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Various interactions between small numbers (two and four) of baroclinic, geostrophic 
point vortices in a two-layer system are studied with attention to the qualitative 
changes in behavior which occur as size of the deformation radius is varied. 

A particularly interesting interaction, which illustrates the richness of baroclinic 
vortex dynamics, is a collision between two hetons. (A heton is a vortex pair in which 
the constituent vortices have opposite signs and are in opposite layers. The “breadth” 
of a heton is the distance between its constituent vortices. A translating heton 
transports heat.) When two hetons, which initially have different breadths, collide, the 
result is either an exchange of partners, or a “slip-through” collision in which the 
initial structures are preserved. It is shown here that the outcome is always an 
exchange, provided the deformation radius is sufficiently small. This strongly contrasts 
with a collision between pairs of classical, one-layer vortices in which no exchange 
occurs if the initial ratio of the breadths is sufficiently extreme. 

Finally the transport of passive fluid by a translating baroclinic pair is investigated. 
A pair of vortices in the top layer transports no lower layer fluid if the distance 
between the vortices is less than 1.72 deformation radii. By contrast, the size of the 
region trapped by a heton increases without bound as the spacing between the 
vortices increases. 

1. INTRODUCTION 

Hogg and Stommel.(1984a, b) have recently discussed the dynamics 
of discrete, baroclinie, point-vortices. These entities are exact so- 

?Present address: Dept. of Earth Atmospheric and Planetary Sciences, 
Massachusetts Institute of Technology, Cambridge, MA 02139. 
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36 W. R. YOUNG 

lutions of the two-layer, f-plane quasigeostrophic potential vorticity 
equation: 

where n = 1,2 corresponds to the top, bottom layer and the potential 
vorticity is related to the streamfunction by: 

For a detailed derivation of (l.l),  see Pedlosky (1979). 
The one layer (“barotropicyy) discrete vortices are well known, 

elegant examples of vortical motion (e.g. Lamb, 1932; Batchelor, 
1967) and can be obtained by taking the limit A+O in (1.1) and (1.2). 
Aref (1983) is an excellent, recent review of the barotropic problem. 

This note supplements Hogg and Stommel’s numerical and im- 
pressionistic account by: deriving the baroclinic generalization of the 
conservation laws, characterizing the motion passive particles in the 
velocity field of two baroclinic vortices, and discussing a particular 
four vortex interaction which is analytically accessible because the 
initial condition has a symmetry which is preserved in the ensuing 
quadrille. This last is a baroclinic analog of Love’s (1894) study. 
Thus this is a catalog of the simplest properties of baroclinic point 
vortices: no direct geophysical applications are presented. However 
because of the f-plane quasigeostrophic potential vorticity equation 
(1.1) is central to oceanography and meteorology, a discussion of 
some elementary exact nonlinear solutions is of geophysical interest. 
In any case this is a prerequisite to a systematic exploration of the 
point vortex idealization. 

Before turning to the derivation of the convervation laws note that 
the streamfunction associated with a point vortex of strength 2 q  in 
the upper layer is obtained by solving 
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and the streamfunction produced by a vortex of strength 2ns2 in the 
lower layer is 

$1 = is2 { In r + Ko(r/A)}y 1,9~ =$s2 { In r - Ko(r/A)}. (1.5) 

The streamfunction produced by an ensemble of vortices is cal- 
culated from (1.4) and (1.5) by linear superposition. 

The streamfunctions in (1.4) are shown graphically in Figure 1A 
and the azimuthal velocities, a$,,/ar, are shown in Figure l.B. The 
lower layer azimuthal velocity is a maximum at r/A = 1.1 14. 

2. CONSERVATION LAWS 

The conservation laws can be derived directly from (1.1). The 
derivations are straightforward generalizations of those in Batchelor 
(1967). The most obvious conservation laws are: 

the integral being taken over the whole plane. 

moments of the potential vorticity distributions: 
We can also obtain simple expressions for the first integral 

(d/dt) f ~ q ~ d A = i A - ~  f $zY$l  dA. 

Adding the above gives another integral invariant, 

( W t )  f x(q,+  q 2 )  d A  = 0, 

and similarly 

(d/dt) fY(41 +qz)dA=O. 

Using the above we define the “center of vorticity”: 
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(2.4) 

If f (ql + q2) d A  = 0 then the center is at infinity. 
The second integral moments satisfy 

and once again addition gives a conservation law: 

Thus the length, 

is a constant, i.e. the dispersion of the vorticity distribution about its 
center is an invariant. 

Finally, there is energy conservation and, as in the barotropic 
case, there is a difficulty associated with the slow decay of the 
streamfunction at infinity. The correct definition is 

and direct calculation shows this is invariant. 
The derivations above apply to arbitrary distributions of q1 and 

q2. To obtain the appropriate expressions for an ensemble of point 
vortices of strengths 2ns1, 211s2,. . . ,2nsm at the points xl, x2,. . . , x, in 
the upper layer and strengths 2nsm+ l,. . . , 2ns,,+, at points 
x,+ . . , X,+, in the lower layer substitute: 

m n + m  

p =  1 p = m  
4 1 = 2 ~  C s,~(x-x$, q2=2n C s,~(x-x$ (2.9) 

into (2.2), (2.3), (2.6) and (2.8). 
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3. MOTION OF TWO POINT VORTICES 

Two vortices in the upper layer 

Suppose that the two vortices are in the upper layer. Then the 
distance between them, d = 2u, remains constant. If s1 + sz is nonzero 
vortices move in a circular path about the center of vorticity with 
angular velocity. 

o=*~- ’ (s ,  +s,)G+(d/A), G+(z)=  1 +zKl(z). (3.1) 

, If s1 +s,=O then the center of vorticity is at infinity and the pair 
translates at a speed 

To visualize the flow associated with this pair we use a coordinate 
system translating with the vortices. In this frame the motion is 
steady and the steamfunctions are 

are the distances from the two vortices at (0, t u )  and si = -s2 =s. 
Note that xn changes sign if y-r-y. The functions x will be referred 
to as “streakfunctions”. 

A sketch of xn is shown in Figure 2. As in the barotropic case 
discussed by Lamb (1932), the fluid enclosed by the oval xn=O 
migrates with the vortex pair whilst the external fluid is subject to a 
finite displacement. The size of the trapped region may be gauged 
from Figures 3 and 4. 

Figure 3 shows the streamfunctions x,, evaluated along the axis CD 
in Figure 2. The semi-major axis of the oval in Figure 2 corresponds 
to the intersection of these curves with the horizontal axis. In the 
upper layer this is always at a distance slightly greater than 2u no 
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D 
I 

FIGURE 2 A schematic illustration of the streamfunctions defined in (3.3). The fluid 
inside the oval is transported with the travelling pair. 

matter how many deformation radii separate the two vortices. In the 
lower layer however, the size of the oval is sensitive to u/A. When 
this parameter is large the trapped region in the lower layer is only a 
little smaller than that in the upper layer, and is coincident with it 
(e.g. Figure 3C). As u/A decreases the trapped region is in the lower 
layer shrinks relative to that in the upper (e.g. Figure 3B). When 
u/l=0.860 the lower layer oval disappears entirely and no lower 
layer fluid is transported by the pair (e.g. Figure 3A). 
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FTGURE 5 Results of a numerical integration of the equations of motion in a 
stationary frame of reference. There are six vortices (four of which have zero strength) 
and their initial positions are indicated by the numbers. Vortices 1 and 2 have 
strengths + 1 and - 1 respectively, and are both in the top layer. The passive markers 
3 and 5 are in the top layer while.4 and 6 are in the bottom. Note especially the 
behavior of 4 as dJA is varied. 
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Figure 4 shows the east-west velocity, -xnp  along the axis AB in 

Figure 2. The semi-minor axis of the oval corresponds to the 
intersection of these curves with the horizontal axis. When a/A is 
large the two ovals coincide and the semi-minor axis approaches 
3'"a. As a/A decreases the semi-minor axis in the upper layer 
approaches 2a while the lower layer oval disappears when a/A is less 
than 0.860. 

The absence of lower layer trapping when the vortices are closer 
than 1.720 A occurs because the lower layer velocities are feeble in 
the neighborhood of the singularity (Figure 1B) and trapping 
requires velocities between the vortices which are strong enough to 
oppose the speed of translation of the system. 

Finally in Figure 5 shows a numerical integration of the equations 
of motion in a stationary frame of reference where the top-pair 
translates from left to right. Four vortices of zero strength (i.e. 
passive markers) are released so that the disturbance created by the 
passage of the surface pair can be visualized. This experiment 
visually reinforces the analytic conclusions obtained from (3.3). In 
particular it shows that the fluid in the lower layer is only slightly 
disturbed when the top pair is separated by less than about one 
deformation radius. 

Two vortices in different layers 

Next we examine the interaction of two vortices in different layers. 
Hogg and Stommel (1984) noted that when the vortices also have 
opposite signs then the migrating pair transports heat. They coined 
the term "heton" to denote this particular combination. 

Once again, because of the integral constraints, d=2a is constant. 
If sl +s, is nonzero then the vortices move in a circular path about 
the center of vorticity with angular velocity. 

If s1 +sz is zero then the pair translates with a speed 

In a frame of reference moving with the pair the motion is steady 
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and the streamfunctions are 

where rl and r2 are defined in (3.4) and the positive vortex of 
strength s>O is at y = a  in the upper layer. The streakfunctions in 
(3.7) are no longer antisymmetric under reflection through the x-axis. 
In this case however 

so to visualize the flow it is only necessary to plot xl. 
Begin by noting that when d/R is very large we must have a 

pattern very like that in Figure 2 because the flow is almost 
barotropic except in the immediate vicinity of the vortices. However 
the structure of the flow alters as d/R is decreased-see Figure 6. The 
most dramatic change occurs when d / A  = 0.860. At this critical 
separation the clockwise cell is overwhelmed by the counterclockwise 
cell and there is only one region of closed streamlines which is 
centered on the vortex at y = a .  These results follow analytically from 
a local analysis of the flow field in the vicinity of the stagnation 
point, S,  in Figure 6. This shows that when d/A is less than 0.860 the 
streaklines are hyperbolic in the neighborhood while when d / A  is 
greater than 0.860 they are elliptical. 

Figure 7 shows the position of the point S, (O,y,), as a function of 
the separation of the vortices. As the separation goes to zero, 
1y.I 4 03 and the region of counterclockwise recirculation expands 
indefinitely. This unbounded growth of the trapped region is a 
consequence of the slow translation of a heton when the vortices are 
close together. In this limit the configuration moves so slowly that 
the weak, far-field velocities, induced by the vortices, are sufficient to 
drag fluid along with the pair. This argument helps explain Hogg 
and Stommel's observation that heat transport is a maximum when 
the breadth of a heton vanishes. 

Figure 8 shows a numerical integration of the equations of motion 
in a stationary frame of reference. The heton is composed of vortices 
1 and 2 while 2, 4 and 5 are passive markers which illustrate the 



FIGURE 6 A schematic illustration of the changes in form of xI in (3.7) as d/A is 
varied. The point where ax,/ay=O is denoted by S. When d/A<0.860 this point is a 
saddle and if the inequality is reversed it is a center. 

47 



2.0 I I I 

/ 
/ 

/ -  
/ 

/ - / - 
4 
\ - fi 1.5 - - - 

- 

- - 
- - 

1.0 I I I - 

B 

FIGURE 8 A numerid integration in a stationary frame of reference. The initial 
positions of the vortices are indicated by their labels. Vortex 1 has strength + 1 and is 
in the toplayer while vortex 2 has strength - 1 and is in the bottom layer. The other 
three vortices are all in the top layer and have zero strength. (A) This figure shows the 
large extent of the trapped region when d / l  is small. (B) This figure shows that the 
clockwise circulation associated with vortex 2 is much weaker, and less extensive, than 
the counterclockwise circulation associated with vortex 1. 
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disturbance. Figure 8A shows that in the limit of small d / l  the 
region of trapped fluid is much larger than d. 

4. MOTION OF FOUR POINT VORTICES 

In this section I shall discuss some special solutions of the four 
vortex problem. This is an attempt to develop intuition about the 
strength of the bond which unites two vortices into a heton. For 
instance, if two hetons collide do the initial pairings survive or is 
there an exchange of partners? Questions such as this can be 
resolved with the class of solutions discussed in this section. 

The barotropic problem which suggested the investigation below 
was discussed by Love (1894) and, in greater generality, by Acton 
(1976). The idea is to find a four-vortex solution which is tractable 
because a symmetry in the initial conditions is preserved in the 
subsequent motion. 

Begin by considering two vortices of strength so and si (the 
“original” vortices). One now constructs image vortices by reflecting 
the original vortices in an arbitrary line, which I suppose is the x- 
axis. The image vortex has the opposite sign of the original. If the 
image is in the same layer as the original the configuration will be 
referred to as “strongly symmetric” (see Figure 9A). In this case both 
streamfunctions are antisymmetric about the axis of reflection and 
this line is a steamline. Alternatively it is possible to place the images 
in different layers than the originals. This configuration will be 
referred to as “weakly symmetric” (see Figure 9B). In this case the 
streamfunctions have the property (3.8) and the axis of reflection is 
not a streamline. 

It is perhaps, not initially obvious that the weakly symmetric 
configuration is preserved. The easiest way to convince one’s self of 
this is to note that the velocity of vortex A in Figure 9B is obtained 
from the vector sum of the velocities induced by vortices By C and 
D. Likewise one can geometrically construct the velocity of vortex B 
and easily see that the tendency is for these two vortices to remain 
equidistant from the axis of symmetry. 

Besides the division into strongly and weakly symmetric there is a 
further distinction according to whether the two original vortices are 
in the same or different layers. 
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FIGURE 9 This illustrates the two different types of image problem. (A) The 
strongly symmetric case where the images are in the same layer as the originals. (B) 
The weakly symmetric case where the images are in different layers than the originals. 

These two dichotomies generate four different cases and to com- 
pactly present results I’ve resorted to a tabular presentation: see 
Table I. The notation is: 

r A = [ ( x - x , J 2  + ( y - y A ) z ] ” 2  etc. 

=distance from vortex A to the field point (x ,y ) ,  
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r,B = [(xB - xA)’ t- (yB etc. 

=distance between vortices A and B, 

51 

(44 

The energy integral W in (2.8) is given in Table I. Because of the 
symmetry, (2.2) and (2.6) are degenerate while (2.3) is 

soyo + s l y ,  =constant, (44 

where yo is the ordinate of vortex A and y ,  is the ordinate of vortex 
C (see Figure 9). 

Collisions between pairs of baroclinic vortices 

The four different cases in Table I, together with the possibility of 
varying so/sl, presents such a variety of possibilities that detailed 
discussion of all the various cases is beyond the scope of this paper. 

Instead I shall focus on a particular interaction: a collision 
between two pairs which are initially separated by a great distance 
and are moving directly towards each other. Thus the initial 
separation of vortices A and C in Figure 9 is very large. For 
instance, Figure 10 shows a collision between a top pair and a bottom 
pair and it is clear that there are qualitative changes in behavior as 
the various external parameters are altered. In particular if the initial 
pairing is disrupted, and partners are exchanged, then energy is 
converted from kinetic to potential or vice versa. Thus, in Figure 10, 
if the initial pairs are disrupted, then two hetons are created, and the 
potential energy of the system has increased. 

For simplicity I suppose throughout that 

and I shall first discuss a collision between two barotropic pairs. It is 
shown below that the baroclinic problem reduces to the barotropic 



52 W. R. YOUNG 



C )  y0/y ,  = 2 ,  y,/X = 0.55 

FIGURE 10 A numerical integration showing a collision between a top pair and 
bottom pair. The initial positions are indicated by the labels. In all cases yo /y ,  =2  and 
the parameter yo/A is varied. When this parameter is larger than a critical value there 
is an exchange of partners while if it is smaller than there is a “slip-through” collision 
in which the initial alliances are preserved. 
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when 

For the barotropic problem, with (4.3), the energy integral is 

where c is a constant which, without loss of generality, is positive. 
The two integrals (4.3) and (4.4) are sufficient to determine the 

paths of the vortices A and C relative to each other: this is because 
xo and xI appear only in the combination xo-xl in (4.5). This 
suggests that “collision coordinates”, 

will simplify the analysis. Note that q z c .  Using (4.7) the vortex 
separations are 

and (4.5) is 

Now is t-+_+co the curves in (4.9) approach horizontal as- 
ymptotes q=qm, in the ((,?)-plane: see Figure 11. It is convenient to 
use q,, rather than K to label the curves. Thus 

W =&ln [q’, - c2] =$1n [( q2 - c2)(t2 + c2)/(t2 + ?’)I. (4.10) 

As shown in Figure 11 a curve which is asymptotic to ?=qm can 
either (i) approach a vertical asymptote as ( decreases, or (ii) cross 
the ?-axis at qo as t decreases. The first case corresponds to an 
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FIGURE 11 Contours of the function W defined in (4.10). As ( becomes large these 
curves approach horizontal asymptotes: r/-qm. As q decreases the curves either cross 
the q-axis or approach vertical asymptotes. For the barotropic case shown above the 
value of q m  which separates the two possibilities is 2%. 

exchange of partners because the separation, 5 =xo -xl, approaches 
a constant value while q=yo+yl  goes to infinity. The second case 
corresponds to an interaction in which the pairs pass through each 
other and the initial partnerships are preserved. This is because the 
separation 5 approaches infinity and q also returns to its initial value 
as t-+co. 

The value of qm which separates the two cases will be denoted by 
q*. It can be calculated by noting that when qm=q* then qo=co. 
Thus putting r = O  and q =  co into the right-hand side of (4.10b) 

In [q: - c'] =In 2, (4.11) 

or 

q* = 2%!. (4.12) 
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The condition (4.12) implies 

yo/y, =(2”’ + 1)’= 5.83, (4.13) 

i.e., if the ratio of yo to y, is initially greater than 5.83, then the pairs 
pass through each and the initial partnerships are preserved. 

Analogous considerations apply to the baroclinic problem. As 
( 3 ~ x 3  the curves of constant W in Table I approach horizontal 
asymptotes which define qm. Again there is a critical value of qm, 
denoted by q*, such that if qm < q* then the curves of constant W 
cross the line <=O at qo. Vortex pairs with this initial condition 
preserve their initial partnerships. q* can be calculated by finding the 
value of qm such that qo=co. This leads to a transcendental 
equation analogous to (4.11). The various cases are listed in Table I1 
together with the qualitative behavior for large and small c. Note 
that as C-PCO all four cases reduce to (4,11), i.e. the barotropic 
problem is recovered when the ordinates of the vortices are sep- 
arated by a large number of deformation radii. 

Figure 12 shows the results of numerically solving the transcend- 
ental equation in Table 11. Any initial condition is a point on this 
plane and if it lics beZow the appropriate curve then the partnerships 
are disrupted when the pairs collide. The barotropic “watershed” 

TABLE I1 
The transcendental equations, analogous to (4.1 l), which are solved numerically to 
determine q* as a function of e. Also indicated is the bphaviour of q as c decreases 
from infinity. In the right hand column there is no solution if c is less than the stated 

value. 

Strongly symmetric Weakly symmetric 

a(q, + c) + a(v, - c) = 2a(c) 
P c  as c - d  

~c as c-+m 

Originals both 
in top layer 

cr(rl*t-c)+a(rl*-c)=28(c) 

Originals in 1.43 as c-0 

P c  as c--r co different layers 
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FIGURE 12 This figure summarizes the numerical solution of the various tran- 
scendental equations in Table 11. Any initial condition can be located as a point in the 
(yo/yI,c)-plane and classified in one of the four cases. If this point lies above the 
appropriate “watershed” curves shown above then the initial alliances are preserved, 
i.e. the pairs “slip through” each other. 

(4.13) is simply a horizontal line on this figure, i.e., barotropic 
dynamics depend only on the initial value of (yo/yl) and are 
unaffected by variations in c. 

Case 1 

In this case all four vortices are in the same layer-say the top. 

Strongly symmetric and originals in same layer 
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Figure 12 shows that baroclinicity slightly strengthens the bond 
between partners, i.e. the watershed curve is depressed below the 
barotropic case so that a wider range of initial conditions preserve 
original alliances. 

Case 2 Strongly symmetric and originals in different 
layers 

In this case a top pair collides with a bottom pair. As one 
anticipates intuitively, the original pairings are much more robust in 
this case. In fact even if y o = y ,  it is possible for the pairs to “slip 
through” each other. This is not readily apparent from Figure 12 
which collapses the limit yo+yl to a single point. However, the 
numerical solution shows that if q m  is less than 1.42 then the pairs 
“slip through”. 

Case 3 Weakly symmetric and originals in same layer 

In this case two hetons collide and may produce two same layer 
pairs unless (yo/y l )  and c are rather large. In fact Figure 12 shows 
that the initial hetons are always split (i.e. no matter how large 
yo/yl) if c is less than 2.54. Of the four different cases, this particular 
collision is most conducive to partner exchange and the splitting 
decreases the potential energy of the system. 

Case 4 Weakly symmetric and originals in different 
layers 

Again two hetons collide but in this case an exchange of partners 
produces hetons rather than same layer pairs. Figure 12 shows that 
the initial hetons are always split (i.e. no matter how large yo/yl) if c 
is less than 1.55. 

5. CONCLUSION 

Our intuitive understanding of vortex dynamics is largely inherited 
from the classical studies of barotropic vortices. The baroclinic 
generalization has an external length scale (the Rossby radius of 
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deformation) which enriches the familiar phenomenology of vortex 
dynamics in ways which may confound our classical intuition. 

For example, perhaps the most remarkable result in the present 
note is that two colliding hetons will split, no matter how extreme 
the ratio of the breadths of the pairs, provided the deformation 
radius is sufficiently small relative to the dSffeerence of the breadths, 
e.g. Figure 12. In the barotropic problem the outcome of the 
interaction is determined solely by the ratio and if this is sufficiently 
large splitting does not occur. 

The transport of fluid associated with a baroclinic pair is also 
noteworthy. A top pair transports no lower layer fluid if the spacing 
between the vortices is less than 1.72 deformation radii. By contrast 
the extent of the trapped region in both layers associated with a 
heton increases without bound as the spacing decreases. 

This result is analogous to Stommel and Hogg’s observation that 
the heat transport of a heton increases as the spacing decreases. The 
physical explanation is straightforward: as the translation speed of 
the heton decreases weak, far field velocities are sufficient to drag 
fluid along with the pair. This also leads one to speculate that a 
heton with small spacing will be strongly perturbed by the p-effect: 
north-south motion of the heton will carry a large volume of fluid 
through the planetary vorticity field. Consequently relative vorticity 
will be generated in a large volume of fluid which envelopes the 
heton. It seems unlikely that this effect can be approximated using 
the modulated vortex method which Zabusky and McWilliams 
(1982) applied successfully to the barotropic problem. 
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