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A compact rotating shallow mass of fluid with a free boundary is released on a
horizontal plane. Initially it is supposed that horizontal sections through the mass
are elliptical, vertical sections are parabolic and the two velocities are linear functions
of the horizontal coordinates. Thus four numbers suffice to describe the configuration
of the fluid and another four the velocity field. The subsequent motion preserves this
simple structure, and so the shallow-water equations reduce to ordinary differential
equations in time for the eight parameters required to specify the initial condition.

This eighth-order system can be reduced to quadratures using the well-known
invariants of the shallow-water equations. There are five such integrals: volume,
energy, enstrophy, angular momentum, and a fifth, which lacks a familiar name. The
remaining three degrees of freedom can be related to the shape (i.e. eccentricity),
horizontal size (i.e. radius of gyration) and orientation of the mass. In general, all of
these are periodic functions of time but with different characteristic timescales.
Simplest are size changes, which occur at the inertial frequency f. Shape changes are
superinertial, while orientation changes may be subinertial or superinertial.

This solution is used to discuss the unsteady motion of a non-axisymmetric Gulf
Stream ring. We argue that size and shape changes excite internal gravity waves in
the underlying fluid, while orientation changes generate Rossby waves. While this
wave radiation decreases the energy of the ring, and may alter the angular
momentum, it cannot lead to a state of no motion because the volume and enstrophy
are unaffected.

1. Introduction

This article discusses the motion of a compact rotating mass of fluid whose
boundary is free. It is assumed that the aspect ratio and initial conditions are such
that the shallow-water equations describe the evolution of the liquid.

The geophysical motivation of this study is the dynamics of warm-core rings.
These clockwise eddies of warm Sargasso Sea water are formed when a northward
meander of the Gulf Stream becomes so extreme that it herniates, detaches from the
stream and subsequently evolves as an isolated structure (Fofonoff 1981). Seen from
above on a satellite photograph, they are roughly elliptical with a radius of about
100 km (Brown et al. 1984 ; Evans et al. 1984 ; Cushman-Roisin, Heil & Nof (1985).
Traditional hydrography shows that the warm water is bounded below at about
500 m by a sharp thermocline. The reduced gravity at this interface is about 1 em §™2
(Csanady 1979).

The model outlined in the first paragraph idealizes the structure of these rings by
supposing that the boundary between the warm Sargasso Sea water and the
underlying shelf water is a sharp interface that is free to move. The lower layer is
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magined to be infinitely deep, and consequently is motionless. _Additional_ly the
ipatial gradient of the planetary vorticity field (the f-effect) is ignored. Finally,
lissipation and forcing are neglected. All of these assumptions are un.reasonable, and
so the primary geophysical motivation for this study is an investigation of the effects
of strong departures from axisymmetry. These may be due to acci@ent&l events at
the birth of the ring or perhaps strong shearing events in the ambient fluid. Once
present, they may be as dynamically important as the various processes that the
present model ignores. Finally, the analysis here may serve as the basis of an
expansion that includes these neglected processes as perturbations. For example,
Flierl (1984a, b), Killworth (1983) and Nof (1981, 1983) have all used the axisymmetric
solution as the basis for an expansion that includes the f-effect as a perturbation.
An analogous calculation might use elliptical vortices as a starting point.

To obtain simplification, it is necessary to suppose that the initial condition is
special (see (3.1) below). Consequently, it is shown that the shallow-water equations
can be reduced to an eighth-order set of ordinary differential equations in time. Then
the various integrals of the motion (e.g. volume, energy, angular momentum and
enstrophy) are used to further reduce and simplify this eighth-order system.

The reduction of the shallow-water equations in (3.1) has a long history. Perhaps
Goldsbrough (1930) was the first to observe that the shallow-water equations
simplify if the velocities are linear functions and the depth is a quadratic function
of the coordinates. But the nineteenth-century theory of self-gravitating masses (e.g.
Lamb 1932; Chandrasekhar 1969) is based on analogous polynomial solutions.
Goldsbrough’s observation is the basis of Ball’s (1965) and Thacker’s (1981) investi-
gations of tidal oscillations in elliptical basins whose depth profile is parabolic. More
recently, and in the context of warm-core rings, Cushman-Roisin et al. (1985) and
the present author rediscovered these polynomial solutions. Cushman-Roisin et al.
found an elegant particular solution: a uniformly rotating ellipse with constant shape
(i.e. eccentricity) and size (i.e. area), which has been christened the ‘rodon’.

The present study is directed at understanding the qualitative properties of
polynomial solutions. In particular, a systematic application of Ball’s (1963) general
theorems reduces the evolution equations to quadratures. Thus it is shown that the
uniformly rotating ellipse described by Cushman-Roisin et al. (1985) requires certain
special relations amongst the constants of motion. In general, when these do not hold,
an elliptical vortex does not rotate uniformly without change of shape and size. But
the motion is still sufficiently simple as to permit complete qualitative understanding
without resort to lincarization about axisymmetry or extensive numerical
calculation.

One important issue that is ignored is the stability of these solutions. However,
in one very special case the solution reduces to the geostrophically balanced,
zero-potential-vorticity profile whose instability has been demonstrated by Griffiths,
Killworth and Stern (1982). On the other hand, Killworth (1983) has shown that the
axisymmetric special case is stable, Thus both cases are possible, and a thorough
study of the ageostrophic stability of the intermediate elliptical vortices is of great
interest. This stability calculation is surprisingly tractable (B. Cushman-Roisin and
P. Ripa, personal communication) because, as in the theory of self-gravitating
masses, the linearized perturbation equations also have polynomial solutions.
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2. The shallow-water equations and some general results
The shallow water equations are

%—fv=—ghx, %+fu=—-ghy, ~]])jt}f+h(ux+vy) =0, (2.1)
where A is the depth of the fluid. The velocities » and v are independent of z, and
f is the Coriolis parameter. g is the gravitational acceleration, which in the geo-
physical context may be a reduced gravity. It iy assumed that the mass of fluid is
finite and its boundary is free. If y = L(x,t) denotes this free, moving boundary
then the boundary condition is

h(z, L(z,t),t) =0, v= L,+ul, (2.2)

The remainder of this section summarizes some general results due to Ball (1963),
which form the basis of the analysis in §3.
The most obvious conserved quantity is the volume of fluid

Q= J-hdA (2.3)
Additional conserved quantities are the energy
E= J‘{%h(u2 +v?)+igh?rdd (2.4)
and the angular momentum
J = fk{(xv—-yu) +1f(xt 4y} dd (2.5)
The potential vorticity
q = (f+v,—u,)/h (2.6)
is conserved following particles:
Dg
=0 (2.7)

This in turn implies conservation of the generalized enstrophy
Z= th(q) d4, (2.8)

where F is an arbitrary function.
Ball’s first theorem concerns the motion of the centre of mass

X, Ne= J(x,y)hdA, (2.9)
where @ is defined in (2.3). From (2.1), it follows that
d2Xx dY d*y ,dX

 Ta=" eyt (2.10)

and so the centre of gravity executes inertial oscillations. Further, Ball demonstrates
that the additional motions relative to this centre are independent of the motion of
the centre.
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Ball’s second theorem concerns the expansion and contraction of the fluid about
this centre. Thus, introducing the moment of inertia

EJ‘h{(x-—X)2+(y*Y)2}dA, 2.11)
he shows it satisfies a remarkably simple equation:
¢ I+f21 22E+fJ). (2.12)

The above equation can be integrated once:

{@92”212}“4(2“1”*’” =~0, (2.13)

where C is another constant of the motion. To summarize: the constants of motion
are Q, E, J, Z and C. These may not be all independent: for instance, it is shown in
§3 that in an axisymmetric distension (defined below after (3.3)) Z and C are
functions of @, £ and J. In fact, Ball established that in general

B = 9n(C—2J2)/8gQ? (2.14)

is greater than one. If # is precisely one then the motion must be axisymmetric (a
pure distension in Ball’s terminology).

To the extent that the geometry of the mass is characterized by (X, ¥) and I, one
has a simple picture of how an arbitrary initial condition evolves. However, the
preceding general results give no information on how departures from axisymmetry
affect the evolution of the system. I have been unable to find any simple general
results that supplement (2.9) and (2.11). Instead, a particular solution that illustrates
these issues is presented.

3. A special solution of the shallow-water equations
Substitution of

u=ar+by, v=cx+dy, h=rk—}x?—mxy—iny® (3.1)

into (2.1) gives ordinary differential equations that determine the time evolution of

the eight functions @, b, ¢,d, k,1,m, n. In (3.1) the coordinates (z, y) are relative to the

moving centre of mass (see (2.9)). Because the internal motions of the fluid are

unaffected by the motion of the centre of mass, there is no loss of generality in this,
The resulting ordinary differential equations are

—bc—fe+gl,
—ab bd — fd +gm, (3.2)
—dec—ac—fa+gm,
—d®—bc—fb—gn

—(a-+d)k,
—3al—2cm—~dl, (3.3)
—2(a+d)—bl—cn,
—3dn—2bm—an.
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In the geophysical context g is the reduced gravity between the warm water mass
and the resting infinitely deep lower layer (typically 1 cm s™2). f is the Coriolis
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parameter, which is about 107 s™*. One point that is easy to overlook is that the
kinematic boundary condition (2.2) is identically satisfied by the above solution.

The most recent investigation of (3.2) and (3.3) is that of Cushman-Roisin et al.
(1985). They note that there are two steady solutions:

(i) a one-dimensional parallel flow, i.e. (3/0x) (u,v,k) = 0;
(ii) an axisymmetric vortex, i.e. (0/09) (u,, k) = 0.

In both these cases four of the eight variables are identically zero. They then proceed
to linearize (3.2) and (3.3) by assuming that departures from the axisymmetric
solution with constant radius are small. Because observed Gulf Stream rings have
modest eccentricities (perhaps 0.5-0.8), this is not unreasonable. From a geophysical
perspective the most important result to emerge from this analysis is the existence
of a low frequency (i.e. subinertial) mode. This consists of a slow clockwise rotation
of the ellipse without change of form. Cushman-Roisin et al. speculate that this
accounts for the observed rotation, at about 9° per day, of elliptical rings.

Besides these linearized solutions they also discuss two exact nonlinear solutions
of (3.2) and (3.3). The first is axisymmetric and is Ball’s (1963) ‘distension’. This is
simply a radial pulsation of a circular vortex at the inertial frequency. The second
solution is more interesting and is essentially a nonlinear analogue of the subinertial
mode described above: an elliptical vortex (with arbitrary eccentricity) rotates
uniformly clockwise without change of form. The frequency of rotation goes to zero
as the eccentricity approaches one.

The present analysis aims to reduce (3.2) and (3.3) to quadratures. This clarifies
the conditions under which the special nonlinear solutions discussed above emerge
from arbitrary initial conditions. Additionally it is shown how the values of the
various constants of motion determine observable quantities such as the rate of
rotation (in general non-uniform) of the ring.

To simplify (3.2) and (3.3), we exploit the general results in §2. Thus we know the
time evolution of @, E, J, Z, I and C. The first step is to express these six variables
in terms of a,b,¢,d, k,l,m,n. This is simple in principle, but the algebra is quite
involved. Because the results in §2 provide six variables, while (3.1) introduces eight,
we need two additional variables, which are defined in (3.6) and (3.8).

The simplest two relations are

Q = mk?/(In—m2), (3.4a)
Z = (c—b+f)/k, (3.4)

and it should be noted that for the special solution (3.1) the infinite family of
invariants in (2.7) reduces to constancy of Z in (3.4b). To prove this, one simplifies
the integral in (2.7) by first using the principal-axis system in which m in (3.1) is zero.
Rescaling the coordinate axes so that the region of integration is circular shows that
the arbitrary function F affects only the value of a dimensionless constant of
proportionality.

For reference the following geometric results should be noted:

Q=13kA, A'=(4nQ2/(n—m2), I= An+1)/24n?, (3.5)

where A is the area of the elliptical base and I is the moment of inertia defined in
(2.10). For an axisymmetric vortex ¢, 4 and I are not independent. Rather any one
of these three can be calculated from the other two. Thus, introducing

a=3nl/AQ, (3.6)
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one can show that « is one for an axisymmetric state, and is otherwise greater than
one. o will be referred to as the ‘shape parameter’. In fact, one can show that

r= DU BEE e (a2 DA (3.74)
ma]or axis
a =3[+ (3.7b)

(It should be noted that 7 is less than one, so (3.7 b) implies a unique value of « for
each value of r). « is one of the two new variables that supplement those from §2.

The other is the angle
= tan~1 () (3.8)
#H= I—n)’

Ly is the angle through which the coordinate system in (3.1) must be rotated so that
m = 0, i.e. the angle at which the principal axes of the elliptical base are inclined to
the initial coordinate system.

In summary, a,b,c,d, kI, m,n are replaced by Q,E,J,Z,1,C,a,p. Some inter-
mediate steps are given in Appendix A. The final result is

dec)? .
(d—‘:> +V(a:f,5,2) =0, (3.9)
V=—a¥(a?—1)(f—a)—22(j—a)%}, (3.98)
on(C—2Y) ,_QZ% . _3uJ

ﬂ-———sg——Q—s——, 2z 4;'Eg, j-—Q—2Z", (390 6)
so that « is governed by a simple nonlinear equation with a non-uniformly
progressing time 7, defined in (3.10) below. The function V depends on the three
non-dimensional constants £, z* and j. As was mentioned after (2.13), £ is always
greater than or equal to one. If § is equal to one then the mass of fluid is
axisymmetric. The non-dimensional angular momentum j has also been defined so
that j = 1 for an axisymmetric state.

The qualitative analysis of (3.9) in §4 hinges on the observation that « in (3.9) is
restricted to the interval in which V is negative. For instance, if 22 = 0 then this
interval is (1, £), so that the shape changes periodically from circular (a = 1) to the
maximum eccentricity possible (x = f). In §4 the various inequalities that constrain
the initial specification of a, f, j and z are discussed in detail.

In (3.9) the time variable has also been changed:

dr _fl, f ._1
&1 ¢TI (3.10)
where I, is a reference moment of inertia:
_4 gQ“)é
1, = 3f< ) (3.11)

The evolution of the non-dimensional moment of inertia ¢ is obtained by non-
dimensionalizing and rearranging (2.12) and (2.13):

d7\?
(5 = rusei=p—i=2p), (3.12)

e = E/f*], (3.13)

where

is a non-dimensional energy.
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Finally, u is calculated from

du _
dr

Thus, to summarize, instead of the eight functions of time in (3.2) and (3.8), we have
five constants, @, Z, J, ¥ and C, and three functions of time, i, & and 4. The
dimensionless moment of inertia ¢ can be obtained quite easily from (3.12), The
evolution of « is determined by (3.9), and, while it is not possible to solve this in
closed form, it is easy to understand it qualitatively. Finally, the angle u is obtained
from (3.14). The structure of this set is disappointingly simple. Although (3.2), (3.3)
is an eighth-order system, the various integrals in §2 constrain the motion to be
regular.

In §4 various limiting and special cases of (3.9a), (3.12) and (3.14) are discussed.

Je—1
at—1

- f%mz (3.14)

4. A qualitative analysis of the motion

To systematically discuss the dependence of the dynamics on the various parameters
introduced in § 3, it is helpful to distinguish between variations in size of the ring and
variations in shape. Because the radius of gyration (I/Q) is proportional to ,
variations in size are governed by (3.12). These necessarily occur at the inertial
frequency (this is more easily seen from (2.12)).

Variations in shape are governed by (3.9). This is because vortices with the same
value of o have the same ratio of major to minor axis, independent of the size of the
eddy. It is shown below that shape changes are superinertial, i.e. the shape of the
eddy changes more rapidly than its size.

4.1. Solutions with permanent size

These are solutions in which the various constants of the motion are related so that
the only solution of (3.12) is
i = iy = (B0, (.1)

and this requires that
e = —jz+ B+ (4.2)

When (4.2) is not satisfied the moment of inertia changes at the inertial frequency.
It is still convenient to define 4, as in (4.1), and, in fact,

an

(16)71 =j ¢t dt/2m, (4.3)
0

i.e. iy is the harmonic mean of the changing moment of inertia.

It might appear that (4.2) is a very special condition. However, if it is not satisfied
then the eddy should pulsate at the inertial frequency. While vigorous inertial
motions do occur inside eddies, a gross pulsation at the inertial frequency is not a
conspicuous feature of warm-core rings. Indeed, one is led to speculate that if the
energy is greater than the right-hand side of (4.2) then the attendant inertial
pulsations should excite inertial waves in the underlying cold fluid. This wave
radiation would cease if it reduced the energy to the value in (4.2). An investigation
of this radiation process is beyond the scope of the present paper, but this argument
does suggest that solutions with permanent size are less special than they might first
seem.




108 W. R. Young
In any case, if (4.1) holds then 7 is simply proportional to ¢:
T = fUf+5%)h, (4.4)
and this will frequently be used to simplify subsequent results.

4.2. Solutions with permanent shape

The shape changes are determined by (3.9). Because (dec/d7)? is positive, o is confined
to the interval in which V is negative. For positive o (which is the only physically
relevant case) this allowed interval is a subset of (1, ) and will be denoted by (&, ,):

V(an;z2’ﬁ’j) =0, n=1or2 (4.5)

The above defines , and «, implicitly as functions of (22,4, £).

Now, in general, ¢ is a periodic function of 7 that oscillates between the limits o,
and a,. To see this, we note that « cannot ‘stop’ in the middle of the interval («,, &,)
because da/dr # 0 there. Moreover, & cannot stop at the endpoints &, and «,, because
this would imply that d*«/dr? was discontinuous. (I am grateful to G. R. Flierl for
this observation.) There are also the spurious steady solutions a = a, or a,, discussed
in Appendix A. Disregarding these, we conclude that the only way in which the shape
of the vortex can be constant is that a;, = a,. In this case ¥ has a double root at «,
and is positive everywhere else. Thus the solution is trapped at a,. These special
solutions with constant shape are just the ‘rodons’ discovered by Cushman-Roisin
et al. (1985). Their identification in this context makes it likely that they are the only
solutions of (3.2) and (3.3) that can be expressed in terms of elementary functions.
The improbable alternative is that (3.9) can be integrated exactly.

We now focus on the rodon solutions. The goal here is to locate the surface in
(22,4, B)-space on which rodons reside. Thus in (3.9) these three parameters can be
independently specified. However, it is clear that if |j| becomes too large then
eventually V has no positive zeros. Rodons are found at the critical values of j where
the two zeros coalesce and further increases in |j| result in the disappearance of the
positive zeros of V.

The condition for a double zero is that V and 0V /0« vanish at the same value of
. These relations can be rearranged to give z and j in terms of & and £:

_(3aP=2af~12 . B+a—2p
Tl (f-a) 7T B—2af—1

and these functions are contoured in figure 1. These figures are useful if one elects
to describe the rodon solution using o and f as independent parameters.
Numerical elimination of & between 2* and j, with f fixed, gives the curves in figure
2. These are useful if z2 and £ are used as the two parameters that describe the rodon.
Thus, if 2* and f are specified then there are two values of j at which solutions with
permanent shape are found.
The first curve is

2

(4.7)

. o0 as 2°—0,

A e (4.8)
and on this curve

B> o > 3B+ (B2 +3)) (4.9)

The second curve is

. — 2
J_(zz,ﬂ)—>{ T ;:gé, (4.10)
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1 ] ] ]

1 2 3 4 5
o

Fiaurs 1. () The enstrophy 2%, defined in (3.9), as a function of « and g for a rodon. (b) The angular
momentum j, defined in (3.9), as a function of @ and # for a rodon. The rodon is a two-parameter
family of solution. In this figure the two independent parameters have been taken as a (defined
in (3.6) or (3.7)) and £ (defined in (3.9)). Rodons with large a are very eccentric.

and here YA+ (B2 +38)] > a> 1. (4.11)

Thus, on j_, « is in the lower portion of the interval (1, 4), and so these shapes are
more nearly circular than those on j,.
One can also eliminate # between (4.7), and the result is

22%(af — 1) (j—a) = (@2— 1)2. (4.12)

This shows that j cannot be in the interval («~?%, &), and in fact it is straightforward
to show that j > « on the upper curve in figure 2 and j < a~! on the lower curve.
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Froure 2. If 22 and # are used as the two parameters defining a rodon then j2 can be found from
the graph above. (@) # = v/2, () f = 2, (¢) § = 4. For given 2% and § there are two possible rodons.
The upper banch j_ (2%, §) are subinertial rodons, for which « is defined by (4.9). The lower branch
Jj-(2%, ) are superinertial rodons, for which e is limited by (4.11). An arbitrary initial condition (i.e,
one that is not a rodon} must have j_ < j € j,. Thus the curves above are a boundary in parameter
space that encloses allowed values of j.

These curves are significant landmarks in parameter space. Consideration of the
general problem (i.e. when the shape of the eddy changes) shows that, with £ and
#* prescribed, j must lie between j, and j_. If j is outside this interval then ¥ in (3.8)
has no positive real zeros. This does not mean that the shallow-water equations have
no solution with these values of j, but only that the solution is not of the very special
form in (3.1).

It is interesting that rodons lie on the boundary of the allowed region of parameter
space. It is tempting to speculate that there is a bifurcation to a different class of
solutions when this boundary is crossed.

From the preceding remarks, it is clear that the rodons are a two-parameter family
of solutions. The choice of parameters is of course arbitrary and different choices are
convenient in different contexts. The parameters used by Cushman-Roisin et al.
(1985) are essentially a and 4,. This is a particularly useful choice for comparison
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with observations. Various formulae that relate j, §, etc., to « and i, are given in
Appendix B.

The rodons can change both their size (3.12) and their orientation (3.14). Rewriting
(3.14) in terms of ¢ and using (4.12) gives

e _ _ L pt el
d¢ f fzi at—1 (4.13a)

gy faat=1
f+2zij = (4.13d)

Now on j_(2%, f),j < a~!, and the last term in (4.13a) is negative if z is positive. Thus
on j_ the rotation rate is superinertial. On j, (22, 8),5 > «, and the last term in (4.135)
I8 positive if z is positive. Thus, on j, the rotation rate is subinertial. If z is negative
then these conclusions are reversed, but iu this case the vortex is inertially unstable.

It is difficult to compare the rotation rates in (4.13) with the expressions given by
Cushman-Roisin ef al. (1985). This is because they use i, and «, rather than a and
A, as independent variables. For more details see Appendix B.

4.3. Near-permanent-form solutions

In §4.2 solutions of permanent shape (da/dr = 0) were discussed. These solutions
require certain relations between the constants of motion, e.g. (4.7). If these relations
are only approximately satisfied then we expect that « will exhibit small harmonic
oscillations about some mean value:

a=a,+e €<I1, (4.14)
In the above, a, is defined to be the solution of
oV /0a =0,
and if € is to be small then one must have
Vi B,J,2) = O(e?) < 1

Thus, expanding V in a power series about a,, (3.9) becomes

de\? 2 02V
(dr) 2 Ju? £ ( )
where V and 0*V /0a? are evaluated at a,. Direct calculation gives
otV 6V
ot = o +okbo —24+2:4), (4.16)

and if ¢ is to be small then the first term on the right-hand side must be small relative
to the second.
Thus (4.16) has harmonic solutions:

€=¢€cosw. T, w:=ai{a,—p+2% e =—V/wk (4.17)

It is difficult to estimate the timescale of these small shape changes from this, because
(4.15) uses T as a time variable. However, assuming that the size is constant, one can
use (4.4) to replace 7 by ¢ in (4.15):

’= f%?"(zz’szz'fﬂz) (4.18)

€= €, coswt, w
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5

Fraurz 3. If a rodon is slightly perturbed then its shape changes periodically, e.g. (4.15). (w/f)?
is plotted here, where w is the frequency of these small oscillations. a and f are the two parameters
that define the rodon. This function is always greater than one, so that shape changes are
superinertial.

In figure 3, (w/f)? is contoured as a function of a, and 8. Because this function is
always greater than one, shape changes are superinertial.

As an example, consider the special case when the shape is close to axisymmetric.
Thus &, f and j are all close to 1 in (4.16), so

['(2+2%)
1422

w? (4.19)
For very large values of 2% the shape changes occur at the inertial frequency. In all
other cases they are faster.

Perturbations about an axisymmetric vortex are an important special case of
(4.14), and it is worth while to return to (3.9) and analyse these in more detail. Thus,
suppose

a=14y, v<l1,
B=1+4, <1, (4.20)
J=1+p, p<1,
and substitute these into (3.8), neglecting cubic terms. The result is
d 2
e+ () +or-r =7 210
Yo = (8+p2%)/(2+727), (4.21b)
82+ 22285p — 22%p?
2 O ¥ 2Op—2rp 4.21¢)

=T ety
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(In the notation of (4.13): a, =1+vy, and ¢ =y—v,.) Thus the orbits in the
(y,dy/dr)-plane are ellipses. From (4.21¢), it follows that p must satisfy the double

inequality pL=p>p, }
Py = W{LE[1+ 2/,

because otherwise y? is negative. This is the near-axisymmetric version of the
inequality that restricts j to the interval (j_,7,). Note how as f approaches one (8 —0)
the range of j becomes increasingly restricted. Numerical calculations in §4.4 suggest
that the above are likely to be excellent approximations when r in (3.7) is less than
2. This probably includes all the geophysically relevant cases.

(4.22)

4.4. Some numerical examples

To illustrate the preceding formalism, it may help to consider some specific examples,
starting with the parameters which are most easily observed.

Consider a ring whose major axis is 300 km and whose minor axis is 150 km; the
central depth is taken as 500 m and the reduced gravity as 2 ecm s™2.

If we assume that the ring is a rodon then the above are sufficient to determine
all the various non-dimensional parameters. With r = 2 we calculate a = 1.06066
from (3.7). It is significant that a is close to one even for a ring with such pronounced
eccentricity. From (B 3) and (B 4), B} = 10° km? and R* = 11.25 x 10® km?, so (B 2)

gives B s
AR )
() =(2) = oo

A_=2.3949, p_=1.21034,
A, =0.41754, f,. = 1.08675.

Then, from (B 5),

Now, given a and S, one can calculate 22 and j from (4.7) (or equivalently from (B 6)).
The result is j_=0.86629, 22 =0.49524,
Jr=1.1543, 2% =0.371924.

We see that j, > a and j_ < a~!. Thus there are two rodons compatible with the
initial conditions. The subinertial mode is j,, and, from (4.13) or (B 7),

dp _
< = — 00772,

while, for the superinertial mode j_,

du
F il 1.3853f.

In the above example we noted that o was very close to 1 even though r = 2. In
fact, with r =4, a = 1.25. These results suggest that the axisymmetric limit,
summarized in (4.20)-(4.22), contains most of the geophysically interesting cases. Of
course, f must also be close to one if these results are to be used. From (B 5) we see
that, provided A is not very large, £ will be close to one when « is close to one. Now
if (R?/8R3) is of order one then this is the case for both A _ and A_. In this case both
the subinertial and superinertial mode are described by (4.20)~(4.22). However, if
R?/8R% becomes too large then A_ becomes large and f_ may be substantially
different from one. To summarize, the subinertial mode j, is always described by
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(4.20)—(4.22). The superinertial mode is described by this system only if R?/8R} is
not too large (i.e. not so large as to make #in (B 5) much greater than one). The above
numerical example is a case in point. Here #, is 1.08 but f_ is 1.21, so at this rather
modest value of R?/8R?% the expansion is starting to fail for the superinertial mode.

5. Conclusions and some speculations

Taking Goldsbrough’s (1930) reduction (3.1) of the shallow-water equations we
have emphasized how a systematic application of Ball’s (1963) theorems reduces this
eighth-order system to quadratures. Thus the eight time-dependent functionsin (3.2)
are replaced by five constants (@, Z, E, J and ) and three time-dependent functions
(I,a,u). An important point is that the initial specification of (a,b,...,n) implies
certain constraints on the constants of motion. Thus they must satisfy g > a > 1
(Ball 1963) and j, = j > j_ (see figure 3). Solutions of the shallow-water equations
that fail to satisfy these inequalities may exist, but they do not have the simple form
posited in (3.1).

It was noted that the rodon solution of Cushman-Roisin et al. (1985) lies on the
border of the allowed region in parameter space, i.e. j = j (22, f) or j_(z% B). Further,
if z > 0 then rodons on the j, branch rotate subinertially while those on the j_ branch
have superinertial rotation rates.

After discussing solutions of permanent size or shape, we analysed the small
oscillations that accompany a small perturbation of the constant shape solution. The
most important point to emerge here is that shape changes are superinertial (figure
3). This perturbation analysis does not prove that shape changes are generally
superinertial, but it is likely that this is the case.

Throughout this analysis it has been supposed that the fluid outside the elliptical
eddy is unstratified and infinitely deep. Also the f-effect has been ignored. These
idealizations ensure that the exterior fluid remains motionless and the eddy preserves
its initial energy and angular momentum. However, if these assumptions are relaxed,
the eddy will lose energy and alter its angular momentum, because its motion will
generate both internal gravity waves and Rossby waves. The timescales suggest that
shape and size changes will generate internal waves, while the subinertial orientation
changes will generate Rossby waves.

However this wave radiation cannot completely spin-down the eddy. This is
because the enstrophy Z remains invariant ((2.6) is unchanged if one includes the
B-effect and pressure forces associated with lower-layer motion in (2.1)). It seems
likely that the internal-wave radiation will alter B, J and C so that the solution has
constant shape and size. Then Rossby-wave radiation, on a longer timescale, will
‘axisymmetrize’ the eddy. Throughout this process, ¢ and Z are unchanged. In the
near-axisymmetric case the Rossby-wave radiation problem is difficult (see Flierl
19844, b), and so analytic progress in the strongly non-axisymmetric problem posed
here is unlikely. Thus, without a numerical model, these remarks remain plausible
speculation.

Finally it is perhaps disappointing that the eighth-order system in (3.1) and (3.2)
has such simple, regular behaviour. This is because the general arguments in §2
provide so many constants of the motion. One wonders if the regularity found here
survives if the problem is changed slightly. For instance, Ball (1965) discussed the
tidal modes of an elliptic paraboloid, but his analysis stopped short of the complete
qualitative study given here. He noted, however, that the angular momentum of the
liquid is no longer constant when it is confined in a basin whose cross-section is
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elliptical. Also the moment of inertia can be no longer calculated at the outset, and
there is no longer an integral analogous to € in (2.13). This raises the possibility that
the tidal motion in such a basin may be dynamically richer than the system studied
here.

I thank M. G. Worster, B. Cushman-Roisin and G. R. Flierl for several interesting
conversations during the course of this work. This manuscript was typed by
D. Frank. C. King performed the numerical calculations. I thank both of them for
their expert assistance. Finally, this research was supported by Office of Naval
Research grant N00014-79-C-0472 and National Science Foundation grant
OCE-8421074.

Appendix A. Intermediate steps leading (3.8) et seq.

To change variables from a,b,¢,d, k,1,m,n to @, E,J,Z,C, I,a,u, it is convenient
to first introduce an intermediate set. Thus, instead of @, b, ¢, d we use

b+c
a——d) (A1)

to describe the velocity field. Z is constant. & is the rate of contraction or expansion
of the area A. 1¢ is the angle through which the coordinate system in (3.1) must be
rotated so that b = —¢, i.e. so that the velocity strain tensor is antisymmetric. ¢ is
a measure of departures from axisymmetry: a circular vortex has { = 0.

Next, instead of k,1, m, n, we use

Z=(c~b+f)/k, d=a+d, = (b+c)}+(a—d)] ¢=tan‘1(

Q=nk*In—m®7%, g=I+n £=(1—n)2+4m? u= b&n“( 2m ) (A 2)

I—n

@ is the constant volume of the ring. 3¢ is the angle through which the coordinate

system in (3.1) must be rotated so that m = 0. £ is a measure of departures from

axisymmetry: a circular vortex has £ = 0. g is roughly an inverse measure of the
diameter of the vortex.

Because Z and @) are constant, (3.2) and (3.3) are replaced by a sixth-order system:

£ = —20¢— ¢ cos (u—¢), (A 3a)
)= =20y Loos =g, (A 35)
. 2
fi= =+ g sin (e g)+ 707, (A 30)
¢ =—0¢+g& cos (u—¢), i (A 34d)
(§=—1{82+§2+f2—<—2—Q—g) ——2977}, (A 3e)
2 |
§=—f+g5sin (u-9), (A3f)
and the geometric properties of the fluid are
A3
4 2 2y —1 —
A1 B1Q) (P —8)7, T= g (A4)
The time derivatives of these, which can of course be deduced from (A 3), are:
3
4=104, /=814 cos (u—@). (A 5)

2472
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In terms of these new variables, the constants of motion from §2 are

ZI A®
J_?4+1% n (u—g), (A 6a)
R R = I e G V]
E= 93A 02+ f— + &2 8 06t 8 cos (u—@)+| f Y sin (u—¢)
(A 6b)
Q 2
o=2r+( L) agrrie), (A 60)
and once again these relations can be verified directly from (A 3).
We now use (A 6) to simplify (A 3). It is convenient to introduce
3nl
o= —% = g(n?—£H)4, (A7)
and then from (A 4) and (A 6¢):
_ 8Q%aP(ar—1)t _ 8Q%? 16gQ3 ( )
== " O o A
where £ is defined in (3.8). Using (A 8), we can write (A 6a) as
J=at+z(@—1)(f—a)} sin (u—¢), (A9)
where j and z are defined in (3.8).
From (A 5), we can find an expression for the rate of change of a:
da
= = —al(@®~1) (f—a) cos (u—g), (A 10)

where 7 is the new time variable defined in (3.9). Then, eliminating the trigonometric
functions between (A 9) and (A 10) gives (3.9a, b).
Using (A 8) to rewrite (A 3¢) gives

dp At az(ja—1)

dr de a?—1 (A 11)
and (A 3f) becomes

d¢ LU=

o1y T3 (412)

There is one subtle and confusing point associated with (3.9a). This is that the
elimination of the trigonometric functions between (A 9) and (A 10) has introduced
spurious, unphysical solutions. These are

OV (ay)
da

It is clear that a = a, is an exact, steady solution of (3.9a). But Et is not an exact
solution of (A 10)—(A 12). To see this, note that if da/dr = 0in (A 10) then in general
(unless & = 1 or f) cos (u— ¢) must be zero. But, by direct substitution in (A 11) and
(A 12), one finds that (d/d7) (4 —¢) + 0 when a = «, unless a, is a double root of
V. Thus, although « = «, is a mathematical solution of (3.9a), it is not a physical
solution!

Analogous spurious solutions occur in elementary mechanics, and, just as they are

a=a, and V(x,) =0,

+0. (A 13)
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disregarded there, they cause no concern here. Consider for instance the motion of
a simple harmonic oscillator whose displacement is «. In suitable non-dimensional
coordinates, Newton'’s equation of motion is

d+a =0, (A 14)
or, forming an energy equation by multiplying by «,
i’ +1la2 = F. (A 15)

Now a = + (2E)t is an exact steady solution of (A 15) but clearly not of (A 14). The
origin of this difficulty is that if & = 0 then (A 15) does not imply (A 14). Specifically,
if (A 15) is differentiated then

d{d+a) =0,

and the spurious solution satisfies the above because d = 0 rather than because of
(A 14).

The spurious solutions of (3.9¢) are entirely analogous to the above, but locating
the zero divisor is more difficult.

Appendix B. « and i, as independent variables

In §4 it was convenient to discuss constant-shape solutions using « and £ as
independent variables. Thus (4.7) expresses the angular momentum and the enstrophy
of constant-shape solutions in terms of these. Likewise, (4.13) gives the rotation rate.
These were the most convenient variables for theoretical analysis because they are
directly related to constants of the motion.

However, it may also be convenient to use « and 1, as independent variables, for
example, §4.4. i, is defined in (4.1), and it can be verified from (3.12) that 7, is the
harmonic mean of 1.

First we use (4.7):

i = f4 i

G
= —o)? 2, B1
[6-er+ s ) B
Because the arithmetic mean is greater than the geometric mean, the above implies
that
(in/)* 2 1.

This can be related to other results in the literature if we express 7, and « in terms
of dimensional variables. Using (3.5a), (3.6) and (3.10):

(&) -Gr) > ®2)

where R is the geometric mean of the major and minor axes,
A =nR? (B 3)

and R, is the deformation radius based on the central depth,
R = gk/f?. (B 4)

Thus (B 2) generalizes Killworth’s (1983) restriction on the minimum radius of an
isolated eddy by including departures from axisymmetry (define R by (B 3})).
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Now use (B 1) to express £ in terms of « and 7,,:

B=a+i{a’—-1)A,

= () =) -] (35’
o o
The perverse sign convention above is so that the formulae agree with (4.8) and
(4.10), i.e. A, is for rodons on the j, branch. Together with (4.7), the above expresses
z and j in terms of « and 7,
a—A s (1—aA)?

ITTar " T (B 6)

Finally, one can express the rotation rate in terms of & and i:

a - - T

a - e ) (B7)
where the + sign is for the subinertial modons (j,) and the — sign for the
superinertial (j_) branch. Using (B 2), we see that if the size is constant (4 = i,) then

we recover the expression of Cushman-Roisin et al. (1985) for the rotation rate of the
eddy.
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