
Dynamic Enthalpy, Conservative Temperature, and the
Seawater Boussinesq Approximation

WILLIAM R. YOUNG

Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

(Manuscript received 8 June 2009, in final form 27 August 2009)

ABSTRACT

A new seawater Boussinesq system is introduced, and it is shown that this approximation to the equations of

motion of a compressible binary solution has an energy conservation law that is a consistent approximation to

the Bernoulli equation of the full system. The seawater Boussinesq approximation simplifies the mass con-

servation equation to $ � u 5 0, employs the nonlinear equation of state of seawater to obtain the buoyancy

force, and uses the conservative temperature introduced by McDougall as a thermal variable. The conserved

energy consists of the kinetic energy plus the Boussinesq dynamic enthalpy hz, which is the integral of the

buoyancy with respect to geopotential height Z at a fixed conservative temperature and salinity. In the

Boussinesq approximation, the full specific enthalpy h is the sum of four terms: McDougall’s potential en-

thalpy, minus the geopotential g0Z, plus the Boussinesq dynamic enthalpy hz, and plus the dynamic pressure.

The seawater Boussinesq approximation removes the large and dynamically inert contributions to h, and it

reveals the important conversions between kinetic energy and hz.

1. Introduction

This note demonstrates that the Boussinesq approxi-

mation used in physical oceanography has an energy

conservation law that consistently approximates en-

ergy conservation in the full equations of motion. The

Boussinesq approximation employed by physical ocean-

ographers has three main ingredients:

1) the exact density r(x, t) in the inertial terms of the

momentum equation is replaced by a constant ref-

erence density r0,

2) the mass conservation equation is approximated by

$ � u 5 0, and

3) the full equation of state (EOS) relates the buoyancy

of seawater to temperature, salinity, and an approx-

imate pressure P0 2 r0g0Z, where Z(x) is the geo-

potential height (i.e., the gravitational–centrifugal

potential divided by the standard gravity at mean sea

level, g0).

Because of the third point, this ‘‘seawater Boussinesq

approximation’’ is more complicated than the standard

Boussinesq approximation in which thermodynamic re-

lations are simplified by linearizing the EOS (Spiegel

and Veronis 1960). The extra complexity of the seawater

Boussinesq approximation is required to capture ocean-

ographic processes, such as cabbeling and the thermo-

baric instability (McDougall 1987a).

Dewar et al. (1998) argue that because of the ap-

proximation discussed in point 3 there is a spurious

pressure gradient, which in western boundary currents

leads to velocity errors as large as several centimeters

per second. To avoid this quantitative and systematic

error, they recommend that ocean circulation models

might use the full pressure in the EOS. However, to do

so while continuing to use $ � u 5 0 means that the ap-

proximation does not conserve energy. Lack of energy

conservation is a qualitative failure of an approximation,

and thus we insist that Boussinesq models should make

the approximation discussed in point 3.

In an interesting discussion of the energetics of ther-

mobaric instability, Ingersoll (2005) uses an oceano-

graphic anelastic approximation in which basic state

quantities, such as r0, are functions of z rather than

constants. There are several reasons for preferring the

seawater Boussinesq approximation to Ingersoll’s an-

elastic approximation. First, the density of the ocean

is close to constant, and thus most ocean models and

theories use $ � u 5 0 rather than the anelastic mass
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conservation equation. Second, to obtain an anelastic

energy conservation law, Ingersoll restricts attention to

a linearized EOS. Thus, without further development

the anelastic model does not contain the principal non-

linearity of the EOS, namely, the quadratic dependence

of buoyancy on temperature. Consequently, cabbeling is

not captured by the anelastic model.

McDougall (2003) and Ingersoll (2005) emphasize the

central importance of enthalpy as an oceanographic

variable. Nycander (2009a, manuscript submitted to

J. Phys. Oceanogr., hereafter NY09) has recently pro-

posed a new definition of oceanographic neutral surfaces

as being orthogonal to an enthalpic gradient. Enthalpy

also proves to be the essential thermodynamic potential

of this paper.

Section 2 presents the seawater Boussinesq equations

and shows that this approximation has a consistent en-

ergy conservation law for the quantity ½juj2 1 hz, where

hz is the Boussinesq dynamic enthalpy. Section 3 dis-

cusses the exact equations of motion for a compressible

binary solution; and this review highlights the enthalpy

h, the conservative temperature Q, and near conserva-

tion of the Bernoulli density ½jUj2 1 g0Z 1 h (U is the

exact compressible velocity). Section 4 shows that the

Boussinesq energy density ½juj2 1 hz is the small part

of ½jUj2 1 g
0
Z 1 h that participates in mechanical (as

opposed to thermodynamic) processes. The appendix

presents the Boussinesq approximation to the internal

energy of seawater.

2. The seawater Boussinesq approximation

To formulate the seawater Boussinesq approxima-

tion, the density of seawater is written as

r 5
r

0

1 1 g�1
0 b

, (1)

where r0 is a constant reference density and b is the

buoyancy.1 In terms of the specific volume y [ 1/r,

the buoyancy is b 5 g0(r0y 2 1). Corresponding to (1),

the absolute pressure is represented as

P 5 P
0
� g

0
r

0
Z 1 r

0
p, (2)

where P0 5 101 325 Pa is the pressure at sea level of

1 atm. The dynamic part of the pressure is p(x, t) in (2).

Throughout this work, the subscript 0 indicates a con-

stant reference quantity evaluated at convenient refer-

ence values. For example, if T0 5 248C, P0 5 101 325 Pa,

and S0 5 35 on the practical salinity scale, then, using

the United Nations Educational, Scientific and Cultural

Organization (UNESCO) EOS 80 polynomial,

r
0

5 EOS
80

(S
0
, T

0
, P

0
) 5 1023.7 kg m�3. (3)

The basic conditions for the validity of the Boussinesq

approximation are

g�1
0 b� 1 and p� r�1

0 P
0
� g

0
Z. (4)

The first inequality says that there are only small frac-

tional changes in density about the reference value r0.

Extreme examples, such as

EOS
80

(0, T
0
, P

0
) 5 997.3 kg m�3,

EOS
80

(S
0
, �18C, P

0
) 5 1028.2 kg m�3, and

EOS
80

(S
0
, T

0
, 500P

0
) 5 1044.5 kg m�3

indicate that the parameter

� [ max
8x,t

b

g
0

�
�
�
�

�
�
�
�

(5)

is not likely to be greater than 0.03. The second inequality

in (4) says that the nonhydrostatic dynamic pressure

variations r0p(x, t) are much less than the pressure var-

iations resulting from the hydrostatic background. This

requirement is key in simplifying the thermodynamic

relations—the seawater Boussinesq approximation re-

places P by P0 2 g0r0Z(x) in all thermodynamic re-

lations. Here, r0p can be estimated as the range of

pressure variations at a fixed depth, which are due to

internal gravity waves, convective plumes, and eddies,

etc. A large mesoscale eddy has a r0p ; 104 Pa, which is

equivalent to the variation of the hydrostatic background

pressure over a distance of only 1 m.

Apart from small deviations owing to the uneven

distribution of the earth’s mass, the geopotential height

Z(x) is almost equal to the geometric height z and $Z

is almost equal to the unit vector ẑ. The distinction be-

tween z and Z(x) is maintained because it brings con-

ceptual clarity to the following discussion: in the seawater

Boussinesq approximation, depth has both a geometric

and a thermodynamic role. Thermodynamically, Z is

a surrogate for the background hydrostatic pressure

P0 2 r0g0Z(x) and this is usefully distinguished with Z.

Making the approximations outlined in the intro-

duction, the seawater Boussinesq equations are

1 The conventional definition is r 5 r
0
(1� g�1

0 b). There are

small differences between the two bs. The definition of (1) leads to

a cleaner expansion in section 4.
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Du

Dt
1 f 3 u 1 $p 5 b$Z 1 u8 , (6)

$ � u 5 0, (7)

DQ

Dt
5 Q

8
, and (8)

DS

Dt
5 S

8
. (9)

The quantities u8 , Q
8
, and S

8
on the right are diabatic pro-

cesses and external forcings whose exact form is un-

important for this discussion. Here, S is the salinity and Q

is the ‘‘conservative temperature’’ defined by McDougall

(2003); the decision to frame the Boussinesq approxi-

mation in terms of conservative temperature (rather than

potential temperature u) is discussed further in section 3.

On the right of (6), b$Z is the buoyant acceleration.

The system (6) through (9) is closed with an EOS

expressing the buoyancy b(x, t) in terms of the conser-

vative temperature Q(x, t), the salinity S(x, t), and the

background hydrostatic pressure P0 2 r0gZ. This EOS is

written as

b 5 ~b(Q, Z, S). (10)

The undecorated b on the left of (10) denotes the

buoyancy b(x, t) at a point in space–time. On the right,
~b denotes a thermodynamic function with three ar-

guments as indicated. This tilde notation distinguishes

thermodynamic functions, such as ~b(Q, Z, S), from

fields, such as b(x, t). So, for instance,

Db

Dt
5 Q

8 › ~b

›Q
1

DZ

Dt

› ~b

›Z
1 S

8 › ~b

›S
. (11)

Derivatives with respect to the coordinate z are denoted by

a subscript and derivatives with respect to the thermody-

namic variable Z are denoted by quotients of partials:

b
z

5 Q
z

› ~b

›Q
1 Z

z

› ~b

›Z
1 S

z

› ~b

›S
. (12)

To obtain a Boussinesq energy conservation equation,

it is crucial to introduce the thermodynamic function

~h
z
(Q, Z, S) [

ð0

Z

~b(Q, Z9, S) dZ9 (13)

and the associated field hz(x, t). The constant of in-

tegration in this definition ensures that ~h
z
(Q, 0, S) 5 0.

Following a 2005 personal communication from

W. R. Young, Vallis (2006) introduces ~h
z
, denoting it by

P, in a section on Boussinesq energetics. For reasons that

emerge in section 4 of this study, it is appropriate to

refer to hz in the present Boussinesq context, as the dy-

namic enthalpy, or more explicitly as the Boussinesq

dynamic enthalpy. In section 4, we introduce an exact

dynamic enthalpy for a fully compressible fluid; hz enters

the Bernoulli equation in much the same way as does

this exact dynamic enthalpy.

The material derivative of the Boussinesq dynamic

enthalpy is

Dhz

Dt
5 Q

8 › ~h
z

›Q
�DZ

Dt
b 1 S

8 › ~h
z

›S
, (14)

and taking u times the momentum equation,

1

2

Djuj2

Dt
1 $ � ( pu) 5

DZ

Dt
b 1 u � u8 . (15)

Eliminating (DZ/Dt)b between (14) and (15) gives the

energy conservation law

D

Dt

1

2
juj2 1 hz

� �

1 $ � (up) 5 Q
8 › ~h

z

›Q
1 S

8 › ~h
z

›S
1 u � u8 .

(16)

Using $ � u 5 0, one can rewrite (16) as

D

Dt

1

2
juj2 1 hz1 p

� �

5 p
t
1 Q

8 › ~h
z

›Q
1 S

8 › ~h
z

›S
1 u � u8 . (17)

This form emphasizes that ½juj2 1 hz1 p can be re-

garded as a type of Bernoulli density; the term pt on the

right means that the ½juj2 1 hz1 p does not satisfy an

exact conservation equation. Nonconservation of the

Bernoulli density resulting from the unsteady pressure

term is a well-known issue with the full equations of

motion [see the discussion in section 3 and in McDougall

(2003)]. The relation between ½juj2 1 hz1 p and the

exact Bernoulli density is clarified in section 4.

Notice that in the EOS (10), pressure is approximated

by the hydrostatic background P0 2 g0r0Z. If one uses

the total pressure in the EOS, then the resulting system

does not conserve energy. In some ocean circulation

models the velocity field is incompressible, and the

complete EOS, with pressure P0 2 r0g0Z, is used to

calculate buoyancy. These models have a consistent

Boussinesq energy conservation law.

3. The equations of motion of a compressible
binary solution

Turning now to the fundamental basis of the me-

chanical energy conservation law in (16), we consider
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the exact equations for the fluid mechanics of a com-

pressible binary solution:

DU

Dt
1 f 3 U 1 y$P 1 g

0
$Z 5 U

8
, (18)

Dr

Dt
1 r$ �U 5 0, (19)

De

Dt
1 yP$ �U 5 e8 , (20)

Dh

Dt
5 h8 , and (21)

DS

Dt
5 S

8
(22)

(Davis 1994; Salmon 1998; Vallis 2006). In the above

equations, y [ r21 is the specific volume, e(x, t) is the

internal energy, P(x, t) is the total pressure in (2), and

U(x, t) is the exact compressible velocity. The specific

entropy is h(x, t) and the salinity is S(x, t). As in (6)

through (9), we avoid explicit expressions for the dia-

batic terms by using the notation e8, etc.

The system is completed by a sixth equation, which is

a thermodynamic relation specifying the specific in-

ternal energy e as a function of the specific entropy h, the

specific volume y [ r21, and the salinity S as

e 5 ~e(h, y, S). (23)

Complete thermodynamic information can be derived

from the function ~e and the thermodynamic law

d~e 5 ~T dh� ~P dy 1 ~m dS (24)

(e.g., Callen 1985). Thus, from the relation above one

has three more thermodynamic functions of h, y, and S:

~T [
›~e

›h
, ~P [�›~e

›y
, ~m [

›~e

›S
. (25)

A seawater EOS is obtained by eliminating h between
~T(h, y, S) and ~P(h, y, S) to obtain y 5 r21, as a function

of T, P, and S.

Making the replacement d / D/Dt in (24) and using

(19) through (22), we see that consistency requires that

the diabatic terms satisfy the condition

h8 5 T�1(e8 �mS
8
). (26)

The diabatic fluxes of internal energy, entropy, and salt

satisfy the relation above (see appendix A of Davis

1994).

The equations above are not in the most convenient

form for the physical oceanography of seawater. Fofonoff

(1962) and McDougall (2003) show that it is better to use

the enthalpy

~h(h, P, S) [ ~e 1 P~y (27)

as a thermodynamic potential. A main advantage of this

formulation is that mixing at constant pressure con-

serves enthalpy.

As indicated in (27), ~h is naturally a thermodynamic

function of the two adiabatically conservative variables

h and S and the pressure P. Thus,

d ~h 5 ~T dh 1 ~y dP 1 ~m dS, so that (28)

~T 5
› ~h

›h
, ~y 5

› ~h

›P
, ~m 5

› ~h

›S
. (29)

Combining the internal energy Eq. (20) with the ther-

modynamic law (24) and the definition (27), one finds that

Dh

Dt
5 y

DP

Dt
1 e8 . (30)

Combining (30) with the conservation law for kinetic en-

ergy obtained by taking U � (18), one obtains this Bernoulli

equation:

D

Dt

1

2
jUj2 1 g

0
Z 1 h

� �

5 yP
t
1 e8 1 U �U8

. (31)

In many ways the Bernoulli equation above is the most

useful statement of physical oceanographic energy con-

servation. However, a crippling disadvantage of the

Bernoulli energy density

B [
1

2
jUj2 1 g

0
Z 1 h (32)

is that the kinetic energy density ½jUj2 is many orders of

magnitude smaller than g0Z and h, that is, the dynami-

cally important part of B is concealed beneath much

larger terms.

In the next section, we show that the Boussinesq en-

ergy conservation law, (16) or (17), should be regarded

as a simplification of (31) that reveals the dynamically

important part of B. The first step in picking apart B is to

decompose the enthalpy h. Thus, integrating the middle

relation in (29) from P to P0

~h(h, P, S) 5 ~h(h, P
0
, S) 1

ðP

P0

~y(h, P9, S) dP9. (33)

McDougall’s conservative temperature ~Q is defined by
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c0
P

~Q(h, S) [ ~h(h, P
0
, S), (34)

where c0
P 5 3991.867 957 119 63 . . . J kg21 K21 is close

to the average value of the specific heat capacity at the

sea surface of today’s ocean. Thus, c0
PQ is the potential

enthalpy, and it is convenient to define the dynamic

enthalpy as

~h
y
(h, P, S) [

ðP

P0

~y(h, P9, S) dP9. (35)

The total enthalpy on the left of (33) is the sum of the

potential enthalpy c0
PQ and the dynamic enthalpy hy.

The material derivative of the dynamic enthalpy hy is

Dhy

Dt
5

› ~h
y

›h
h8 1 y

DP

Dt
1

› ~h
y

›S
S
8
. (36)

Subtracting the expression above from Dh/Dt in (30)

one finds

c0
P

DQ

Dt
5 e8 � › ~h

y

›h
h8 � › ~h

y

›S
S
8
. (37)

All the results in this section are exact consequences

of the equations of compressible fluid mechanics and

thermodynamics. One exact result that we have not

bothered to write is a close relative to (31); this is the

conservation equation for the total energy E[ ½jUj2 1

g0Z 1 e. In section 4, we turn to Boussinesq energetics

and it is B, rather than E, that dominates this discussion.

Appendix A provides the Boussinesq version of internal

energy.

4. The seawater Boussinesq approximation again

The seawater Boussinesq approximation is obtained

with a Helmholtz decomposition of the total velocity U as

U 5 u 1 $x, (38)

where u is the solenoidal or incompressible part of U

and x is a scalar potential that generates the small

compressible part of U. The seawater Boussinesq ap-

proximation is obtained with the approximation U ’ u.

In the momentum equation (18), the pressure force is

approximated as

y$P ’�g
0
$Z 1 $p� b$Z, (39)

which involves neglecting a small term b$p/g0. The

Boussinesq mass conservation equation $ � u 5 0 is

obtained by replacing r by r0 in the mass conservation

(19). If required, the small divergence of U can be di-

agnosed from the higher-order terms in the mass con-

servation equation as

$ �U 5 =2x ’
1

g
0

Db

Dt
. (40)

After using U ’ u, the Boussinesq salinity equation

(9) corresponds closely to exact salinity conservation in

(22). The easiest path to the Boussinesq heat equation

(8) is to follow McDougall (2003) and neglect the final

two terms on the right of (37). This approximation pro-

duces the Boussinesq temperature equation (8), with

Q
8

[
e8

c0
P

. (41)

McDougall provides a full discussion of the small errors

introduced by this approximation, and he also empha-

sizes the important conceptual advantages of Q over

potential temperature.

The most puzzling issue presented by the approxi-

mation outlined above is the physical interpretation of

the Boussinesq energy conservation law (16) and the

role of the thermodynamic function ~h
z
(Q, Z, S) defined

in (13). To clarify this, we apply the Boussinesq ap-

proximation to the dynamic enthalpy ~h
y(h, P, S). Re-

placing h by the equivalent variable Q, the definition of
~h
y in (35) simplifies to

~h
y
(Q, P, S) 5 r�1

0

ðP

P0

1 1 g�1
0

~b(Q, P9, S) dP9, (42)

’ r�1
0 (P� P

0
) 1 ~h

z
(Q, Z, S), (43)

where ~h
z

is the Boussinesq dynamic enthalpy from sec-

tion 2. Because of the definition of b in (1), Eq. (42) is

exact. To evaluate the integral of the large constant 1 on

the right of (42), one must use the exact pressure in (2).

However, to evaluate the integral of the O(�) term g�1
0

~b,

O(�2) accuracy is preserved with Z ’ (P0 2 P)/(g0r0).

At a field point, (43) can be written as

hy(x, t) 1 g
0
Z(x) ’ hz(x, t) 1 p(x, t). (44)

McDougall (2003) remarks that c0
PQ and hy have the

same numerical order of magnitude. Moreover, the two

terms on the left of (44) almost cancel, so that hz and p

are much smaller than hy, g0Z, and c0
PQ.

We summarize our progress to this point by saying

that within the seawater Boussinesq approximation the
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full enthalpy h plus the gravitational potential energy

g0Z is decomposed into three terms:

h 1 g
0
Z ’ c0

PQ 1 hz1 p. (45)

Thus the difference between the Bernoulli density B 5

½jUj2 1 g0Z 1 h and the potential enthalpy c0
PQ can be

written as

B � c0
PQ ’

1

2
juj2 1 p 1 hz. (46)

In (45) and (46) the terms B, c0
PQ, and g0Z are much

larger than p 1 ~h
z

and ½juj2. But it is only the combi-

nation ½juj2 1 p 1 ~h
z

that matters for dynamics.

The Boussinesq equation (14) for Dhz/Dt can be re-

derived by substituting the approximation (44) into the

expression for the exact material derivative2 of hy in

(36). Neglecting the O(�2) contribution bDp/Dt, the

middle term on the right of (36) is

y
DP

Dt
’�g

0

DZ

Dt
� b

DZ

Dt
1

Dp

Dt
. (47)

The terms 2g0DZ/Dt and Dp/Dt above then cancel

against terms on the left of (36) arising from p 2 g0Z in

(44). Thus, in the Boussinesq limit (36) collapses to (14).

This alternative derivation shows that the Boussinesq

dynamic enthalpy hz is that small part of the total en-

thalpy that couples to the momentum equations via the

buoyancy flux (DZ/Dt)b. Also, the Boussinesq approxi-

mation satisfies the enthalpy equation very accurately;

using the conservative temperature as the thermal vari-

able captures the leading-order terms, and the Boussinesq

enthalpy equation (14) mops up the O(�) terms.

Finally, to obtain the Boussinesq version of the

Bernoulli equation, one substitutes the approximation

(46) into the exact Bernoulli equation (31) to obtain

D

Dt

1

2
juj2 1 p 1 hz

� �

5 p
t
1

› ~h
z

›Q
Q
8

1
› ~h
z

›S
S
8
1 u � u8 . (48)

The result above is Eq. (17), rewritten here for emphasis.

5. Discussion and conclusions

Because ocean currents are much slower than mo-

lecular velocities and the speed of sound, ocean kinetic

and gravitational energies are negligible relative to in-

ternal energy. The seawater Boussinesq approximation

of this paper accounts for the large molecular energies

via conservation of conservative temperature in (8) and

also for the much smaller energy of ocean currents via

the Boussinesq energy in (16) and (17). Small trans-

formations of energy between kinetic, gravitational, and

internal are dynamically crucial in processes such as

thermobaric convection and for the ‘‘epsilon theorems’’

discussed by Paparella and Young (2002), McIntyre

(2009), and Nycander (2009). The Boussinesq dynamic

enthalpy hz consistently accounts for the gravitational

and internal energies. The buoyancy flux (DZ/Dt)b, in

(14) and (15), is the agent that results in conversion

between ½juj2 and hz.

The Boussinesq dynamic enthalpy hz and the full dy-

namic enthalpy hy both figure prominently in NY09’s re-

examination of the ‘‘neutral surface’’ concept (McDougall

1987b; Jackett and McDougall 1997). In Nycander’s view,

it is enthalpy rather than buoyancy that defines the local

planes along which seawater mixes most readily.

The internal energy ez and the divergence $ � U play

secondary roles in the Boussinesq approximation, be-

cause both quantities can be diagnosed from within the

Boussinesq approximation. But aside from a reassuring

verification of the consistency of the approximate en-

ergetics, there is not usually a compelling reason for such

a close examination of the entrails. Indeed, hz is the cen-

tral thermodynamic function of the Boussinesq equations

of motion. The enthalpy is not altered by the pressure

work and $ � U is immaterial to the enthalpy changes

encoded in hz.

In addition to the enthalpy, the Bernoulli function

B also plays a central role in these considerations.

McDougall (2003) discusses the virtues of the Bernoulli

density B versus those of the potential enthalpy c0
PQ. The

analysis of section 4 shows that the seawater Boussinesq

approximation provides access to the information in

both B and in c0
PQ. This is accomplished by using what

amounts to an almost exact equation for c0
PQ (as ex-

plained by McDougall 2003) and separately dealing with

the dynamically important difference B 2 c0
PQ. The

beauty of the seawater Boussinesq approximation, as

developed in section 2, is that the approximation dis-

plays the crucial dynamical role of tiny energies, such as

½juj2 1 hz, while shielding the user from the details of

section 4. Critical to that shielding is the introduction of

the Boussinesq dynamic enthalpy hz. The origin of hz

is mysterious from within the Boussinesq framework,

but it becomes clear once the full thermodynamics are

considered, as done in section 4.
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APPENDIX

Boussinesq Internal Energy

In this appendix we return to the Boussinesq equa-

tions of section 2 and obtain the connection between hz

and internal energy. The first step is simplifying the

definition of enthalpy in (27). In the Boussinesq limit,

yP ’
P

0

r
0

� g
0
Z 1

P
0

r
0
g

0

� Z

� �

b 1 p, (A1)

where the O(�2) term pb/g0 is neglected. Putting (A1)

into e 5 h 2 Py, and using the decomposition of h in

(45), we have

e ’ c0
PQ�

P
0

r
0

1 1
b

g
0

� �

1 hz1 Zb
|fflfflfflffl{zfflfflfflffl}

[ez

. (A2)

In other words, given the equation of state ~b(Q, Z, S)

from section 2, one defines the Boussinesq dynamic

enthalpy hz via (13), and then the Boussinesq internal

energy ez is defined as the thermodynamic function

~ez(Q, Z, S) [

ð0

Z

~b(Q, Z9, S) dZ9

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

[hz

1 Z ~b(Q, Z, S). (A3)

Recalling the expression for Dhz/Dt in (14), it follows

that

Dez

Dt
5 Q

8 › ~h
z

›Q
1 S

8 › ~h
z

›S

 !

1 Z
Db

Dt
. (A4)

With the Boussinesq approximation for $ � U in (40),

the final term on the right-hand side can be written as

2r0g0Z$ �U and recognized as a Boussinesq expression

for pressure work (see also NY09).
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