the Earth}-I, 

where it is assumed that the mean flow is in Sverdrup balance. l n  
contrast : 

fractional rate of change of E - I Y 1 E- ; 

provided is much less than the radius of the Earth P is more nearly 
conserved than E.  The integral of (38) over a large region containing the 
disturbance is 

This result is derived directly from (22) in Appendix C .  
A in (35) is the wave action; A is conserved provided F=O, i.e. if the 

mean flow is unforced. The general source term in the Rossby wave action 
equation has not been given before and so the right-hand side of (35) is 
one of the principal results of this note. 

5. DISCUSSION 

The wave quantities P and A have different and complementary governing 
equations [(compare ( 3 3 )  and (35)]. Roughly speaking, the source terrn in 
(33) is nonzero when the 4 contours are complicated; in certain cases, 
such as a constant depth ocean, this source term vanishes and P is 
conserved. With extremely rough topography, not amenable to WKBJ 
analysis, topographic scattering produces wave enstrophy very efficiently. 
The production of A in (35) on the other hand is simply related to F = Ü &  
+ ügy. 
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ROSSBY WAVE ACTION 49 

The slow variation in amplitude of Rossby wave trains is determined at 
second order in the WKB expansion. At this leve1 of approximation the /?- 
effect is not equivalent to a sloping bottom and a mechanical stress M is 
not equivalent to Ekman divergence S.  It is gratifying that A is conserved 
in this general case when the mean flow is unforced, this is further 
evidence for the faithfulness and consistency of the /?-plane approximation. 

Another major result of this note is embodied in (11); in vertically 
propagating Rossby waves the enstrophy is conserved even when the 
mean flow depends on x. 

The above analysis does not apply to baroclinic Rossby waves with 
moda1 vertical structure (Rhines, 1970); McWilliams (1976) has shown 
that action is conserved in a two layer fiuid when the mean ílow is 
unforced. The full baroclinic problem is complicated by rapid vertical 
variation and nonseparability (similar to that which occurs in the familiar 
baroclinic instability problem). 
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Appendix A 
DERIVATION OF THE ENERGY EQUATION 

In this appendix (9) and (32) are derived; we prefer to obtain these energy 
equations from the equations of motion; they also follow from the WKB 
transport equations (8) and (31). 

To get (9), start with the linearized, geostrophic Boussinesq equations of 
motion, retaining order Rossby number terms, 

f h ’ + ( v ’ * V , ) Y - i  x f v ’ + f o V  ,+‘= O(Rossby number)’, 

Dd$”/dz +(v’ . V,) d$/dz + w’N2f; * = O  (Rossby number)’, 

(Al) 

(A2) 

V, . v’+ w; = O  (Rossby number)2, 643) 

v’ = (#’, o’), 644) 

where 
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50 

Forming the combination v’ - ( A l )  +N-2(A3)dil/’/êz one has 

W. R. YOUNG AND P. B. RHINES 
-__ 

B [i77 + $N - 2 (aI+b’/dz)2] + v . {F (v + d)} 
__ 

= - ~ : ~ ; Ü i , j + f o N - * ( õ S l ’ / d ~ ) ~ !  ( d $ / d ~ ) , ~ .  (A6) 

Using the WKB ansatz (6) to evaluate the terms in (A6) to lowest nonzero 
order one recovers (9). 

To get (32) start with the shallow water equations 

Bv’+(v‘~v~)i i -z*xfv‘+fovp‘=o,  (A71 

(‘48) v, . (hv’) = o. 
Taking hv’ . (A7) one has 

where [see (26) and the subsequent discussion] 

s = v, . (hii). (A10) 

Using the WKB ansatz together with (Alo) recovers (32) from (A9). 

Appendix B 
DERIVATION OF THE BAROTROPIC POTENTIAL 
VORTICITY EQUATION 

The shallow water equations in an ocean of varying depth h are 

av/at+i.xilqv= - V B + M ,  031) 

V, * h v = S ,  (B2) 

where 

B = p -  I p  + i v  ‘ V ,  

M = mechanical stresses, 
S = mass source term, 
q = (i + f ) / h  = barotropic potential vorticity. 

There are two forcing mechanisrns, M and S .  The mass source S is a more 
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ROSSBY WAVE ACTION 51 

realistic method of representing the divergent upper Ekman layer than the 
mechanicai stress M. 

To obtain the barotropic potential vorticity equation take the curl of 
(Bl) and use (B2) to get 

&/at + v 7 V z q = h -  { V x M * 2- 4s). 033) 

The linearized fluctuation equation (22) follows from (B3). Note that if 
M and S are mean forcing terms, S appears in the fluctuation equation 
but M does not. 

Appendix C 

DERIVATION OF THE INTEGRATED RELATIVE 
ENSTROPHY EBUATION (33) 

Consider an ocean with B = O and h = h, exp (- yy), so the potential 
vorticity equation (22) can be put in the form 

(d/dt +i . V,)(h2 q ' )  + (h- S - 2V . V, ln h)(hz 4') + yf&' =O, (Cl) 

If (Cl) is multiplied by hq', integrated over a large area and averaged (33) 
is recovered. In particular then the third term in (Cl) vanishes completely 
since 

Note that if (Cl) is multiplied by h"q' the third term will vanish only when 
n = 1 ; this suggests that out of the family of wave properties h"q', the 
member rn = 3 will have the,simplest conservation properties. 
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