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Zonostrophic instability

Kaushik Srinivasan ∗ and W. R. Young

Scripps Institution of Oceanography,University of California at San Diego

ABSTRACT

Zonostrophic instability leads to the spontaneous emergence of zonal jets on a β-plane from a jetless
basic-state flow which is damped by bottom drag and driven by a random body force. Decomposing
the barotropic vorticity equation into the zonal-mean and eddy equations, and neglecting the eddy-
eddy interactions, defines the quasi-linear (QL) system. Numerical solution of the QL system shows
zonal jets with length scales comparable to jets obtained by solving the nonlinear (NL) system.
Starting with the QL system, one can construct a deterministic equation for the evolution of the
two-point single-time correlation function of the vorticity, from which one can obtain the Reynolds
stress that drives the zonal mean flow. This deterministic system has an exact nonlinear solution,
which is an isotropic and homogenous eddy field with no jets. We characterize the linear stability of
this jetless solution by calculating the critical stability curve in the parameter space and successfully
comparing this analytic result with numerical solutions of the QL system. But the critical drag
required for the onset of NL zonostrophic instability is sometimes a factor of six smaller than that
for QL zonostrophic instability.
Near the critical stability curve, the jet scale predicted by linear stability theory agrees with that
obtained via QL numerics. But on reducing the drag, the emerging QL jets agree with the linear
stability prediction at only short times. Subsequently jets merge with their neighbors till the flow
matures into a state with jets which are significantly broader than the linear prediction, but have
have similar spacing as NL jets.

1. Introduction

Zonal flows are banded, anisotropic, weakly fluctuat-
ing alternating jets that form spontaneously and persist
indefinitely in an otherwise turbulent plasma or planetary
fluid (Diamond et al. 2005; Vasada and Showman 2005).
The subject started with Rhines’ 1975 discovery that freely
evolving barotropic β-plane turbulence transfers energy into
zonal shear modes with zero frequency (Rhines 1975). We
follow Galperin et al. (2006) in referring to the develop-
ment and persistence of these anisotropic planetary flows
as “zonation”. Williams (1978) showed that zonation oc-
curs in statistically steady forced-dissipative flows on the
sphere, and proposed this as an explanation of the banded
structure of the planetary circulations of Jupiter and Sat-
urn.

Figure 1 shows a typical example of fully developed
zonation obtained by numerical solution of the barotropic
β-plane potential vorticity equation:

ζt + uζx + vζy + βv = ξ − µζ + νn∇2nζ . (1)

A streamfunction ψ(x, y, t) is used to obtain the incom-
pressible velocity (u, v) = (−ψy, ψx), with relative vorticity
ζ = ψxx +ψyy. The flow is energized by the forcing ξ, and
is damped by a combination of Ekman drag µ and hyper-
viscosity νn (with n = 4 in our numerical simulations). The

main features of the statistically steady flow in Figure 1,
such as the sharp eastward jets, the broader westward re-
turn flows, and the sawtooth relative vorticity, are familiar
from many earlier studies of statistically steady, stochasti-
cally forced, dissipative β-plane turbulence in doubly pe-
riodic geometry (Danilov and Gurarie 2004; Danilov and
Gryanik 2004; Maltrud and Vallis 1991; Vallis and Mal-
trud 1993), and on the sphere (Williams 1978; Nozawa and
Yoden 1997; Huang and Robinson 1998; Scott and Polvani
2007).

The forcing ξ(x, y, t) on the right of (1) is a rapidly
decorrelating, isotropic, spatially homogeneous, random pro-
cess that injects energy and enstrophy into a narrow band
of wavenumbers centered on a “forced wavenumber” kf (see
Appendix A for details of the implementation). Follow-
ing Lilly (1969) and Williams (1978), exogenous stochastic
forcing, modeling small-scale convection or baroclinic ac-
tivity, is now a standard protocol used in barotropic and
shallow-water studies of forced-dissipative zonation. The
spacing of the jets in Figure 1 is significantly greater than
the typical length scale of the forcing, k−1

f , which is an
indication of either the inverse cascade, or of a spectrally
nonlocal transfer of energy (Huang and Robinson 1998).

A striking feature of β-plane zonation is that the trans-
lational symmetry, y → y + a, of the equation of motion
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Fig. 1. Nonlinear (NL) zonal jets. Left panel: a snapshot
of the zonally averaged velocity U(y, t) obtained from a
solution of (1) in a doubly periodic domain 2πL×2πL with
kfL = 32, where kf is the dominant wavenumber of the
forcing ξ. Right panel: a snapshot of the vorticity ζ, with
overlaid zonally averaged vorticity −Uy(y, t) (solid white
curve). The parameter values for this run are µ∗ = 0.01824
and β∗ = 1.0. The snapshot is at 2µt = 25 with spin-up
from rest.

(1) is spontaneously broken: the locations of the eastward
maxima in Figure 1 are an accident of the initial conditions
and of the random number generator used to create ξ. But
after the jets form, they remain in the same position, ap-
parently forever. Once these robust quasi-steady jets are
in place, their dynamics can be discussed in mechanistic
terms using concepts such as potential vorticity mixing, the
resilience of transport barriers at the velocity maxima, ra-
diation stress and shear-straining of turbulent eddies. But
the primary question addressed here is why the jets form
in the first place, given that the forcing ξ does not se-
lect particular locations. Following earlier investigations of
this phenomenon (Farrell and Ioannou 2007; Manfroi and
Young 1999), we show that zonation can be understood
as symmetry-breaking instability of an isotropic, spatially
homogeneous and jetless β-plane flow .

In section 2 we introduce the eddy-mean decomposition
and discuss a statistical method, previously used by Farrell
and Ioannou (1993b, 2003, 2007), Marston et al. (2008),
and Tobias et al. (2011), which is the basis of our linear
stability analysis of zonostrophic instability. This method
amounts to forming quadratic averages of the equations of
motion and then discarding third-order cumulants. Farrell
and Ioannou (2003, 2007) refer to this method as stochastic
structural stability theory (SSST), while Marston et al.
(2008) call it the second-order cumulant expansion, or CE2.
SSST and CE2 are completely equivalent, and only one
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Fig. 2. Quasilinear (QL) zonal jets. Left panel: a snap-
shot of the zonally averaged velocity U(y, t) obtained by
integrating the QL system (3), (4) and (6). Right panel: a
snapshot of the QL vorticity ζ, with overlaid zonally aver-
aged vorticity −Uy (solid white curve). The parameters for
this run are the same as the nonlinear solution in Figure 1
i.e., µ∗ = 0.0182, β∗ = 1 and kfL = 32. The snapshot is
at 2µt = 40 after spin-up from rest.

name is required. We have therefore adopted the more
descriptive CE2 terminology of Marston et al. (2008).

In section 3 we present a physical space re-formulation
of CE2 which has analytic advantages over earlier numer-
ically oriented formulations. Within the context of CE2,
section 4 provides a complete analytic description of zonos-
trophic instability obtained by linearizing around an exact
isotropic and homogeneous solution with no jets. As in Far-
rell and Ioannou (2007), zonation is understood as a linear
instability of CE2: part of the linearly unstable eigenmode
is a zonal flow. This linear stability problem is character-
ized by two control parameters, a non-dimensional drag pa-
rameter µ∗ and a non-dimensional planetary parameter β∗,
and we determine the CE2 zonostrophic stability boundary
in the (β∗, µ∗)-parameter plane. An important property
of CE2 zonostrophic instability is that the most unstable
wavenumber, which determines the meridional scale of the
exponentially growing jets, is well away from zero. Because
the instability unfolds around a nonzero wavenumber, CE2
zonostrophic instability is not properly a negative-viscosity
instability. This point is reinforced in section 5 by show-
ing that the CE2 eddy viscosity is identically zero. Section
6 is a comparison between the analytic results and direct
numerical simulations of the nonlinear system. Section 7 is
the discussion and conclusion. The more technical aspects
of the paper are in five appendices.

2



2. The eddy-mean decomposition and quasilinear
(QL) dynamics

We use an eddy-mean decomposition

ψ(x, y, t) = ψ̄(y, t) + ψ′(x, y, t) , (2)

where the overbar denotes a zonal average; we also denote
the zonal mean velocity as U(y, t) = ū(y, t). Applying
this average to (1) results in the zonal mean momentum
equation

∂tU + ∂y

(
u′v′

)
= −µU + ν∂2

yU , (3)

and the eddy vorticity equation

ζ′t + Uζ′x + (β − Uyy)ψ
′
x + EENL = ξ − µζ′ + ν∇2ζ′ . (4)

In (4), the eddy-eddy nonlinearity is

EENL
def
= ψ′

xζ
′
y − ψ′

yζ
′
x −

(
ψ′

xζ
′
)

y
. (5)

In addition to the zonal average, the overbar includes a
running time average over a short interval so that ξ̄(y, t)
does not appear on the right of (3). In presenting equations
subsequently used to obtain analytic results we use n = 1
for the viscosity.

Quasilinear (QL) dynamics

The main results in this paper are obtained with a
quasilinear (QL) system, which is defined by taking

EENL → 0 (6)

in (4). Figure 2 shows a QL solution at the same param-
eter values as the fully nonlinear (NL) solution as Figure
1. Because of the coupling between the mean and the ed-
dies, the QL system is nonlinear, and Figure 2 shows that
QL dynamics still results in the spontaneous formation of
quasisteady zonal jets.

Comparing the left panels in Figures 1 and 2, one sees
that the QL jets are faster and wider than NL jets, and the
jet profiles are different: QL jets are distinctly more east-
west symmetric than NL jets. Nonetheless, we show in
section 6 that the QL jets in Figure 2 do have a small east-
west QL asymmetry, and at other points in the (β∗, µ∗)-
parameter space, QL jets are strongly east-west asymmet-
ric.

Because the QL jets are faster, the QL system is more
zonostrophically unstable than the NL system. In Figures
1 and 2, quasi-steady jets evolve spontaneously from an
initially jetless state, as shown in the Hovmöller diagram
of the zonal mean flow U(y, t) in Figure 3. Comparing the
upper and middle panels in Figure 3, shows that the QL
system has significantly longer adjustment times than the
NL system.

O’Gorman and Schneider (2007) made the QL approx-
imation (6) in an atmospheric general circulation model
and showed by comparison with the full nonlinear version
of the model that several important features of the flow
are unaffected by complete removal of the eddy-eddy non-
linearity. Comparing Figures 1 and 2 we reach a similar
conclusion for the more idealized model studied here. This
preliminary conclusion is supported by a detailed compar-
ison between NL and QL solutions in section 6.

There are several ways of motivating QL dynamics. The
QL system conserves both energy and enstrophy, and has
the same zonal-mean equation and symmetries as the NL
system. Thus arguments based on integral invariants ap-
ply equally to the QL and the NL system (Salmon 1998).
Nonetheless, because EENL is discarded, the QL system
cannot exhibit a true Batchelor-Kraichnan inverse energy
cascade: in the QL model all nonlinear interactions require
participation of the zonal mean flow. Because U(y, t) has a
larger length scale than the eddy field, all these nonlinear
QL interactions are spectrally nonlocal. Figure 2 shows
that the spectrally local Batchelor-Kraichnan inverse cas-
cade is not necessary for zonation. Thus, at the most basic
level, the QL system is instructive as an indication of the
physically essential processes in zonation.

Stochastic closure versus cumulant expansion

A main motivation of the QL system is that using the
statistical method pioneered in meteorology by Farrell and
Ioannou (1993b, 2003, 2007) one can compute important
average quadratic properties of the QL flow, such as Reynolds
stress and the eddy enstrophy and energy. However rather
than (6), Farrell and Ioannou (2007) adopt a stochastic clo-
sure, which amounts to replacing the eddy-eddy nonlinear-
ity with a combination of random forcing and dissipation:

EENL → −ξEENL + µEENLζ
′ ; (7)

see also DelSole (2001). The intent of (7) is that the
random forcing ξEENL(x, t) and the dissipation µEENLζ

′

should be chosen to match the evolution of the NL system.
The terms in (7) then augment the exogeneous forcing and
dissipation on the right of (4).

However there is probably no reliable a priori method
of determining the right hand side of (7). Heeding the
principle to first do no harm, we prefer the QL alternative
(6). This has the advantage that one can then make a
specific comparison between QL and NL solutions (e.g., as
in Figures 1 and 2) and assess the role of EENL.

Our point of view, which follows Marston et al. (2008)
and Tobias et al. (2011), is to regard the QL system as
an approximation to the NL system. In fact, (6) in tan-
dem with the method of Farrell & Ioannou, is precisely the
second-order cumulant expansion CE2 of Marston et al.
(2008). It is from this perspective that in section 3 we
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Fig. 3. (a) Hovmöller diagram of the zonal mean velocity U(y, t) obtained by solution of the full nonlinear (NL) system
in (1). (b) Hovmöller diagram of the zonal mean velocity U(y, t) obtained by solution of the quasilinear (QL) system.
(c) A comparison of the zonal mean energy fraction, zmf(t) defined in (74), for QL and NL runs. The time-averaged
fractions are 〈zmf〉NL = 0.3 and 〈zmf〉QL = 0.51. This figure shows the time evolution of the runs in Figures 1 and 2.
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develop a physical-space formulation of CE2, which is suit-
able for analytic solution.

3. Dynamics of correlations: CE2

In the QL approximation, the eddy vorticity equation
can be written as

∂tζ
′ + L ∂xψ

′ = ξ − µζ′ + ν∇2ζ′ , (8)

where L is the Rayleigh-Kuo operator

L
def
= U ∇2 + (β − Uyy) . (9)

In this section we obtain a closed deterministic evolution
equation for the two-point correlations function of vorticity
ζ′ and streamfunction ψ′. This correlation equation, (18)
below, is coupled to the evolution of the zonal mean flow
via the Reynolds stresses, and the Reynolds stresses can be
obtained by evaluating derivatives of the correlation func-
tion at zero separation. Thus one obtains the zonal-mean
evolution equation in (29) below.

Correlation functions: kinematics

We assume that the external forcing ξ(x, t) on the right
of (8) has a two-point, two-time correlation function of the
form

ξ(x1, t1)ξ(x2, t2) = δ(t2 − t1) Ξ(x1 − x2, y1, y2) , (10)

where the overbar above denotes an ensemble average. The
dependence of the spatial correlation function Ξ only on the
difference

x
def
= x1 − x2 (11)

indicates that the forcing is zonally homogeneous. We do
not assume (yet) that the forcing is isotropic and merid-
ionally homogenous.

Notice that that we have changed notation: undeco-
rated x in (11) is the zonal difference coordinate. We also
use the shorthand u′1 = u′(x1, t), U2 = U(y2, t), ζ

′
2 =

ζ′(x2, t) etc. Strictly speaking, we should decorate all the
variables in (8) with the subscript n = 1 or 2 to explicitly
indicate whether we refer to the eddy-vorticity equation at
the point x1 = (x1, y1), or at the point x2 = (x2, y2). We
forbear.

We assume “ergodicity”, so that the overbar is also
equivalent to the zonal average of a single realization. We
desire the single-time two-point correlation functions

Z(x, y1, y2, t)
def
= ζ′1ζ

′
2 , (12)

and
Ψ(x, y1, y2, t)

def
= ψ′

1ψ
′
2 . (13)

Because derivatives commute with the ensemble average,
the two correlation functions above are related by

Z = ∇2
1∇2

2Ψ , (14)

where the Laplacian acting on the coordinates of point n
is

∇2
n

def
= ∂2

x + ∂2
yn
. (15)

Given the streamfunction correlation Ψ(x, y1, y2, t), one can
obtain the velocity correlation tensor as

Vij(x, y1, y2, t)
def
=

(
u′1u

′
2 u′1v

′
2

u′2v
′
1 v′1v

′
2

)

=

(
∂y1

∂y2
∂x∂y1

−∂x∂y2
−∂2

x

)

Ψ .

(16)
Because the choice of denoting one point as x1 and the

other as x2 is arbitrary, all correlation function have an
important “exchange” symmetry

Ψ(x, y1, y2) = Ψ(−x, y2, y1) , (17)

and likewise for Z, Ξ etc.

Correlation functions: dynamics

It follows from (8) and (10) that the correlation func-
tions evolve as

∂tZ +
(
∇2

2L1 −∇2
1L2

)
∂xΨ = Ξ − 2µZ + ν

(
∇2

1 + ∇2
2

)
Z ,
(18)

where the Rayleigh-Kuo operator at point n is Ln ≡ Un ∇2
n+

(β − U ′′
n ).

To derive (18), multiply the equation for ∂tζ
′
1 by ζ′2

and add this to the ∂tζ
′
2-equation multiplied by ζ′2. The

sum is then ensemble averaged, and after the average all
fields depend on x1 and x2 only through the combination
x = x1 − x2. Because of this zonal homogeneity ∂x1

=
−∂x2

= ∂x. Thus, for example,

ζ′2L1∂x1
ψ′

1 + ζ′1L2∂x2
ψ′

2 =
(
∇2

2L1 −∇2
1L2

)
∂x ψ′

1ψ
′
2 . (19)

A crucial simplification is that the forcing is rapidly decor-
relating in time, as expressed by the δ(t1 − t2) in (10).
Considerations summarized in Appendix B (amounting to
a simple proof of Ito’s formula) show that

ζ′1ξ2 + ζ′2ξ1 = Ξ . (20)

The result above is the origin of the first term on the right
hand side of (18).

Collective coordinates

As alternatives to y1 and y2, there are advantages in
using the “collective coordinates”

y
def
= y1 − y2 and ȳ

def
= 1

2 (y1 + y2) . (21)

Eventually we will restrict attention to homogenous and
isotropic forcing, and at that point we take Ξ in (10) to be
a function only of the two-point separation

r
def
= |x1 − x2| =

√

x2 + y2 . (22)
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Collective coordinates are then essential for analytic progress.
In terms of y and ȳ, the Laplacians are

∇2
n = ∇2 − (−1)n∂y∂ȳ + 1

4∂
2
ȳ , (23)

where ∇2 def
= ∂2

x + ∂2
y is the “separation” Laplacian. Thus,

for instance,

Z =
(
∇2 + ∂y∂ȳ + 1

4∂
2
ȳ

) (
∇2 − ∂y∂ȳ + 1

4∂
2
ȳ

)
Ψ , (24)

= ∇4Ψ + 1
2

(
∂2

x − ∂2
y

)
∂2

ȳΨ + 1
16∂

4
ȳΨ . (25)

Using the coordinates in (21), the correlation equation (18)
becomes

∂tZ + (U1 − U2)∂xZ − (U ′′
1 − U ′′

2 )
(
∇2 + 1

4∂
2
ȳ

)
∂xΨ

− (2β − U ′′
1 − U ′′

2 ) ∂ȳ∂y∂x Ψ

= Ξ − 2µZ + 2ν∇2Z + 1
2ν∂

2
ȳZ , (26)

where now U1 = U
(
ȳ + 1

2y
)

and U2 = U
(
ȳ − 1

2y
)

The zonal mean flow equation

One advantage of collective coordinates is that mean
square quantities, such as the enstrophy, are obtained by
evaluating correlation functions at zero separation i.e., by
setting (x, y) = 0. For example if one possesses Z =
Z(x, y, ȳ, t) then the eddy enstrophy is ζ′2 = Z(0, 0, ȳ, t).

A key result, obtained by evaluating

u′1v
′
2 + u′2v

′
1 = 2∂x∂yΨ (27)

at (x, y) = 0, is that the Reynolds stress is

u′v′(ȳ, t) = ∂y∂xΨ(0, 0, ȳ, t) . (28)

Thus the mean flow equation (3) can be written as

∂tU + ∂ȳ∂y∂xΨ(0, 0, ȳ, t) = −µU + ν∂2
ȳU . (29)

The mean flow equation (29), coupled with the correlation
equation (26), is a closed system for the ensemble-averaged
properties of QL dynamics.

4. Zonostrophic instability of a spatially homoge-
neous and isotropic base-state flow

The spatially homogeneous basic state

We now suppose that the forcing is statistically ho-
mogenous and isotropic, i.e. that the correlation function
of the forcing has the particular form

ξ(x1, t1)ξ(x2, t2) = δ(t2 − t1) Ξ(r) , (30)

where r is the two-point separation defined in (22). Be-
cause Ξ does not depend on ȳ, there is a simple exact
solution to (26) and (29). This solution is spatially homo-
geneous and isotropic and has no mean flow, U = 0. With

these simplifications the correlation equation (26) collapses
to:

(
2µ− 2ν∇2

)
ZH = Ξ . (31)

The subscript H emphasizes that ZH(r) is spatially homo-
geneous i.e., independent of ȳ. The streamfunction cor-
relation function, ΨH(x, y), can be obtained from ZH by
solving ∇4ΨH = ZH. It is remarkable that ZH in (31) is
independent of β: an isotropic and spatially homogenous
forcing drives an isotropic and spatially homogeneous flow,
despite the anisotropy of Rossby wave propagation.

We now apply the Fourier integral theorem,

f̃(p, q)
def
=

∫∫

f(x, y)e−i(px+qy) dxdy , (32)

f(x, y) =

∫∫

f̃(p, q)ei(px+qy) dp dq

(2π)2
, (33)

to (31). We use the notation

h
def
=
√

p2 + q2 , (34)

so that after the Fourier transform h4Ψ̃H = Z̃H, and the
streamfunction spectrum is related to the forcing spectrum
by

Ψ̃H(p, q) =
Ξ̃(p, q)

2µh4 + 2νh6
. (35)

We emphasize that Ψ̃H(p, q) in (35) is not singular as h→
0. Specifically, the vorticity forcing ξ on the right of (8)
is the curl of a solenoidal random force in the momentum
equation i.e., ξ = ∇2a, where a(x, t) is a spatially homo-
geneous and stationary random process. Thus, in analogy
with (30),

a(x1, t1)a(x2, t2) = δ(t2 − t1)A(r) , (36)

and therefore Ξ = ∇4A. In terms of A, the streamfunction
spectrum in (35) becomes

Ψ̃H(p, q) =
Ã(p, q)

2µ+ 2νh2
. (37)

Since a(x, t) is stationary, the spectra Ã(p, q) and Ψ̃H(p, q)
are finite as h→ 0 (provided that µ 6= 0).

Later we will need two integral constraints on the vor-
ticity forcing correlation function Ξ:

∫∫

Ξ(x, y) dxdy = Ξ̃(0, 0) = 0 , (38)

and also
∫∫

Ξ(x, y)r2 dxdy = lim
h→0

h−2Ξ̃(p, q) = 0 . (39)

These follow from Ξ = ∇4A, and the assumption that the
correlation function A(r) in (36) decays faster than r−1 as
r → ∞. The constraints above are satisfied by the standard
forcing protocol described in Appendix A, which has zero
spectral density around h = 0.
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The dispersion relation of inviscid and isotropic flow

The linear stability of the spatially homogeneous solu-
tion in (37) is determined by imposing small initial distur-
bances and examining evolution in time. The perturbation
variables are added to the base state variables, (0,ΨH,ZH)
and substituted into equations (26) and (29). The total
‘flow’, with mean and imposed small perturbations, is




U(ȳ, t)
Z(x, y, ȳ, t)
Ψ(x, y, ȳ, t)



 =





0
ZH(x, y)
ΨH(x, y)



+eimȳ+st





Û(m, s)

Ẑ(x, y;m, s)

Ψ̂(x, y;m, s)



+c.c. ,

(40)
where m is the meridional wavenumber of the disturbances
and s is the growth rate, with growing perturbations cor-
responding to ℜ(s) > 0. Retaining terms linear in the per-
turbation variables (Û , Ψ̂, Ẑ), one has the equations gov-
erning the evolution of small perturbations to the homoge-
neous solution. The details of the subsequent solution are
in Appendix C, and a main result of that analysis is the
dispersion relation

2µβ2 s+ µ

s+ 2µ
=

∫ ∞

0

h5
(
h2 −m2

)
Ã(h)Q

[
h2(s+ 2µ)

mβ
,
m

h

]
dh

2π
, (41)

where Ã(h) is the forcing spectrum in (37), and the func-
tion Q(χ, n) is defined by the angular integral

Q(χ, n)
def
=

∮
cos2 θ

(
1 + n2 − 4 sin2 θ

)

(χ+ i sin 2θ)
2

+ n2
[
χ2(n2 + 2 − 4 sin2 θ) + cos2 θ

]
dθ

2π
.

(42)

The dispersion relation (41) applies to the special case of
isotropic forcing, A = A(r) and ν = 0; a more general
expression of the dispersion relation is in Appendix C.

Dr. George Carnevale has shown that the dispersion
relation in (41) and (42) is also obtained from equation
(5.13) in Carnevale and Martin (1982). The field-theoretic
approach of Carnevale and Martin (1982) is different from
the approximation used to obtain the CE2 system in (26)
and (29) e.g., CE2 contains terms such as (U1 − U2)Zx,
which Carnevale and Martin (1982) consider to be fourth
order in wave amplitude, and therefore negligible. How-
ever, after linearization of CE2 around a basic state with
U = 0, these terms are neglected. Therefore the linearized
version of CE2 in this section is equivalent to the weak-
turbulence limit (5.13) in Carnevale and Martin (1982).
This consistency provides confidence in (41) and (42).

Ring forcing

In most previous investigations of zonation, the forcing
is limited to an annulus of wave numbers in Fourier-space.

Typically the annulus of forced modes has a mean radius
h = kf and has thickness 2δk ≪ kf . This is the “narrow-
band forcing” described in Appendix A. We idealize this
choice further by considering ‘ring’ forcing corresponding
to the limit δk → 0. In other words, we consider a random
flow, driven isotropically by injecting energy on the circle
h = kf in wavenumber space. This corresponds to

A(r) =
2ε

k2
f

J0(kf r) , Ã(h) =
4πε

k3
f

δ(h− kf ) , (43)

where J0 is the Bessel function of order zero. Notice that
Ξ = ∇4A = k4

fA. With ν = 0 — as we assume in (41) —
the spatially homogeneous base state solution in (37) is

ΨH(r) = ε
J0(kfr)

k2
fµ

, Ψ̃H(h) = 2πε
δ(h− kf )

k3
fµ

. (44)

The parameter ε above, with dimensions Watts per kilo-
gram, is the rate of working of the force that sustains the
base state (44) flow against dissipation.

With δ(h− kf ) in (43), the h-integral in (41) is trivial.
Before proceeding however, it is convenient to write the
various parameters in the non-dimensional form using the
length scale k−1

f and time scale (εk2
f )−1/3. These scales

lead to the control parameters

µ∗

def
=

µ

k
2/3
f ε1/3

, β∗
def
=

β

k
5/3
f ε1/3

. (45)

The nondimensional wavenumber and growth rate are

m∗

def
=

m

kf
, and s∗

def
=

s

(εk2
f )1/3

. (46)

The zonostrophic dispersion relation in non-dimensional
variables is then

µ∗β
2
∗

(
s∗ + µ∗

s∗ + 2µ∗

)

= (1 −m2
∗)Q

(
s∗ + 2µ∗

m∗β∗
,m∗

)

, (47)

with the function Q defined in (42). We now lighten the
notation by dropping the ∗ on non-dimensional variables
m and s. We have obtained the growth rate by solving
(47) numerically for s = sr + isi. This numerical solution
indicates that modes with sr > 0 are found only if 0 <
m2 < 1, and these unstable modes have si = 0. We have
been unable to obtain a satisfactory non-numerical proof of
these two important properties of zonostrophic instability.

Figure 4 shows some examples of the growth rate s(m)
plotted as a function of m for various values of β∗, with
µ∗ = 0.15 in all cases. If s > 0 for some values of m (e.g.,
β∗ = 0.15 and 1 in Figure 4) then the homogeneous flow is
unstable and zonal jets will grow from very small initial am-
plitude. Also shown in Figure 4 are two marginally stable
situations β∗ = 0.0634 and β∗ = 2.571. These are defined
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Fig. 4. The growth rate s as a function of m for µ∗ = 0.15
and five values of β∗ indicated on the curves. The variables
in this figure are non-dimensionalized according to (45) and
(46). These modes have si = 0 i.e., s is real. The curves
β∗ = 2.571 and 0.0634 correspond to the marginally stable
situation defined by (48).

by the condition that the most unstable disturbance has
s = 0:

max
∀m

s(m;β∗, µ∗) = 0 . (48)

A main conclusion resulting from our analysis is that zonos-
trophic instability is suppressed if β∗ is either too large or
too small e.g., in Figure 4 the flow is stable if β∗ > 2.571
or if β∗ < 0.0634.

The marginal stability condition in (48), which is equiv-
alent to the requirements

s(m;β∗, µ∗) = 0 , and ∂ms(m;β∗, µ∗) = 0 , (49)

defines a “critical curve” in the (β∗, µ∗)-parameter plane.
This curve, µ∗ = µc

∗(β∗) is shown in the upper panel of
Figure 5. The solution (Z, U) = (ZH, 0) is linearly unstable
in the region below the critical curve. The peak of the
critical curve is 0.2464 = µc

∗(0.65). This peak defines the
“most unstable” point in the (β∗, µ∗)-parameter space i.e.,
the largest value of drag µ∗ at which the homogeneous
solution loses stability. The lower panel of Figure 5 shows
the wavenumber mc(β∗) of the incipient instability i.e., the
wavenumber determined by simultaneously satisfying the
two equations in (49).

Approximations to the neutral curve with large and small β∗

Also shown in Figure 5 are analytic approximations in
the complementary limits β∗ ≪ 1 and β∗ ≫ 1. These
results are obtained via asymptotic analysis of the integral

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

µ
*
=2β

*
−2(1−35/3 β

*
−2)

µ
*
=0.54 β

*
2/5

µ *

0 1 2 3 4 5 6 7 8

0.2

0.4

0.6

0.8

1

m
*
=(3µ

*
/2β

*
)1/3

m
*
=1−0.43 β

*
2/5

m
*

β
*

Fig. 5. The top panel is the critical curve, µc
∗(β∗); lin-

ear zonostrophic instability occurs in the region below the
critical curve. The bottom panel shows the wavenumber on
the critical curve, mc(β∗) i.e., the most linearly unstable
wavenumber. Asymptotic approximations for the critical
curve and the most unstable wavenumber based on β∗ ≫ 1
(dash-dot) and β∗ ≪ 1 (dash) are shown in both panels.

Q(χ, n) in (42), and simplification of the dispersion relation
(47) (see Appendix E). If β∗ ≪ 1 then the critical curve is

µc
∗(β∗) =

(
3

64

)1/5

β
2/5
∗ +O

(

β
4/5
∗

)

, (50)

with wavenumber

mc(β∗) = 1 − 0.43β
2/5
∗ +O

(

β
4/5
∗

)

. (51)

In the complementary limit β∗ ≫ 1, the approximation
to the critical curve is

µc
∗(β∗) =

2

β2
∗

(

1 − 35/3

β2
∗

)

+O
(
β−6
∗

)
, (52)

with wavenumber

mc(β∗) =
31/3

β∗
+O

(
β−3
∗

)
. (53)

The lower panel of Figure 5 shows that linear zonos-
trophic instability is spectrally nonlocal only in the limit
β∗ → ∞: in that case the most unstable wavenumber is
much less than the forced wavenumber kf , implying a scale
separation between the scales at which energy is injected
and the scale at which jets initially form. In the other limit
β∗ → 0 the linearly unstable wavenumber is close to kf .
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The small wavenumber structure of the growth rate

The structure of the dispersion relation at small m pro-
vides insight into the nature of zonostrophic instability.
Looking at Figure 4, we anticipate that

s = −µ∗ + η2m
2 + η4m

4 +O
(
m6
)
, (54)

where η2 > 0 might explain the increase in s that results
in the instability with s > 0. This would be a “negative-
viscosity instability”, which is the interpretation offered
by Farrell and Ioannou (2007) and Bakas and Ioannou
(2011a,b).

However there is a small surprise: from (E18) we find
that the expansion of the dispersion relation (47) around
m = 0 is:

s = −µ∗ +
3β2

∗

8µ4
∗

m4 +O
(
m6
)
. (55)

i.e., the term η2 in (54), corresponding to viscosity, is iden-
tically zero. Instead, the instability is associated with a
destabilizing hyperviscous term i.e., the Reynolds stresses
are related to the zonal mean flow by

u′v′ = −3β2
∗

8µ4
∗

∂3U

∂y3
, (56)

leading to the small-m growth rate in (55). We analyze
this curious situation further in Section 5 and show that
η2 = 0 follows from the assumed isotropy of the forcing i.e.,
η2 = 0 is not a special property of the particular model
in (44). The conclusion is that zonostrophic instability
requires anti-frictional momentum fluxes, and in the small-
m limit this anti-friction is hyerviscous.

In recent work Bakas and Ioannou (2011a,b) reach a
different conclusion viz., that the anti-frictional effect re-
sulting in nonzero Reynolds stress is equivalent to non-zero
and positive η2, and that the hyper-viscous coefficient η4
is negative and therefore stabilizing. We believe that these
differences may result from a different choice of forcing Ξ.
Bakas and Ioannou (2011a,b) use an anisotropic forcing,
while our conclusion above is specifically for isotropic forc-
ing. The importance of isotropy to our conclusion is un-
derscored in the section 5.

5. Isotropy and zero eddy viscosity

In the discussion surrounding (55) we observed that the
term in the zonostrophic dispersion relation corresponding
to the eddy viscosity is zero. This result emerges from the
analysis of a complicated dispersion relation and surely de-
serves a more fundamental explanation, or at least another
explanation. Thus in this section we more directly obtain
the eddy viscosity of an isotropically forced QL β-plane
shear flow, and show that the result is identically zero.

The eddy viscosity is obtained by calculating the Reynolds
stresses in a situation where there is good scale separa-
tion between a shear flow and eddies. The best possible

scale separation is achieved by considering a Couette flow,
Un = γyn, and in this case the CE2 correlation equation
(26) collapses to

γy∂xZ − 2β∂ȳ∂x∂yΨ = Ξ(x, y) − 2µZ . (57)

For the moment we assume general forcing i.e., there is no
restriction to isotropic forcing (yet).

The eddy viscosity νe is defined by the relation

νe
def
= −γ−1 u′v′ . (58)

The goal is to solve (57) and obtain the Reynolds stress
u′v′ by evaluating Ψxy at zero separation e.g., as in (28).
The eddy viscosity then follows from the definition (58).

We expect that νe defined above is equal to the coeffi-
cient η2 in (54). In the m→ 0 limit, the modal solution in
(40) varies on the length scale m−1, which is much greater
than the length scale of the forcing, viz., k−1

f . Thus on the
scale of the forcing, the growing zonal disturbance resem-
bles the Couette flow1 (except at the “shearless” points,
where Uy = 0). By calculating the Reynolds stress in this
situation one can anticipate the low-wavenumber structure
of the dispersion relation. This reasoning is identical to
methods in kinetic theory by which the molecular shear
viscosity is calculated.

A solution of the correlation equation

We can simplify (57) with Z = Z(x, y) i.e., by looking
for a solution independent of ȳ:

γy∂xZ = Ξ(x, y) − 2µZ . (59)

This reduction is surprising because the β-effect is removed
from the problem. Equation (59) can be solved straightfor-
wardly as an ordinary differential equation in x. However
to make contact with a large literature on sheared distur-
bances, it is instructive to consider the initial value problem

Ft + γy∂xF = −2µF , (60)

with the initial condition

F (x, y, 0) = Ξ(x, y) . (61)

The solution of the steady problem (59) is then obtained
as

Z(x, y) =

∫ ∞

0

F (x, y, t) dt . (62)

Thus, solving the initial value problem for F , the vorticity
correlation function is written as the time integral of a
sheared disturbance:

Z(x, y) =

∫ ∞

0

e−2µt Ξ (x− γty, y) dt . (63)

1There is also uniform advection by the zonal flow. But that
sweeping is eliminated by the difference U1 − U2 in the correlation
equation (26), and is therefore inconsequential to Reynolds stresses.

9



The Reynolds stresses

To obtain the correlation function Ψ from Z we must
solve the two-dimensional biharmonic equation ∇4Ψ = Z,
which is accomplished with the Green’s function defined
by ∇4G = δ(x)δ(y), or G̃(h) = h−4, or

G(x, y) =
r2

8π
(ln r − 1) . (64)

With G(x, y) in hand, we have

Ψ(x, y) =

∫∫

G(x− x′, y − y′)Z(x′, y′) dx′dy′ . (65)

The Reynolds stress now follows by evaluating Ψxy at zero
separation, or

u′v′ =
1

4π

∫∫
xy

x2 + y2
Z(x, y) dxdy . (66)

This is a very convenient and general expression for the
Reynolds stresses u′v′ in terms of the vorticity correlation
function Z(x, y).

Substituting (63) into (66) results in a triple integral.
To disentangle this, exchange the order so that t-integral
is last, and in the inner x and y integrals “unshear” the
correlation function with the coordinate change

x1 = x− γyt , y1 = y . (67)

After these maneuvers the Reynolds stress is

uv =
1

4π

∫ ∞

0

e−2µtΣ(t) dt , (68)

where

Σ(t)
def
=

∫∫
(x1 + γty1)y1

(x1 + γty1)2 + y2
1

Ξ (x1, y1) dx1dy1 . (69)

Now we restrict attention to isotropic forcing i.e.,

Ξ(x1, y1) = Ξ

(√

x2
1 + y2

1

)

. (70)

Then in polar coordinates, the double integral in (69) fac-
tors:

Σ(t) =

∮
(cos θ + γt sin θ) sin θ

(cos θ + γt sin θ)2 + sin2 θ
dθ ×

∫ ∞

0

Ξ(r)rdr ,

=
2π γt

4 + (γt)2
×
∫ ∞

0

Ξ(r) rdr ,

= 0 . (71)

The final line follows from the constraint (38), and implies
that u′v′ = 0. That is, the eddy viscosity νe is zero.

We remark that the constraints in (38) and (39) are
required so that correlation function Ψ on the left of (65)

decays as r → ∞, despite the r → ∞ divergence of the
Green’s function G(r) in (64). In the convolution integral
on the right of (65), the large-r divergence of G is shielded
by zero integrals of the vorticity correlation function Z,
which follows from the integral constraints on Ξ in (38)
and (39).

There are two important caveats associated with the
conclusion that νe = 0: the stochastic forcing is isotropic
and dissipation is provided only by Ekman drag. Relaxing
either or both of these assumptions might result in non-zero
νe.

The kinetic energy density

The energy power integral for the β-plane Couette flow
problem considered here is obtained by first rewriting (59)
as

γ∇2
(
y∇2∂xΨ − 2∂x∂yΨ

)
= ∇4A− 2µ∇4Ψ . (72)

Canceling a Laplacian, and evaluating the result at zero
separation, one obtains2

γu′v′ = ε− µ
(

u′2 + v′2
)

. (73)

The left hand side is the transfer of energy between the ed-
dies and the Couette flow, which is zero because u′v′ = 0.
Therefore the statistically energy balance is between dis-
sipation due to drag and the rate of working of the ran-
dom force that drives the eddies. Remarkably, because the
Reynolds stresses are zero, the eddy kinetic energy of the
statistically steady flow is ε/(2µ), independent of both β
and γ.

Discussion

To a certain extent the result νe = 0 is anticipated
in the literature on sheared disturbances. Shepherd (1985)
showed that an isotropic initial distribution of Rossby waves
maintains a constant energy density, despite shearing by a
Couette flow; see also Farrell and Ioannou (1993a) and Hol-
loway (2010). The solution in (63), with the isotropic ini-
tial condition in (61), is essentially a time integral of Shep-
herd’s solution of the sheared-disturbance problem with an
isotropic initial condition.

Via direct numerical simulation (but with β = 0), Cum-
mins and Holloway (2010) have recently shown that the
eddy-eddy nonlinearity, EENL, is essential in producing
nonzero Reynolds stresses from Couette-sheared eddies. Cum-
mins and Holloway (2010) identify the essential role of
EENL as restoration of isotropy at high wavenumbers. More-
over, as a result of nonlinearly restored isotropy, the eddy
viscosity νe is robustly positive, and thus cannot serve as an
explanation of zonostrophic instability. Whatever the sign

2The rate of energy injection is ε = − 1

2
∇2A|0; see, for example,

the model forcing in(43).
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Fig. 6. The time-averaged zonal mean energy fraction
〈zmf〉 as a function of µ∗, with β∗ fixed as indicated in
the bottom right corner of each panel. QL simulations are
indicated by ◦ and NL solutions by ∗.

of νe, an unfortunate consequence of (6) is that restoration
of isotropy at small scales is absent in QL dynamics, and
not represented in the ensemble-averaged dynamics CE2.

6. Zonation in QL and NL solutions

We now turn to numerical solutions for a comparison
between the full nonlinear system, the quasilinear system
and the predictions of CE2. In these calculations the reso-
lution is 512×512, and we use the ETDRK4 time-stepping
scheme (Cox and Matthews 2005). In addition to the con-
trol parameters β∗ and µ∗ defined in (45), there is a third
control parameter which is the size of the domain relative
to the forced wavenumber kf : in our computations the do-
main is a doubly periodic square 2πL×2πL, with kfL = 32.
Thus there is scale separation between the forcing and the
domain.

We have obtained about 150 QL and NL numerical so-
lutions, with the planetary vorticity gradient in the range

0.1 ≤ β∗ ≤ 3.3 ,

and the drag parameter in the range

0.0051 ≤ µ∗ ≤ 0.309 .

In this section we use these solutions to compare QL and
NL solutions, and assess the validity of the CE2 linear sta-
bility analysis.

The onset of zonation in NL and QL solutions

Shown in the bottom panel of Figure 3 is the evolution
of the fraction of kinetic energy in the zonal mean flow,

zmf(t)
def
=

∫
U2 da

∫
U2 + u′2 + v′2 da

. (74)

∫
· · · da above denotes the area integral over the entire do-

main. The index zmf(t) is a gross measure of the strength
of the zonal mean flow. The time average, denoted by
〈zmf〉, is computed by averaging over an interval t1 < t <
t1 + 10/µ, where typically 2µt1 > 40. This long spin-
up ensures that statistical equilibrium has been achieved
and is consistent with the equilibration time suggested by
Galperin et al. (2006).

The index 〈zmf〉 is used to classify the flow. Figure 6
summarizes a suite of QL and NL calculations in which
the drag parameter µ∗ is varied at fixed β∗. The onset of
zonation is indicated by the increase in 〈zmf〉. The dotted
lines marked µc

QL correspond to the critical curve in the
upper panel of figure 5; these analytic predictions compare
well with the increase in 〈zmf〉 in the QL numerical solu-
tions. The dotted lines marked µc

NL in Figure 6 are eyeball
estimates of the onset of NL zonation.

The onset of zonostrophic instability requires signifi-
cantly smaller values of µ∗ in the NL case than in the QL
case: in Figure 6 the ratio µc

QL/µ
c
NL is as large as five.

Thus the QL system is much more unstable than the NL
system. Regarding this quantitative difference between NL
and QL, we recall that QL (and CE2) is an approximation
based on dropping the eddy-eddy nonlinearity. This ap-
proximation is most defensible when the mean flow is very
strong i.e., in cases where the zonal mean flow contains al-
most all of the energy. Therefore CE2 is not likely to be
quantitatively accurate near the linear stability boundary,
where the zonal mean flow is weak or nonexistent. The
comparison in Figure 6 is thus a worst case test of CE2.
How, or if, CE2 might be improved to account for the miss-
ing eddy-eddy nonlinearity in this weak mean-flow regime
is an open issue.

Zonostrophically stable NL solutions

Figure 7 shows two NL solutions which are zonostroph-
ically stable i.e., these solutions have

µc
NL < µ∗ , (75)

and 〈zmf〉 ≈ 0. In the left panel of Figure 7 the drag is
so heavy that the approximate dominant balance in (1) is
µζ ≈ ξ and the vorticity field closely resembles a snapshot
of the forcing ξ.

Figure 8 compares energy spectra of statistically steady
QL and NL solutions. With strong drag (i.e., µ∗ = 0.309)
only the directly forced wavenumbers are significantly ex-
cited. As µ∗ is reduced there is transfer of energy to small
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Fig. 7. Snapshots of the vorticity ζ(x, y, t) with over-
laid zonally averaged vorticity −Uy(y, t) (solid white curve)
with (a) µ∗ = 0.309 and, (b) µ∗ = 0.0545. Both snapshots
are at non-dimensional time 2µt = 25, after spin-up from
rest, and β∗ = 1.

wavenumbers. In the NL case the transfer of energy to
wavenumbers smaller than kf is the due to the inverse
energy cascade. In the QL case the excitation of small
wavenumbers is due only to shearing by the zonal mean
flow. Comparing QL and NL solutions at the same value
of µ∗, one sees from Figures 8(b) and 8(d), that there is
significantly more low-wavenumber eddy energy in the NL
cases. Yet the zonal mean energy is always stronger in the
QL case. There is no clear association between the inverse
energy cascade and zonation.

The NL solution shown in right panel of Figure 7 with
µ∗ = 0.0545 has an eddy energy spectrum in Figure 8
(b) exhibiting the beginning of −5/3 range. However this
solution has 〈zmf〉 ≈ 0 and thus serves as example of
an isotropic, spatially homogeneous, weakly turbulent, β-
plane flow, without jets. To activate zonostrophic insta-
bility the drag µ∗ must be reduced e.g., to µ∗ = 0.0182 in
Figures 1 and 8.

The jet scale

If zonation occurs, as evinced by significantly nonzero
values of 〈zmf〉, then by counting the number of distinct
jets one can reliably estimate3 a jet wavenumber mJ. For
example, in Figure 1 there are seven jets and therefore
mJ/kf = 7/32.

However we noticed that there are cases without jets in
which the zonal energy spectrum EZ(ky/kf ) has a strong
peak: an example is the µ∗ = 0.0545 solution in Figure
7(b): the corresponding zonal energy spectrum in Figure
8(a) has a distinct peak even though there are no zonal
jets. In cases like this, we report a wavenumber mZ which
is the peak of the zonal spectrum EZ(ky/kf). In cases

3In certain cases the system may be transitioning between a state
with n and n+1 jets. Following Panetta (1993), we then count n+ 1

2

jets; no other fractional values are permitted.
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Fig. 8. The upper panels show the zonal spectrum,
EZ(ky/kf ), for QL and NL solutions with β∗ = 1. The
lower panels show the residual spectrum ER(k/kf ), defined
as the angularly averaged spectrum after removal of the
“zonal modes” with kx = 0. The largest peak in EZ(ky/kf )
defines the wavenumber mZ, even if there are no quasi-
steady steady zonal jets e.g., as in the NL simulation with
µ∗ = 0.0545 in panel (a).

where there are strong jets we invariably find that mZ ≈
mJ. It is interesting to compare mJ and mZ with a Rhines
wavenumber defined as

mRh =

√

β

2VRMS
, (76)

where the root mean square velocity is

V 2
RMS

def
=

〈
1

(2πL)2

∫

U2 + u′2 + v′2 da

〉

. (77)

We investigated other choices for the velocity in the Rhines
wavenumber e.g., Rhines (1975) advocated the RMS of v′.
We found however that VRMS gave the best estimate of the
NL jet spacing at small values of µ∗. An advantage of VRMS

is that the energy power integral4 can be used to express
VRMS in terms of external parameters as

ε ≈ µV 2
RMS . (78)

The relation above applies with an error (due to hypervis-
cous dissipation) of less than 5% in our simulations. Sub-

4From (1), the exact energy power integral is 〈ψξ + µ|∇ψ|2 +
(−1)n−1νn|∇n−1ζ|2〉 = 0, where 〈〉 is both a domain integral and a
time average.
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Fig. 9. A summary of zonal wavenumbers (jet scales) for
solutions with (a) β∗ = 0.5 and (b) β∗ = 1. The dot-dashed
curve is the Rhines wavenumber defined in (79). The solid
curve labelled QLS is most unstable wavenumber calcu-
lated from the dispersion relation (47). The NL solutions
are indicated by ∗ and the QL solutions by ◦.

stituting (78) into (76) one has

mRh ≈ kf

(

β∗µ
1/2
∗

2

)1/2

. (79)

Figure 9 compares the zonal wavenumber mZ obtained
from QL and NL solutions with the Rhines wavenumber on
the right of (79), and with the most-unstable wavenumber
obtained from the linear stability analysis of section 4. In
Figure 9 we show only the β∗ = 1 and β∗ = 0.5 solutions:
solutions with other values of β∗ exhibit a broadly similar
dependence of mZ on µ∗.

At large values µ∗ only the directly forced modes are
excited, and consequently mZ ≈ kf in both the QL and
NL cases. At the critical value µ∗ = µc

QL in Figure 9, the
QL solutions undergo zonostrophic instability, and close to
this transition, e.g., at µ∗ = 0.2 and 0.165 in Figure 9(a),
the QL mZ agrees with the analytic result from Figure 5.
In this regime the NL solutions start to develop an inverse
cascade (but without exciting zonal jets) and the NL mZ

begins to decrease.
There is an interesting transition at µ∗ = µc

Z in Figure
9. At this point the QL and NL zonal wavenumbers are
equal, and as µ∗ is reduced the QL and NL wavenumbers
are locked together. At µ∗ = µc

NL in Figure 9 the NL solu-
tions finally become zonostrophically unstable, resulting in
NL jets and significantly non-zero values of NL 〈zmf〉. At
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Fig. 10. Hovmöller diagrams for the (a) NL and (b) QL
runs with β∗=1.0 and µ∗ = 0.0545. The NL run corre-
sponds to the vorticity snapshot shown in Fig. 7(b) and
shows zonal “streaks”. In panel (b) the QL jets initially
appear at a wavenumber predicted by linearization of CE2.
Then successive mergers result in an increase in jet spacing.

the smallest value of µ∗ in Figure 9, which corresponds to
the runs in Figures 1 and 2, the QL and NL wavenumbers
are almost equal, and are estimated roughly by mRh.

In Figure 9 the analytic result QLS agrees with the
observed QL jet scale only when µ∗ is not too far from the
linear stability boundary µc

QL. In the strongly unstable
regime, with µ∗ significantly less than µc

QL, the observed
wavenumber mZ is much smaller than the most unstable
wavenumber predicted by linear theory. This increase in
the QL jet scale is a result of merging jets which initially
appear with a spacing which is well predicted by the linear
theory. This phenomenology begins at about µ∗ = µc

Z and
is illustrated in Figure 10.

Figure 10(a) shows the Hovmöller diagram of the jetless
NL solution from Figure 7(b). There is no zonation and
U(y, t) shows “streaks” rather than jets. These streaks
are not strong relative to the turbulent eddy field i.e.,
〈zmf〉 ≈ 0. The corresponding zonal energy spectrum in
Figure 8(a) exhibits a strong peak, which is a signature of
these transient zonal steaks.

Figure 10(b) shows the QL case in which jets initially
appear with a relatively small meridional spacing predicted
by linear theory, followed by a sequence of mergers so that
the mature flow has mZ much less than the most linearly
unstable wavenumber. The QL jet-merging phenomenol-
ogy, which is effectively a one-dimensional inverse cascade,
is very similar to the “Cahn-Hilliard” solutions obtained
by Manfroi and Young (1999) from a model of determinis-
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Fig. 11. Comparison of zonal mean velocity profiles of the
β∗ = 1 NL and QL runs in Figures 1 and 2.

tically forced zonation.

The small drag regime

The flows in Figure 1 and 2 have relatively light damp-
ing and both flows have organized jets containing a sub-
stantial fraction of the total kinetic energy. Figure 11
shows the time-averaged zonal mean-flow, 〈U〉 and the cor-
responding potential vorticity (PV) gradient, β∗ − 〈Uyy〉.
In Figure 2 the QL jets are almost symmetrical in the zonal
direction, in contrast to the NL jets5. But the QL jets are
not perfectly symmetric: the PV gradient in Figure 11(b)
reveals the QL east-west asymmetry. The NL PV gradient
is positive for all y and thus the NL jets are stable accord-
ing to the Rayleigh-Kuo criterion. The QL PV gradient in
Figure 11(b) reverses sign on the flanks of the eastward jet,
and also at the centers of the westward jets. Nonetheless
the QL zonal mean flow shows no indication of barotropic
instability i.e., the deep spikes with β∗ − 〈Uyy〉 < 0 are
permanent features of the QL zonal mean flow even after
time averaging.

Via integration of their SSST system, Farrell and Ioan-
nou (2007) report equilibrated zonal mean flows with much
stronger east-west asymmetry than the QL flow in Figure
11 e.g., see their figures 8 and 9. There are at least6 two
non-dimensional parameters, β∗ and µ∗, and the jet profile
depends on both of these. We will not attempt to charac-

5If β = 0 then the equations of motion are invariant under y → −y
and ψ → −ψ. This symmetry, which induces u → u, is broken in
both QL and NL by non-zero β. This explains the characteristic
east-west asymmetry of U(y, t) on the β-plane

6Farrell and Ioannou (2007) also employ a forcing with a different
correlation functon than our isotropic choice.

terize this variation systematically. However to make some
contact with the strong-forcing limit considered by Farrell
and Ioannou (2007) we consider the QL solution in Figure
10(b) and in Figure 12(a), and increase the energy injec-
tion rate ε by a factor of one thousand, while holding β,
µ and kf approximately fixed. Then from (45), the con-
trol parameters β∗ and µ∗ are each reduced by a factor of
ten. The time averaged zonal-mean profile of this strongly
forced solution is shown in Figure 12(b), and exhibits the
parabolic velocity profile seen in the NL run in Figure 1:
there are fast eastward jets with sharp gradients and broad
westward jets with smaller PV gradients. Also, the time
averaged QL jet-profile in Figure 12(b) is more asymmetric
than the weaker forced QL jet shown in Figure 12(a), that
has a forcing that is a factor of 10 smaller. In order to
quantify the jet asymmetry, we use the ratio

α(β∗, µ∗) =
Umax

|Umin|
, (80)

where Umax and Umin are the maximum and mimimum
values attained in the zonal-mean velocity profile. By in-
creasing the forcing strength by a factor of 1000, the jet
asymmetry increases from α = 1.25 in Figure 12(a) to
α = 1.56 for the profile in Figure 12(b). This is smaller
than the “ideal”, marginally stable (i.e. β − Uyy = 0 ev-
erywhere except at the eastward jet where the PV jumps)
profile considered in Danilov and Gurarie (2004), which has
α = 2.

Thus, although a detailed study of QL jet asymmetry is
not a focus of the present work, our QL numerical solutions
are thus generally consistent with the equilibrated SSST
jets presented in Farrell and Ioannou (2007).

Discussion of the eddy-eddy nonlinearity

An important effect of eddy-eddy nonlinearity is the
stirring of PV, producing an exponential-in-time reduction
in the length scale of vorticity fluctuations. Eddy-driven
stirring is removed from the QL system by (6): shearing by
U(y, t) is the only scale-reduction mechanism acting on the
QL eddy vorticity. The small-scale structure evident in the
QL PV gradient in the right panel of Figure 11 may reflect
the relative inefficiency of shearing by U(y, t) at removing
vorticity fluctuations.

Further differences in the jet structure evident in Fig-
ure 11 can be explained by meandering of the NL jets, so
that the zonal average reduces the sharpness of the NL
PV gradient. The spectral signature of the NL jet mean-
ders is a high energy mode at (kx, ky) = (1/32, 6/32)kf

in the two-dimensional NL spectrum; this same mode is
only weakly excited in the QL spectrum. The excitation
of almost-zonal modes, with a small but non-zero of value
of kx, is a well known aspect of zonation. These are called
a “satellite modes” by Danilov and Gurarie (2004), and
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Fig. 12. Comparison of time-averaged zonal-mean veloc-
ity profiles (thin lines) of QL runs. Panel (a) is the solu-
tion from Figure 10(b) with β∗ = 1.0 and µ∗=0.054 and
panel (b) is the strongly forced solution with β∗ = 0.1 and
µ∗=0.005. Also plotted are the corresponding PV gradi-
ents (thick curves).

they correspond to a domain-scale meander of the NL jets,
which is not present in the QL case.

7. Discussion and conclusion

A contribution of this work is the analytic development
of the linearized theory of zonostrophic instability within
the context of the second-order cumulant expansion (CE2)
of Marston et al. (2008), and the stochastic structural sta-
bility theory (SSST) of Farrell and Ioannou (2003, 2007).
These statistical formulations are equivalent to the correla-
tion dynamics derived in section 3, and that physical-space
formulation, in terms of partial differential equations for
the correlation functions Ψ and Z, provides some insight
into the mathematical structure of CE2/SSST.

In the upper panel of Figure 5 we display the curve
of neutral zonostrophic stability in the (β∗, µ∗)-parameter
plane obtained by solution of linearized CE2 dynamics.
We have shown that with isotropic forcing zonostrophic
instability is not a negative-viscosity instability: the hall-
mark of a negative-viscosity instability is that at the sta-
bility boundary the most unstable wavenumber is zero.
The deterministic model of anisotropically forced β-plane
zonation analyzed by Manfroi and Young (1999) provides
a bona fide example of the negative-viscosity case. In-
stead, for the isotropically and stochastically forced model
analyzed here, the onset of zonostrophic instability is at
the non-zero meridional wavenumber shown in the bottom
panel of Figure 5; only at large β∗ does this wavenumber

approach zero. Moreover, in Section 5 we showed that with
isotropic forcing the CE2 eddy viscosity νe is identically
zero.

Comparison of QL and NL numerical solutions indi-
cates that the CE2 linear stability boundary does not pro-
vide an accurate estimate of the onset of zonostrophic in-
stability for NL flows. This quantitative failure of CE2
is not surprising: neglect of the eddy-eddy nonlinearity is
most plausible in cases where most of the energy is in the
zonal mean flow: close to the stability boundary the zonal-
mean flow is only incipient. An outstanding open problem
is improving CE2 to account for the missing physics in
the eddy-eddy nonlinearity. Another important problem
is obtaining analytic insight into the solution of the CE2
system in the regime where CE2 is likely to be valid i.e.,
in the strongly unstable regime where the drag µ∗ is much
less than the critical drag µc and the fraction of energy in
the zonal-mean flow is substantial.
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APPENDIX A

Implementation of the random forcing ξ(x, t)

For numerical purposes we model the δ-correlated forc-
ing ξ(x, y, t) in (1) using a discrete approximation. The
goal is to construct a statistically isotropic and narrow
band forcing localized close to a radial wavenumber kf .
Thus the forcing is confined to an annulus A in wavenum-
ber space, where wavenumbers k in A satisfy the inequality

kf + δk < |k| < kf − δk . (A1)

We take δk = kf/8, so that A is tightly around the average
radius kf . We use a fourth-order Runge Kutta scheme,
with time step δt. Implementing the Runge-Kutta scheme
requires the value of the forcing not just at points in time
separated by the time step δt but also at the mid-points.
Some care must be exercised here though, since the Runge-
Kutta scheme assumes a certain degree of smoothness of
the solution. To ensure this, we use a forcing that during
the n’th time step, when (n− 1)δt < t < nδt, has the form

ξ(x, t) =
∑

ki∈A

{ξi(n− 1) + [ξi(n) − ξi(n− 1)]χn(t)} eiki·x ,

(A2)

where χn(t)
def
= (t/δt)− (n− 1) varies linearly from zero to

one during the n’th time step. The coefficient ξi(n) above
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is

ξi(n) =

√

2εk2
f

NAδt
eiφi(n) , (A3)

where NA is the number of wavevectors in A, and ε =
−〈ψξ〉 is the rate of energy injection. The dependence
ξi(n) ∝ 1/

√
δt ensures that the forcing is δ−correlated in

the limit δt → 0. The phase, φi(n), is a random variable,
chosen from a uniform distribution in [0, 2π]; the phase is
set independently for each wavevector ki, and resets at the
start of each time step.

The narrow-band forcing is described by the correlation
function,

Ξ̃b(k) =
2πεkf

δk

{

1 , if kf − δk < k < kf + δk;

0 , otherwise,
(A4)

which has the physical-space form

Ξb(r) =
εkf

δk

∫ kf+δk

kf−δk

J0(kr) kdk ,

=
2εkf

r2δk
[zJ1(z)]

(kf+δk)r

(kf−δk)r . (A5)

A comparison of Ξb(r) and its idealized form, Ξ(r) ∝ J0(kfr)
is shown in Figure 13

APPENDIX B

Rapid temporal decorrelation: derivation of (20)

The crucial assumption leading to (20) is that the tem-
poral de-correlation of the forcing is rapid, as indicated by
the δ(t1−t2) on the right of (10). Operationally, this means
that we might integrate (8) during the first time step from
t = 0 to t = δt as

ζ′(x, τ) = ζ′(x, 0) +
√
δt× ξ̂(x) + δt× AOT(x, 0) , (B1)

where AOT(x, 0) indicates “all other terms” in (8), evalu-

ated at t = 0. Also in (B1), ξ̂(x) is a spatial random field
with correlation function

Ξ(x, y1, y2, ) = ξ̂(x1)ξ̂(x2) . (B2)

The forcing ξ̂ “renovates” during each time step i.e., in the
n’th time step one creates a new independent realization of
ξ̂, but always with the same spatial correlation function Ξ.
According to this recipe the magnitude of ξ̂ is independent
of δt as δt → 0, and therefore ξ = ξ̂/

√
δt → ∞ as δt → 0.

As demanded by this argument, notice that ξi(n) in (A3)
is proportional to 1/

√
δt.

Before ensemble averaging, we can multiply (B1) eval-
uated at x1 with (B1) evaluated at x2 to obtain

ζ′1(δt)ζ
′
2(δt) = ζ′1(0)ζ′2(0) +

√
δt
[

ζ′1(0)ξ̂2 + ζ′2(0)ξ̂1

]

+ δt
[

ξ̂1ξ̂2 + ζ′1(0)AOT2(0) + ζ′2(0)AOT1(0)
]

+O
(

δt3/2
)

, (B3)

where the subscript n indicates evaluation at xn e.g.,

ζ′(x1, δt) = ζ′1(δt) . (B4)

Upon ensemble averaging, the terms of order
√
δt on the

right of (B3) vanish because ξ̂(x) is independent of ζ′(x, 0).
Thus

Z(δt) −Z(0)

δt
=Ξ + ζ′1(0)AOT2(0) + ζ′2(0)AOT1(0)

+O
(
δt1
)
. (B5)

As δt → 0 the left hand side is the time derivative of
the vorticity correlation function. The

√
δt-terms in (B3),

which prohibit a differentiable limit, are nulled in (B5) by
the ensemble average. Thus, taking the limit δt → 0 in
(B5), we obtain the deterministic differential equation (18)
for the evolution of the correlation function Z ≡ ζ1ζ2.

APPENDIX C

Derivation of the dispersion relation (41)

The linearized equations resulting from substitution of
(40) into (29) and (26) are

(
s+ 2µ+ 1

2νm
2 − 2ν∇2

)
Ẑ+2i sin

(my

2

)

ΦHx Û(m)

− 2imβΨ̂xy = 0 , (C1)
(
s+ µ+ νm2

)
Û(m)+imΨ̂xy

∣
∣
x=y=0

= 0 , (C2)
(
∇2 + im∂y − 1

4m
2
) (

∇2 − im∂y − 1
4m

2
)
Ψ̂ = Ẑ ,

(C3)
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where in (C1)

ΦH

def
= ZH +m2∇2ΨH =

(
∇4 +m2∇2

)
ΨH . (C4)

A key intermediate step on the path to (C1) is noting U1 =
U
(
ȳ + 1

2y
)

and U2 = U
(
ȳ − 1

2y
)
, so that with U(y, t) in

(40) one has

U1 − U2 = 2i sin
(my

2

)

eimȳ+st Û(m) + c.c. . (C5)

Applying the Fourier transform in (33) to (C1) and
(C3), one has

[
2imβpq + h2

+
h2

−
s′
]
Ψ̃ + ip Û

(

Φ̃−

H
− Φ̃+

H

)

= 0 , (C6)

im

s̄

∫∫

pq Ψ̃
dp dq

(2π)2
= Û , (C7)

h2
+
h2

−
Ψ̃ = Z̃ . (C8)

In (C6) through (C8) we use the notation

h±

def
=
√

p2 + (q ±m/2)2 , (C9)

Φ̃±

H

def
= h2

±

(
h2

±
−m2

)
Ψ̃H(p, q ±m/2) , (C10)

s̄
def
= s+ µ+ νm2 , (C11)

s′
def
= s+ 2µ+ 1

2νm
2 + 2νh2 . (C12)

Eliminating Û(m) between (C6) and (C7), we obtain the
dispersion relation

s̄ = mΛ− (s′,m) −mΛ+ (s′,m) , (C13)

where the functions Λ+(s′,m) and Λ−(s′,m) are defined
by the integral

Λ±(s′,m)
def
=

∫∫

p2q
h2

±

(
h2

±
−m2

)
Ψ̃H(p, q ±m/2)

s′ h2
+
h2

−
+ 2imβpq

dp dq

(2π)2
.

(C14)
Changing variables with p → −p and q → −q, and

using the exchange symmetry in (17), one finds that

Λ−(s′,m) = −Λ+(s′,m) , (C15)

so that the right of (C13) is equal to 2mΛ−. Then with
the change of variables q′ = q − m/2 in the Λ− integral,
and using (37), one can write the dispersion relation (C13)
as

s̄ =

∫∫
p2 (h2

++
− h2)h2

(
h2 −m2

)

s′ h2h2
++

+ iβp (h2
++

− h2)

Ã(p, q)

2µ+ 2νh2

dp dq

(2π)2
,

(C16)

where h++

def
=
√

p2 + (q +m)2.

If the forcing is isotropic then Ã(p, q) = Ã (h), and the
integral on the right of (C16) can be simplified using polar
coordinates (p, q) = h(cos θ, sin θ):

β2s̄ =

∫ ∞

0

h4
(
h2 −m2

) Ã(h)

2µ+ 2νh2
S

(
s′h2

βm
,
m

h

)
dh

2π
,

(C17)

where S is the function

S(χ, n)
def
=

∮
cos2 θ (2 sin θ + n)

χ (1 + 2n sin θ + n2) + i cos θ (2 sin θ + n)

dθ

2π
.

(C18)
One can show that S(χ, n) = −S(−χ, n) = −S(χ,−n),
and therefore S(0, n) = S(χ, 0) = 0. These symmetries are
important for further work, and they are not manifest from
the definition of S in (C18). Thus we seek an alternative
form with more obvious properties. The change of variables
θ → θ + π results in

S(χ, n) =

∮
cos2 θ (−2 sin θ + n)

χ (1 − 2n sin θ + n2) − i cos θ (−2 sin θ + n)

dθ

2π
.

(C19)
The average of (C18) and (C19) is then

S(χ, n) = χn

×
∮

cos2 θ (1 + n2 − 4 sin2 θ)

[χ+ i sin 2θ]2 + n2
[
χ2(n2 + 2 − 4 sin2 θ) + cos2 θ

]
dθ

2π
︸ ︷︷ ︸

def
= Q(χ,n)

.

(C20)

The function Q(χ, n) is manifestly an even function of n,
and θ → −θ shows that Q is also an even function of χ.

Substituting (C20) into (C17) gives the dispersion re-
lation in the form

β2s̄ =

∫ ∞

0

h5
(
h2 −m2

) Ã(h) s′

2µ+ 2νh2
Q

(
s′h2

βm
,
m

h

)
dh

2π
.

(C21)
With ν = 0, we obtain the dispersion relation in (41).

APPENDIX D

The function Q(χ, n)

In this appendix we summarize some properties of the
function Q(χ, n) defined in (C20). We first note that

Q(χ, 0) =

∫ 2π

0

cos2 θ (1 − 4 sin2 θ)

(χ+ i sin 2θ)2
dθ

2π
,

= 1 − |χ|(2χ2 + 3)

2 (χ2 + 1)
3/2

. (D1)

If 0 ≤ n2 ≤ 1 then

Q(0, n) = 1 + Pr

∫ 2π

0

1

n2 − 4 sin2 θ

dθ

2π
,

= 1 ,

(D2)

where ‘Pr’ refers to the Cauchy-principal value.
The case β∗ ≪ 1 requires the approximation of Q(χ, n)

in the limit χ → ∞. One can expand the integrand in
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inverse powers of χ and integrate term by term. The first
two non-zero terms are

Q(χ, n) =
3

23χ4(1 − n2)

+
5

25χ6

(n4 + 2n2 − 4)

(1 − n2)3
+O

(
χ−8

)
. (D3)

The case β∗ ≫ 1 requires the approximation of Q(χ, n)
in the limit χ→ 0. A somewhat laborious ‘range-splitting’
calculation shows that

Q(χ, n) = 1 − 3

2

24 − 7n2

24 − 6n2
|χ| + O

(
χ2
)
. (D4)

Finally, if χ→ ∞, with n = 0 then from either (D1) or
(D3) we obtain

Q(χ, 0) =
3

8χ4
+O

(
χ−6

)
. (D5)

APPENDIX E

The neutral curve

The neutral curve in the (β∗, µ∗)-parameter plane is de-
fined by the conditions in (49). For the dispersion relation
in (47), these take the form,

µβ2 = 2(1 −m2)Q (χ0,m) , (E1)

m =
(1 −m2)2

µβ2

∂Q (χ0,m)

∂m
, (E2)

with χ0 = 2µ/mβ above. (For brevity, in this Appendix,
we drop the ∗’s indicating non-dimensional variables.) An
examination of the numerical values of χ0 on the neutral
curve motivates the possibility that χ0 → ∞ as β → 0 and
χ0 → 0 as β → ∞. We now use this numerical observation
to derive analytical approximations for the neutral curve
in the complementary limiting cases β → 0 and β → ∞.
To this end, we use the approximations to Q(χ,m) sum-
marized in Appendix D.

Approximation of the marginal curve, β ≫ 1 and χ0 ≪ 1

First in the case of β → ∞, we have from (D4)

Q(χ0,m) = 1 − µ

β

(
3

m
+

5m

8

)

+O(m2χ0) . (E3)

Clearly, neglecting the O(mχ0) term must be justified post-
facto once a consistent dominant balance is found. Substi-
tuting (E3) in the neutral curve equations, (E1) and (E2)
and keeping in mind that that β−1 ≪ 1, we get

µβ2

2
= (1 −m2) − 3µ

mβ
+

29µm

8β
+O

(
µm2β−1

)
, (E4)

m3 = 3β−3 +O
(
m2β−3

)
. (E5)

The only consistent balance in the m-equation corresponds
to m3 ∼ 3β−3 and consequently,

m =
31/3

β
+O(β−3) . (E6)

Since m ∼ O(β−1) the only consistent balance in (E1) is
µ ∼ 2β−2. A higher order estimate for µ can be derived by
substituting for m to get

µ =
2

β2

(

1 − 35/3

β2

)

+O(β−6) . (E7)

These approximate expressions are superimposed on the
numerically obtained neutral curve in the Fig. 5 with
agreement once β > 2.

Approximation of the marginal curve, β ≪ 1 and χ0 ≫ 1

A similar analysis is used when β → 0 for which, we
can write from (D3),

Q(χ0,m) =
3

27

(
β

µ

)4(
m4

1 −m2

)

+
5

211

(
β

µ

)6 [
m6(m4 + 2m2 − 4)

(1 −m2)3

]

+O(χ−8
0 ) ,

(E8)

(E9)

and therefore

∂mQ(χ0,m) =
3

26

(
β

µ

)4 [
m3(2 −m2)

(1 −m2)2

]

−

5

211

(
β

µ

)6 [
m5(4m6 − 6m4 − 16m2 + 24)

(1 −m2)4

]

+O(χ−9
0 ) .

(E10)

Substituting into equations (E1) and (E2) one has

µβ2 =
3

26

(
β

µ

)4

m4+

5

210

(
β

µ

)6 [
m7(m4 + 2m2 − 4)

(1 −m2)2

]

+ h.o.t. , (E11)

m =
3

26

β2

µ5
m2(2 −m2)−

5

211

β4

µ7

[
m5(4m6 − 6m4 − 16m2 + 24)

(1 −m2)2

]

+ h.o.t.

(E12)

Above, h.o.t. refers to the higher order terms that have
been neglected from the above equation and can be justified
to be small post-facto. In (E11), assuming a dominant
balance between the term on the left and the first term on
the right, we have

µ ∼
(

3

64

)1/5

β2/5m4/5 . (E13)
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Similarly from (E12)

m ∼ 3

26

β2

µ5
m3(2 −m2) , (E14)

which on substituting for µ from (E13), gives us m ∼ 1
and

µ ∼
(

3

64

)1/5

β2/5 . (E15)

Proceeding to the next order, we obtain after some algebra

m ≈ 1 − 51/3

37/15219/15
︸ ︷︷ ︸

≈0.43

β2/5 . (E16)

As in the case before, we plot this estimate for m against
the numerical estimate in Figure 5 and the agreement is
excellent. In fact the approximations to mc(β) practically
span the entire range of the neutral curve.

The small-m expansion

When m → 0 with all other parameters fixed, we ob-
serve in Figure 4 that s → −µ and therefore in (47) the
first argument of Q is

s+ 2µ

mβ
≈ µ

mβ
≫ 1 . (E17)

To compute the small-m expansion of the dispersion rela-
tion we write s = −µ+ s1 and use (D5) to approximate Q.
Thus the dispersion relation (47) becomes

β2s1 ≈ 3

8

m4β4

µ4
. (E18)

This produces the small-m version of the dispersion rela-
tion in (55).
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