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ABSTRACT

Zonostrophic instability leads to the spontaneous emergence of zonal jets on a b plane from a jetless basic-

state flow that is damped by bottom drag and driven by a random body force. Decomposing the barotropic

vorticity equation into the zonal mean and eddy equations, and neglecting the eddy–eddy interactions, defines

the quasilinear (QL) system. Numerical solution of the QL system shows zonal jets with length scales com-

parable to jets obtained by solving the nonlinear (NL) system.

Starting with the QL system, one can construct a deterministic equation for the evolution of the two-point

single-time correlation function of the vorticity, from which one can obtain the Reynolds stress that drives the

zonal mean flow. This deterministic system has an exact nonlinear solution, which is an isotropic and ho-

mogenous eddy field with no jets. The authors characterize the linear stability of this jetless solution by

calculating the critical stability curve in the parameter space and successfully comparing this analytic result

with numerical solutions of the QL system. But the critical drag required for the onset of NL zonostrophic

instability is sometimes a factor of 6 smaller than that for QL zonostrophic instability.

Near the critical stability curve, the jet scale predicted by linear stability theory agrees with that obtained via

QL numerics. But on reducing the drag, the emerging QL jets agree with the linear stability prediction at only

short times. Subsequently jets merge with their neighbors until the flow matures into a state with jets that are

significantly broader than the linear prediction but have spacing similar to NL jets.

1. Introduction

Zonal flows are banded, anisotropic, weakly fluctu-

ating alternating jets that form spontaneously and persist

indefinitely in an otherwise turbulent plasma or plane-

tary fluid (Diamond et al. 2005; Vasavada and Showman

2005). The subject started with Rhines’ discovery that

freely evolving barotropic b-plane turbulence transfers

energy into zonal shear modes with zero frequency

(Rhines 1975). Also in 1975, experiments by Whitehead

showed that forcing, without the exertion of azimuthal

torque, in a rapidly rotating basin produces prograde

jets; in this context the curved upper surface provides

an analog of the b effect. We follow Galperin et al. (2006)

in referring to the development and persistence of these

anisotropic planetary flows as ‘‘zonation.’’ Williams (1978)

showed that zonation occurs in statistically steady forced-

dissipative flows on the sphere and proposed this as an

explanation of the banded structure of the planetary

circulations of Jupiter and Saturn.

Figure 1 shows a typical example of fully developed,

forced and dissipative zonation obtained by numeri-

cal solution of (3) below. The main features of the

statistically steady flow, such as the sharp eastward

jets, the broader westward return flows, and the saw-

tooth relative vorticity, are familiar from many earlier

studies of statistically steady, stochastically forced, dissi-

pative b-plane turbulence in doubly periodic geometry

(Danilov and Gurarie 2004; Danilov and Gryanik 2004;

Maltrud and Vallis 1991; Smith 2004; Vallis and Maltrud

1993) and on the sphere (Williams 1978; Nozawa and

Yoden 1997; Huang and Robinson 1998; Scott and

Polvani 2007).

To establish the notation used in this study, we start

with the equations of motion for a forced and dissipative

barotropic flow u 5 (u, y):

Du

Dt
1 f ẑ 3 u 5 ẑ 3 $a 2 $p 2 mu 1 nn=2nu, (1)

$ � u 5 0, (2)
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where f 5 f0 1 by is the b-plane Coriolis frequency. The

flow is energized by a solenoidal (incompressible) force

generated by the function a(x, y, t). There is no loss of

generality in taking the force to be solenoidal: any com-

pressive component of the external force is balanced by

the pressure gradient. Damping is provided by a com-

bination of drag m and hyperviscosity nn (with n 5 4 in

numerical simulations, and n 5 1 in development of

theory).

The incompressible velocity field (2) admits a stream-

function c(x, y, t) with (u, y) 5 (2cy, cx), and relative

vorticity z 5 cxx 1 cyy. Eliminating the pressure from (1),

one obtains the b-plane vorticity equation

zt 1 uzx 1 yzy 1 by 5 j 2 mz 1 nn=2nz. (3)

The vorticity forcing j on the right-hand side of (11)

is the curl of the solenoidal force in the momentum

equation—that is,

j 5 =2a. (4)

We assume that the forcing, a in (1) and j in (3), is a

rapidly decorrelating, isotropic, spatially homogeneous,

random process. Thus energy and enstrophy are injected

into a narrow band of wavenumbers centered on a ‘‘forced

wavenumber’’ kf (see appendix A for details of the

implementation). This model of exogenous stochastic

forcing, first proposed by Lilly (1969), is now a standard

protocol used in many barotropic and shallow-water

studies of forced-dissipative zonation. The physical in-

terpretation of the forcing and the choice of its spatial

structure vary somewhat in literature. Considering j to

be a representation of baroclinic eddies, Williams (1978)

chose the forced wavenumbers to lie in a narrow rect-

angular band, with the zonal extent of the band equal to

the baroclinic deformation radius. Scott and Polvani (2007)

and Smith (2004) interpreted the rapidly decorrelating,

narrowband, isotropic forcing as a model of small-scale

three-dimensional convection. Another possibility is that

j is a representation of the bubble-cloud forcing used

by Whitehead (1975) in the laboratory. Below, in the dis-

cussion surrounding (10) we give yet another interpreta-

tion of j.

We have found no studies that establish any particular

forcing protocol as being a reasonable physical repre-

sentation of three-dimensional small-scale eddies acting

on a barotropic flow. However, despite the two strong

modeling approximations, namely quasi-geostrophy and

the choice of the forcing, some features of Jovian jets,

such as the jet width, are approximately captured by

simplified models (Smith 2004; Vasavada and Showman

2005). A different model forcing in Showman (2007) uses

nonsolenoidal physical space mass forcing to represent

moist convection in a shallow water system. Despite the

different choice of forcing, Showman’s results on planetary

FIG. 1. Nonlinear (NL) zonal jets. (left) A snapshot of the zonally averaged velocity U(y, t)

obtained from a solution of (3) in a doubly periodic domain 2pL 3 2pL with kfL 5 32, where kf

is the dominant wavenumber of the forcing j. (right) A snapshot of the vorticity z, with overlaid

zonally averaged vorticity 2Uy(y, t) (solid white curve). The parameter values for this run are

m* 5 0.018 24 and b* 5 1.0. The snapshot is at 2mt 5 25 with spinup from rest.

1634 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 69



zonal jets are broadly consistent with those obtained by

Smith (2004). In light of this fact, and since the baro-

tropic quasigeostrophic (QG) system cannot represent

mass forcing, we do not address these issues further.

A common theme in all the studies mentioned above

is a separation of scales between the forcing length

scale k21
f and the width of the emergent jets. Indeed,

the spacing of the jets in Fig. 1 is significantly greater

than k21
f , which is an indication either of the inverse

cascade or of a spectrally nonlocal transfer of energy

(Huang and Robinson 1998).

A striking feature of b-plane zonation is that the

translational symmetry, y / y 1 a, of the equation of

motion (3) is spontaneously broken: the locations of the

eastward maxima in Fig. 1 are an accident of the initial

conditions and of the random number generator used to

create j. But after the jets form, they remain in the same

position, apparently forever. Once these robust quasi-

steady jets are in place, their dynamics can be discussed

in mechanistic terms using concepts such as potential

vorticity (PV) mixing, the resilience of transport barriers

at the velocity maxima, radiation stress, and shear

straining of turbulent eddies (Rhines and Young 1982;

Dritschel and McIntyre 2010). But the primary question

addressed here is why the jets form in the first place, given

that j does not select particular locations. Following

earlier investigations of this phenomenon (Farrell and

Ioannou 2007; Manfroi and Young 1999), we show that

zonation can be understood as symmetry-breaking

instability of an isotropic, spatially homogeneous, and

jetless b-plane flow.

In section 2 we introduce the eddy-mean decomposi-

tion and discuss a statistical method, previously used by

Farrell and Ioannou (1993b, 2003, 2007), Marston et al.

(2008), and Tobias et al. (2011), which is the basis of our

linear stability analysis of zonostrophic instability. This

method amounts to forming quadratic averages of the

equations of motion and then discarding third-order cu-

mulants. Farrell and Ioannou (2003, 2007) refer to this

method as stochastic structural stability theory (SSST),

while Marston et al. (2008) call it the second-order cu-

mulant expansion, or CE2. SSST and CE2 are completely

equivalent, and only one name is required. We have

therefore adopted the more descriptive CE2 terminology

of Marston et al. (2008).

In section 3 we present a physical space reformulation

of CE2, which has analytic advantages over earlier nu-

merically oriented formulations. Within the context of

CE2, section 4 provides a complete analytic description

of zonostrophic instability obtained by linearizing around

an exact isotropic and homogeneous solution with no jets.

As in Farrell and Ioannou (2007), zonation is understood

as a linear instability of CE2: part of the linearly unstable

eigenmode is a zonal flow. This linear stability problem

is characterized by two control parameters, a non-

dimensional drag parameter m* and a nondimensional

planetary parameter b*, and we determine the CE2 zo-

nostrophic stability boundary in the (b*, m*)-parameter

FIG. 2. Quasilinear (QL) zonal jets. (left) A snapshot of the zonally averaged velocity U(y, t)

obtained by integrating the QL system (6), (7), and (9). (right) A snapshot of the QL vorticity z,

with overlaid zonally averaged vorticity 2Uy (solid white curve). The parameters for this run

are the same as the nonlinear solution in Fig. 1 (i.e., m* 5 0.0182, b* 5 1, and kfL 5 32). The

snapshot is at 2mt 5 40 after spinup from rest.
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plane. An important property of CE2 zonostrophic in-

stability is that the most unstable wavenumber, which

determines the meridional scale of the exponentially

growing jets, is well away from zero. Because the in-

stability unfolds around a nonzero wavenumber, CE2

zonostrophic instability is not properly a negative-

viscosity instability. This point is reinforced in section 5

by showing that the CE2 eddy viscosity is identically zero.

Section 6 is a comparison between the analytic results

and direct numerical simulations of the nonlinear sys-

tem. Section 7 is the discussion and conclusions. The

more technical aspects of the paper are in five appendices.

2. The eddy-mean decomposition and
quasilinear dynamics

We use an eddy-mean decomposition

c(x, y, t) 5 c(y, t) 1 c9(x, y, t), (5)

where the overbar denotes a zonal average; we also de-

note the zonal mean velocity as U(y, t) 5 u(y, t). Ap-

plying this average to (3) results in the zonal mean

momentum equation

›tU 1 ›y(u9y9) 5 2mU 1 n›2n
y U (6)

and the eddy vorticity equation

z9t 1 Uz9x 1 (b 2 Uyy)c9x 1 EENL 5 j 2 mz9 1 nD2nz9.

(7)

In (7), the eddy–eddy nonlinearity (EENL) is

EENL 5
def

c9xz9y 2 c9yz9x 2 (c9xz9)y. (8)

In addition to the zonal average, the overbar includes a

running time average over a short interval so that j(y, t)

does not appear on the right-hand side of (6). In pre-

senting equations subsequently used to obtain analytic

results, we use n 5 1 for the viscosity.

a. Quasilinear dynamics

The main results in this paper are obtained with a

quasilinear (QL) system, which is defined by taking

EENL / 0 (9)

in (7). Figure 2 shows a QL solution at the same pa-

rameter values as the fully nonlinear (NL) solution as

Fig. 1. Because of the coupling between the mean and

the eddies, the QL system is nonlinear, and Fig. 2 shows

that QL dynamics still results in the spontaneous for-

mation of quasi-steady zonal jets.

Comparing the left panels in Figs. 1 and 2, one sees

that the QL jets are faster and wider than NL jets, and

the jet profiles are different: QL jets are distinctly more

east–west symmetric than NL jets. Nonetheless, we

show in section 6 that the QL jets in Fig. 2 do have

a small east–west QL asymmetry, and at other points

in the (b*, m*)-parameter space, QL jets are strongly

east–west asymmetric.

Because the QL jets are faster, the QL system is more

zonostrophically unstable than the NL system. In Figs. 1

and 2, quasi-steady jets evolve spontaneously from an ini-

tially jetless state, as shown in the Hovmöller diagram of the

zonal mean flow in Fig. 3. Comparing Figs. 3a and b shows

that the QL system has significantly longer adjustment

times than the NL system.

O’Gorman and Schneider (2007) made the QL ap-

proximation (9) in an atmospheric general circulation

model and showed by comparison with the full nonlinear

version of the model that several important features

of the flow are unaffected by complete removal of the

eddy–eddy nonlinearity as in (9). Comparing Figs. 1

and 2 we reach a similar conclusion for the more ideal-

ized model studied here. This preliminary conclusion is

supported by a detailed comparison between NL and QL

solutions in section 6.

There are several ways of motivating QL dynamics.

The QL system conserves both energy and enstrophy

and has the same zonal mean equation and symmetries

as the NL system. Thus, arguments based on quadratic

integral invariants apply equally to the QL and the NL

system (Salmon 1998). Nonetheless, because EENL is dis-

carded, the QL system cannot exhibit a true Batchelor–

Kraichnan inverse energy cascade: in the QL model all

nonlinear interactions require participation of the zonal

mean flow. Because U(y, t) has a larger length scale than

the eddy field, all these nonlinear QL interactions are

spectrally nonlocal. Fig. 2 shows that the spectrally local

Batchelor–Kraichnan inverse cascade is not necessary

for zonation.

PV is not materially conserved by the QL system, and

consequently nonquadratic functions of PV are not con-

served by the nonlinear terms remaining in QL. Thus,

Fig. 2 also shows that strict material conservation of PV

is not necessary for zonation.

Thus, at the most basic level, the QL system is in-

structive as an indication of the physically essential pro-

cesses necessary for zonation.

b. Stochastic closure versus cumulant expansion

A main motivation of the QL system is that using the

statistical method pioneered in meteorology by Farrell
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and Ioannou (1993b, 2003, 2007) one can compute

important average quadratic properties of the QL flow,

such as Reynolds stress and the eddy enstrophy and

energy. However, rather than (9), Farrell and Ioannou

(2007) adopt a stochastic closure, which amounts to re-

placing the eddy–eddy nonlinearity with a combination

of random forcing and dissipation:

EENL / 2jEENL 1 mEENLz9 (10)

(see also DelSole 2001). The intent of (10) is that the

random forcing jEENL(x, t) and the dissipation mEENLz9

should be chosen to match the evolution of the NL sys-

tem. The terms in (10) then augment the exogenous

forcing and dissipation on the right-hand side of (7).

However, there is probably no reliable a priori method

of determining the right-hand side of (10). Heeding the

principle to first do no harm, we prefer the QL alterna-

tive (9). This has the advantage that one can then make

a specific comparison between QL and NL solutions (e.g.,

as in Figs. 1 and 2) and assess the role of EENL.

Our point of view, which follows Marston et al. (2008)

and Tobias et al. (2011), is to regard the QL system as

an approximation to the NL system. In fact, (9) in tan-

dem with the method of Farrell and Ioannou, is precisely

the second-order cumulant expansion CE2 of Marston

et al. (2008). It is from this perspective that in section 3

we develop a physical-space formulation of CE2, which

is suitable for analytic solution.

3. Dynamics of correlations: CE2

In the QL approximation, the eddy vorticity equation

can be written as

›tz9 1 L›xc9 5 j 2 mz9 1 n=2z9, (11)

where L is the Rayleigh–Kuo operator:

L 5
def

U=2 1 (b 2 Uyy). (12)

In this section we obtain a closed deterministic evolution

equation for the two-point correlations function of vorticity

z9 and streamfunction c9. This correlation equation [(23)

below] is coupled to the evolution of the zonal mean flow

via the Reynolds stresses, and the Reynolds stresses can be

obtained by evaluating derivatives of the correlation

function at zero separation. Thus one obtains the zonal

mean evolution equation in (34) below.

FIG. 3. (a) Hovmöller diagram of the zonal mean velocity U(y, t) obtained by solution of the

full NL system in (3). (b) Hovmöller diagram of the zonal mean velocity U(y, t) obtained by

solution of the QL system. (c) A comparison of the zonal mean energy fraction, zmf(t) defined

in (78), for QL and NL runs. The time-averaged fractions are hzmfiNL 5 0.3 and hzmfiQL 5 0.51.

This figure shows the time evolution of the runs in Figs. 1 and 2.
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a. Correlation functions: Kinematics

We assume that the external forcing, a(x, t) in (1) and

j(x, t) in (11), has two-point, two-time correlation func-

tions of the form

a(x1, t1)a(x2, t2) 5 d(t2 2 t1)A(x1 2 x2, y1, y2), (13)

j(x1, t1)j(x2, t2) 5 d(t2 2 t1)J(x1 2 x2, y1, y2), (14)

where the overbar above denotes an ensemble average.

The dependence of the spatial correlation functions A

and J only on the difference

x 5
def

x1 2 x2 (15)

indicates that the forcing is zonally homogeneous. We

do not assume (yet) that the forcing is isotropic and me-

ridionally homogenous.

Because derivatives commute with the ensemble av-

erage, relation (4) implies that A and J are related by

J 5 =2
1=2

2A, (16)

where the Laplacian acting on the coordinates of point

n is

=2
n 5

def
›2

x 1 ›2
y

n
. (17)

Notice that that we have changed notation: undecorated

x in (15) is the zonal difference coordinate. We also use

the shorthand u9
1

5 u9(x
1
, t), U

2
5 U(y

2
, t), z9

2
5 z9(x

2
, t),

etc. Strictly speaking, we should decorate all the vari-

ables in (11) with the subscript n 5 1 or 2 to explicitly

indicate whether we refer to the eddy vorticity equa-

tion at the point x1 5 (x1, y1) or at the point x2 5 (x2, y2).

We forbear from doing so.

We assume ‘‘ergodicity’’ so the overbar is also equiva-

lent to the zonal average of a single realization. We desire

the single-time two-point correlation functions

Z(x, y1, y2, t) 5
def

z91z92 (18)

and

C(x, y1, y2, t) 5
def

c91c92. (19)

The analog of (16) is

Z 5 =2
1=2

2C. (20)

Given the streamfunction correlation C(x, y1, y2, t), one

can obtain the velocity correlation tensor as

Vij(x, y1, y2, t) 5
def u91u92 u91y92

u92y91 y91y92

 !
5

›y
1
›y

2
›x›y

1

2›x›y
2

2›2
x

 !
C.

(21)

Because the choice of denoting one point as x1 and the

other as x2 is arbitrary, all correlation function have an

important ‘‘exchange’’ symmetry

C(x, y1, y2) 5 C(2x, y2, y1), (22)

and likewise for A, Z, J, etc.

b. Correlation functions: Dynamics

It follows from (11) and (14) that the correlation

functions evolve as

›tZ 1 (=2
2L1 2 =2

1L2)›xC 5 J 2 2mZ 1 n(=2
1 1 =2

2)Z,

(23)

where the Rayleigh–Kuo operator at point n is L
n

[

U
n
=2

n 1 (b 2 U0
n
).

To derive (23), multiply the equation for ›tz91 by z92
and add this to the ›tz92 equation multiplied by z92. The

sum is then ensemble averaged, and after the average all

fields depend on x1 and x2 only through the combina-

tion x 5 x1 2 x2. Because of this zonal homogeneity

›
x1

5 2›
x2

5 ›
x
. Thus, for example,

z92L1›x
1
c91 1 z91L2›x

2
c92 5 (=2

2L1 2 =2
1L2)›xc91c92. (24)

A crucial simplification is that the forcing is rapidly

decorrelating in time, as expressed by the d(t1 2 t2) in

(14). Considerations summarized in appendix B (amount-

ing to a simple proof of Ito’s formula) show that

z91j2 1 z92j1 5 J. (25)

The result above is the origin of the first term on the

right-hand side of (23).

c. Collective coordinates

As alternatives to y1 and y2, there are advantages in

using the ‘‘collective coordinates’’

y 5
def

y1 2 y2 and y 5
def 1

2
(y1 1 y2). (26)

Eventually we will restrict attention to homogenous and

isotropic forcing, and at that point we take J in (14) to

be a function only of the two-point separation
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r 5
def jx1 2 x2j 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 1 y2

q
. (27)

Collective coordinates are then essential for analytic

progress.

In terms of y and y, the Laplacians are

=2
n 5 =2 2 (21)n

›y›y 1
1

4
›2

y, (28)

where =2 5
def

›2
x 1 ›2

y is the ‘‘separation’’ Laplacian. Thus,

for instance,

Z 5 =2 1 ›y›y 1
1

4
›2

y

� �
=2 2 ›y›y 1

1

4
›2

y

� �
C, (29)

5 =4C 1
1

2
(›2

x 2 ›2
y)›2

yC 1
1

16
›4

yC. (30)

Using the coordinates in (26), the correlation equation

(23) becomes

›tZ 1 (U1 2 U2)›xZ 2 (U01 2 U02) =2 1
1

4
›2

y

� �
›xC

2 (2b 2 U01 2 U02)›y›y›xC

5 J 2 2mZ 1 2n=2Z 1
1

2
n›2

yZ, (31)

where now and U1 5 U[y 1 (1/2)y] and U2 5 U[y 2

(1/2)y].

d. The zonal mean flow equation

One advantage of collective coordinates is that mean

square quantities, such as the enstrophy, are obtained

by evaluating correlation functions at zero separation

[i.e., by setting (x, y) 5 0]. For example, if one pos-

sesses Z5Z(x, y, y, t) then the eddy enstrophy is z92 5

Z(0, 0, y, t).

A key result, obtained by evaluating

u91y92 1 u92y91 5 2›x›yC (32)

at (x, y) 5 0, is that the Reynolds stress is

u9y9(y, t) 5 ›y›xC(0, 0, y, t). (33)

Thus, the mean flow equation (6) can be written as

›tU 1 ›y›y›xC(0, 0, y, t) 5 2mU 1 n›2
yU. (34)

The mean flow equation (34), coupled with the correlation

equation (31), is a closed system for the ensemble-aver-

aged properties of QL dynamics.

4. Zonostrophic instability of a spatially
homogeneous and isotropic base-state flow

a. The spatially homogeneous basic state

We now suppose that the forcing is statistically ho-

mogenous and isotropic, namely that the correlation

function of the forcing has the particular form

j(x1, t1)j(x2, t2) 5 d(t2 2 t1)J(r), (35)

where r is the two-point separation defined in (27). Be-

cause J does not depend on y, there is a simple exact

solution to (31) and (34). This solution is spatially ho-

mogeneous and isotropic and has no mean flow, U 5 0.

With these simplifications the correlation equation (31)

collapses to

(2m 2 2n=2)ZH 5 J. (36)

The subscript H emphasizes that Z
H

(r) is spatially ho-

mogeneous (i.e., independent of y). The streamfunction

correlation function CH(x, y) can be obtained from ZH

by solving =4CH 5ZH . It is remarkable that ZH in (36)

is independent of b: an isotropic and spatially homo-

genous forcing drives an isotropic and spatially homo-

geneous flow, despite the anisotropy of Rossby wave

propagation.

We now apply the Fourier integral theorem,

~f ( p, q) 5
def
ð ð

f (x, y)e2i( px1qy) dx dy, (37)

f (x, y) 5

ð ð
~f ( p, q)ei( px1qy) dpdq

(2p)2
, (38)

to (36). We use the notation

h 5
def

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 1 q2

q
, (39)

so that after the Fourier transform h4 ~C
H

5 ~Z
H

, and the

streamfunction spectrum is related to the forcing spec-

trum by

~CH(h) 5
~J(h)

2mh4 1 2nh6
. (40)

We emphasize that ~C
H

(h) in (40) is not singular as h / 0.

To see this, we recall (16), which in this homogeneous

and isotropic case implies that J 5 =4A, and therefore
~J 5 h4 ~A. In terms of ~A then, the streamfunction spec-

trum in (40) becomes

~CH(h) 5
~A(h)

2m 1 2nh2
. (41)
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Since a(x, t) is stationary, the spectra ~A(h) and ~C
H

(h)

are finite as h / 0 (provided that m 6¼ 0).

Later we will need two integral constraints on the

vorticity forcing correlation function J:ð ð
J(x, y) dx dy 5 ~J(0, 0) 5 0, (42)

and alsoð ð
J(x, y)r2 dx dy 5 lim

h/0
h22 ~J( p, q) 5 0. (43)

These follow from J 5 =4A, and the assumption that the

correlation function A(r) decays faster than r21 as r / ‘.

The constraints above are satisfied by the standard forc-

ing protocol described in appendix A, which has zero

spectral density around h 5 0.

b. The dispersion relation of inviscid and
isotropic flow

The linear stability of the spatially homogeneous so-

lution in (41) is determined by imposing small initial

disturbances and examining evolution in time. The per-

turbation variables are added to the base-state variables,

(0, CH, Z
H

) and substituted into (31) and (34). The total

‘‘flow,’’ with mean and imposed small perturbations, is

2
4 U(y, t)

Z(x,y,y, t)

C(x,y,y, t)

3
55

2
64 0

ZH(x,y)

CH(x,y)

3
751 eimy1st

2
4 Û(m,s)

Ẑ(x,y;m,s)

Ĉ(x,y;m,s)

3
51 c:c:,

(44)

where m is the meridional wavenumber of the distur-

bances and s is the growth rate, with growing pertur-

bations corresponding to <(s) . 0. Retaining terms

linear in the perturbation variables (Û, Ĉ, Ẑ), one has

the equations governing the evolution of small pertur-

bations to the homogeneous solution. The details of the

subsequent solution are in appendix C, and a main result

of that analysis is the dispersion relation

2mb2 s 1 m

s 1 2m
5

ð‘

0
h5(h2 2 m2) ~A(h)Q

"
h2(s 1 2m)

mb
,
m

h

#
dh

2p
,

(45)

where ~A(h) is the forcing spectrum in (41), and the

function Q(x, n) is defined by the angular integral

Q(x, n) 5
def
þ

cos2u(1 1 n2 2 4 sin2u)

(x 1 i sin2u)2
1 n2[ x2(n2 1 2 2 4 sin2u) 1 cos2u]

du

2p
. (46)

The dispersion relation (45) applies to the special case of

isotropic forcing, A 5 A(r) and n 5 0; a more general

expression of the dispersion relation is in appendix C.

Dr. George Carnevale has shown that the dispersion

relation in (45) and (46) is also obtained from (5.13) in

Carnevale and Martin (1982). The field-theoretic ap-

proach of Carnevale and Martin (1982) is different from

the approximation used to obtain the CE2 system in

(31) and (34); for instance, CE2 contains terms such as

(U
1

2 U
2
)Z

x
, which Carnevale and Martin (1982) con-

sider to be fourth order in wave amplitude and therefore

negligible. However, after linearization of CE2 around

a basic state with U 5 0, these terms are neglected.

Therefore, the linearized version of CE2 in this section

is equivalent to the weak-turbulence limit (5.13) in

Carnevale and Martin (1982). This consistency provides

confidence in (45) and (46).

c. Ring forcing

In most previous investigations of zonation, the forc-

ing is limited to an annulus of wavenumbers in Fourier

space. Typically the annulus of forced modes has a mean

radius h 5 kf and has thickness 2dk � kf. This is the

‘‘narrow-band forcing’’ described in appendix A. We

idealize this choice further by considering ‘‘ring’’ forcing

corresponding to the limit dk / 0. In other words, we

consider a random flow, driven isotropically by injecting

energy on the circle h 5 kf in wavenumber space. This

corresponds to

A(r) 5
2«

k2
f

J0(kf r), ~A(h) 5
4p«

k3
f

d(h 2 kf ), (47)

where J0 is the Bessel function of order zero. Notice that

J 5 =4A 5 k4
j A. With n 5 0—as we assume in (45)—the

spatially homogeneous base-state solution in (41) is

CH(r) 5 «
J0(kf r)

k2
f m

, ~CH(h) 5 2p«
d(h 2 kf )

k3
f m

. (48)

The parameter « above, with dimensions of watts per

kilogram, is the rate of working of the force that sustains

the base-state (48) flow against dissipation.

With d(h 2 kf) in (47), the h integral in (45) is trivial.

Before proceeding, however, it is convenient to write the
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various parameters in the nondimensional form using

the length scale k21
f and time scale («k2

f )21/3. These scales

lead to the control parameters

m* 5
def m

k2/3
f «1/3

, b* 5
def b

k5/3
f «1/3

. (49)

The nondimensional wavenumber and growth rate are

m* 5
def m

kf

, and s* 5
def s

(«k2
f )1/3

. (50)

The zonostrophic dispersion relation in nondimen-

sional variables is then

m*b2
*

s* 1 m*
s* 1 2m*

5 (1 2 m2
*)Q

s* 1 2m*
m*b*

, m*

 !
, (51)

with the function Q defined in (46). We now lighten the

notation by dropping the asterisk on nondimensional

variables m and s. We have obtained the growth rate by

solving (51) numerically for s 5 sr 1 isi. This numerical

solution indicates that modes with sr . 0 are found only

if 0 , m2 , 1, and these unstable modes have si 5 0. We

have been unable to obtain a satisfactory nonnumerical

proof of these two important properties of zonostrophic

instability.

Figure 4 shows some examples of the growth rate s(m)

plotted as a function of m for various values of b*, with

m* 5 0.15 in all cases. If s . 0 for some values of m (e.g.,

b* 5 0.15 and 1 in Fig. 4), then the homogeneous flow is

unstable and zonal jets will grow from very small initial

amplitude. Also shown in Fig. 4 are two marginally stable

situations b* 5 0.0634 and b* 5 2.571. These are defined

by the condition that the most unstable disturbance has

s 5 0:

max
"m

s(m; b*, m*) 5 0. (52)

A main conclusion resulting from our analysis is that

zonostrophic instability is suppressed if b* is either too

large or too small (e.g., in Fig. 4 the flow is stable if b* .

2.571 or if b* , 0.0634).

The marginal stability condition in (52), which is equiv-

alent to the requirements

s(m; b*, m*) 5 0, and ›ms(m; b*, m*) 5 0, (53)

defines a ‘‘critical curve’’ in the (b*, m*) parameter plane.

This curve, m* 5 mc
*(b*) is shown in the upper panel of

Fig. 5. The solution (Z, U) 5 (ZH , 0) is linearly unstable

in the region below the critical curve. The peak of the

critical curve is 0:2464 5 mc
*(0:65). This peak defines the

‘‘most unstable’’ point in the (b*, m*) parameter space

(i.e., the largest value of drag m* at which the homoge-

neous solution loses stability). The lower panel of Fig. 5

shows the wavenumber mc(b*) of the incipient instability

[i.e., the wavenumber determined by simultaneously

satisfying the two equations in (53)].

d. Approximations to the neutral curve with large
and small b*

Also shown in Fig. 5 are analytic approximations in

the complementary limits b* � 1 and b* � 1. These

FIG. 4. The growth rate s as a function of m for m* 5 0.15 and five

values of b* indicated on the curves. The variables in this figure are

nondimensionalized according to (49) and (50). These modes have

si 5 0 (i.e., s is real). The curves b* 5 2.571 and 0.0634 correspond

to the marginally stable situation defined by (52).

FIG. 5. (a) The critical curve mc
*(b*) (solid line); linear zono-

strophic instability occurs in the region below the critical curve.

(b) The wavenumber on the critical curve (solid line; i.e., the most

linearly unstable wavenumber). Asymptotic approximations for the

critical curve and the most unstable wavenumber based on b*� 1

(dash-dotted) and b*� 1 (dashed) are shown in both panels.
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results are obtained via asymptotic analysis of the in-

tegral Q(x, n) in (46), and simplification of the disper-

sion relation [(51); see appendix E]. If b*� 1 then the

critical curve is

mc
*(b*) 5

3

64

� �1/5

b2/5
* 1 O(b4/5

* ), (54)

with wavenumber

mc
*(b*) 5 1 2 0:43b2/5

* 1 O(b4/5
* ). (55)

In the complementary limit b* � 1, the approxima-

tion to the critical curve is

mc
*(b*) 5

2

b2
*

1 2
35/3

b2
*

 !
1 O(b26

* ), (56)

with wavenumber

mc
*(b*) 5

31/3

b*
1 O(b23

* ). (57)

The lower panel of Fig. 5 shows that linear zono-

strophic instability is spectrally nonlocal only in the limit

b* / ‘: in that case the most unstable wavenumber is

much less than the forced wavenumber kf, implying a

scale separation between the scales at which energy is

injected and the scale at which jets initially form. In the

other limit b* / 0 the linearly unstable wavenumber is

close to kf.

e. The small wavenumber structure
of the growth rate

The structure of the dispersion relation at small m

provides insight into the nature of zonostrophic in-

stability. Looking at Fig. 4, we anticipate that

s 5 2m* 1 h2m2 1 h4m4 1 O(m6), (58)

where h2 . 0 might explain the increase in s that results

in the instability with s . 0. This would be a ‘‘negative-

viscosity instability,’’ which is the interpretation offered

by Farrell and Ioannou (2007), Bakas and Ioannou (2011,

manuscript submitted to J. Atmos. Sci., hereafter BakIo),

and Bakas and Ioannou (2011).

However there is a small surprise: from (E17) we find

that the expansion of the dispersion relation (51) around

m 5 0 is

s 5 2m* 1
3b2

*
8m4

*

m4 1 O(m6). (59)

That is, the term h2 in (58), corresponding to viscosity, is

identically zero. Instead, the instability is associated with

a destabilizing hyperviscous term, namely the Reynolds

stresses are related to the zonal mean flow by

u9y9 5 2
3b2

*
8m4

*

›3U

›y3
, (60)

leading to the small-m growth rate in (59). We analyze

this curious situation further in section 5 and show that

h2 5 0 follows from the assumed isotropy of the forcing

[i.e., h2 5 0 is not a special property of the particular

model in (48)]. The conclusion is that zonostrophic in-

stability requires antifrictional momentum fluxes, and in

the small-m limit this antifriction is hyperviscous.

In recent work BakIo and Bakas and Ioannou (2011)

reach a different conclusion, namely that the antifric-

tional effect resulting in nonzero Reynolds stress is

equivalent to nonzero and positive h2, and that the hy-

perviscous coefficient h4 is negative and therefore sta-

bilizing. We believe that these differences may result

from a different choice of forcing J. Bakas and Ioannou

(2011) and BakIo use an anisotropic forcing, while our

conclusion above is specifically for isotropic forcing. The

importance of isotropy to our conclusion is underscored

in the section 5.

5. Isotropy and zero eddy viscosity

In the discussion surrounding (59) we observed that

the term in the zonostrophic dispersion relation corre-

sponding to the eddy viscosity is zero. This result emerges

from the analysis of a complicated dispersion relation

and surely deserves a more fundamental explanation,

or at least another explanation. Thus in this section we

more directly obtain the eddy viscosity of an isotropi-

cally forced QL b-plane shear flow and show that the

result is identically zero.

The eddy viscosity is obtained by calculating the

Reynolds stresses in a situation where there is good

scale separation between a shear flow and eddies. The

best possible scale separation is achieved by consider-

ing a Couette flow, Un 5 gyn, and in this case the CE2

correlation equation (31) collapses to

gy›xZ 2 2b›y›x›yC 5 J(x, y) 2 2mZ. (61)

For the moment we assume general forcing [i.e., there

is no restriction to isotropic forcing (yet)].

The eddy viscosity ne is defined by the relation

ne 5
def

2g21u9y9. (62)
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The goal is to solve (61) and obtain the Reynolds stress

u9y9 by evaluating Cxy at zero separation [e.g., as in (33)].

The eddy viscosity then follows from definition (62).

We expect that ne defined above is equal to the co-

efficient h2 in (58). In the m / 0 limit, the modal so-

lution in (44) varies on the length scale m21, which is

much greater than the length scale of the forcing, namely

k21
f . Thus, on the scale of the forcing, the growing zonal

disturbance resembles the Couette flow1 (except at

the ‘‘shearless’’ points, where Uy 5 0). By calculating the

Reynolds stress in this situation one can anticipate the

low-wavenumber structure of the dispersion relation.

This reasoning is identical to methods in kinetic theory

by which the molecular shear viscosity is calculated.

a. A solution of the correlation equation

We can simplify (61) with Z5Z(x, y) (i.e., by looking

for a solution independent of y):

gy›xZ 5 J(x, y) 2 2mZ. (63)

This exact reduction is surprising because the b effect is

removed from the problem. Equation (63) can be solved

straightforwardly as an ordinary differential equation

in x. However, to make contact with a large literature

on sheared disturbances, it is instructive to consider the

initial-value problem

Ft 1 gy›xF 5 22mF, (64)

with the initial condition

F(x, y, 0) 5 J(x, y). (65)

The solution of the steady problem (63) is then obtained

as

Z(x, y) 5

ð‘

0
F(x, y, t) dt. (66)

Thus, solving the initial-value problem for F, the vor-

ticity correlation function is written as the time integral

of a sheared disturbance:

Z(x, y) 5

ð‘

0
e22mtJ(x 2 gty, y) dt. (67)

b. The Reynolds stresses

To obtain the correlation function C from Z we must

solve the two-dimensional biharmonic equation =4C 5 Z,

which is accomplished with the Green’s function defined

by =4G 5 d(x)d(y), or ~G(h) 5 h24, or

G(x, y) 5
r2

8p
(lnr 2 1). (68)

With G(x, y) in hand, we have

C(x, y) 5

ð ð
G(x 2 x9, y 2 y9)Z(x9, y9) dx9dy9. (69)

The Reynolds stress now follows by evaluating Cxy at

zero separation, or

u9y9 5
1

4p

ð ð
xy

x2 1 y2
Z(x, y) dx dy. (70)

This is a very convenient and general expression for the

Reynolds stresses u9y9 in terms of the vorticity correla-

tion function Z(x, y).

Substituting (67) into (70) results in a triple integral.

To disentangle this, exchange the order so that the t in-

tegral is last, and in the inner x and y integrals ‘‘unshear’’

the correlation function with the coordinate change:

x1 5 x 2 gyt, y1 5 y. (71)

After these maneuvers the Reynolds stress is

uy 5
1

4p

ð‘

0
e22mtS(t) dt, (72)

where

S(t) 5
def
ð ð

(x1 1 gty1)y1

(x1 1 gty1)2
1 y2

1

J(x1, y1) dx1 dy1. (73)

Now we restrict attention to isotropic forcing; that is,

J(x1, y1) 5 J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 1 y2
1

q� �
. (74)

Then in polar coordinates, the double integral in (73)

factors:

S(t) 5

þ
(cosu 1 gt sinu) sinu

(cosu 1 gt sinu)2
1 sin2u

du 3

ð‘

0
J(r)r dr,

5
2pgt

4 1 (gt)2
3

ð‘

0
J(r)r dr,

5 0. (75)

1 There is also uniform advection by the zonal flow. But that

sweeping is eliminated by the difference U1 2 U2 in the correlation

equation (31) and is therefore inconsequential to Reynolds

stresses.
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The final line follows from constraint (42) and implies

that u9y9 5 0. That is, the eddy viscosity is zero.

We remark that the constraints in (42) and (43) are

required so that correlation function C on the left of (69)

decays as r / ‘, despite the r / ‘ divergence of the

Green’s function G(r) in (68). In the convolution in-

tegral on the right-hand side of (69), the large r diver-

gence of G is shielded by zero integrals of the vorticity

correlation function Z, which follows from the integral

constraints on J in (42) and (43).

There are two important caveats associated with the

conclusion that ne 5 0: the stochastic forcing is isotropic

and dissipation is provided only by Ekman drag. Re-

laxing either or both of these assumptions might result in

nonzero ne.

c. The kinetic energy density

The energy power integral for the b-plane Couette

flow problem considered here is obtained by first re-

writing (63) as

g=2(y=2›xC 2 2›x›yC) 5 =4A 2 2m=4C. (76)

Canceling a Laplacian, and evaluating the result at zero

separation, one obtains2

gu9y9 5 « 2 m(u92 1 y92). (77)

The left-hand side is the transfer of energy between

the eddies and the Couette flow, which is zero because

u9y9 5 0. Therefore the statistically energy balance is

between dissipation due to drag and the rate of working

of the random force that drives the eddies. Remarkably,

because the Reynolds stresses are zero, the eddy kinetic

energy of the statistically steady flow is «/(2m), indepen-

dent of both b and g.

d. Discussion

To a certain extent the result ne 5 0 is anticipated in

the literature on sheared disturbances. Shepherd (1985)

showed that an isotropic initial distribution of Rossby

waves maintains a constant energy density, despite shear-

ing by a Couette flow; see also Farrell and Ioannou (1993a)

and Holloway (2010). The solution in (67), with the iso-

tropic initial condition in (65), is essentially a time in-

tegral of Shepherd’s solution of the sheared-disturbance

problem with an isotropic initial condition.

Via direct numerical simulation (but with b 5 0),

Cummins and Holloway (2010) have recently shown that

the eddy–eddy nonlinearity is essential in producing

nonzero Reynolds stresses from Couette-sheared eddies.

Cummins and Holloway (2010) identify the essential role

of EENL as restoration of isotropy at high wavenumbers.

Moreover, as a result of nonlinearly restored isotropy, ne

is robustly positive and thus cannot serve as an explana-

tion of zonostrophic instability. Whatever the sign of ne,

an unfortunate consequence of (9) is that restoration of

isotropy at small scales is absent in QL dynamics and not

represented in the ensemble-averaged dynamics CE2.

6. Zonation in QL and NL solutions

We now turn to numerical solutions for a comparison

of the full nonlinear system, the quasilinear system, and

the predictions of CE2. In these calculations the reso-

lution is 512 3 512, and we use the ETDRK4 time-

stepping scheme (Cox and Matthews 2005). In addition

to the control parameters b* and m* defined in (49),

there is a third control parameter, which is the size of the

domain relative to the forced wavenumber kf: in our

computations the domain is a doubly periodic square

2pL 3 2pL, with kfL 5 32. Thus there is scale separa-

tion between the forcing and the domain.

We have obtained about 150 QL and NL numerical

solutions, with the planetary vorticity gradient in the

range

0:1 # b* # 3:3

and the drag parameter in the range

0:0051 # m* # 0:309.

In this section we use these solutions to compare QL and

NL solutions and assess the validity of the CE2 linear

stability analysis.

a. The onset of zonation in NL and QL solutions

Shown in the bottom panel of Fig. 3 is the evolution of

the fraction of kinetic energy in the zonal mean flow

zmf(t) 5
def

ð
U2 dað

U2 1 u92 1 y92 da

, (78)

where
Ð

(�) da denotes the area integral over the entire

domain. The index zmf(t) is a gross measure of the

strength of the zonal mean flow. The time average, de-

noted by hzmfi, is computed by averaging over an in-

terval t1 , t , t1 1 10/m, where typically 2mt1 . 40. This

long spinup ensures that statistical equilibrium has been

2 The rate of energy injection is « 5 ½=2Aj0; see, for example,

the model forcing in (47).
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achieved and is consistent with the equilibration time

suggested by Galperin et al. (2006).

The index hzmfi is used to classify the flow. Figure 6

summarizes a suite of QL and NL calculations in

which the drag parameter is varied at fixed b*. The

onset of zonation is indicated by the increase in hzmfi.
The dotted lines marked mc

QL correspond to the criti-

cal curve in the upper panel of Fig. 5; these analytic

predictions compare well with the increase in hzmfi in

the QL numerical solutions. The dotted lines marked

mc
NL in Fig. 6 are eyeball estimates of the onset of NL

zonation.

The onset of zonostrophic instability requires signifi-

cantly smaller values of m* in the NL case than in the QL

case: in Fig. 6 the ratio mc
QL/mc

NL is as large as 5. Thus the

QL system is much more unstable than the NL system.

Regarding this quantitative difference between NL and

QL, we recall that QL (and CE2) is an approximation

based on dropping the eddy–eddy nonlinearity. This ap-

proximation is most defensible when the mean flow is

very strong (i.e., in cases where the zonal mean flow

contains almost all of the energy). Therefore, CE2 is

not likely to be quantitatively accurate near the linear

stability boundary, where the zonal mean flow is weak

or nonexistent. The comparison in Fig. 6 is thus a worst-

case test of CE2. How, or if, CE2 might be improved to

account for the missing eddy–eddy nonlinearity in this

weak mean-flow regime is an open issue.

b. Zonostrophically stable NL solutions

Figure 7 shows two NL solutions that are zonostroph-

ically stable; that is, these solutions have

mc
NL , m*, (79)

and hzmfi ’ 0. In the left panel of Fig. 7 the drag is so

heavy that the approximate dominant balance in (1) is

mz ’ j and the vorticity field closely resembles a snap-

shot of the forcing j.

Figure 8 compares energy spectra of statistically steady

QL and NL solutions. With strong drag (i.e., m* 5 0.309)

only the directly forced wavenumbers are significantly

excited. As m* is reduced there is transfer of energy to

FIG. 6. The time-averaged zonal mean energy fraction hzmfi as a function of m*, with b* fixed as indicated in

the bottom-right corner of each panel. QL simulations are indicated by a degree sign and NL solutions by an

asterisk.
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small wavenumbers. In the NL case the transfer of en-

ergy to wavenumbers smaller than kf is the due to the

inverse energy cascade. In the QL case the excitation of

small wavenumbers is due only to shearing by the zonal

mean flow. Comparing QL and NL solutions at the same

value of m*, one sees from Figs. 8b and 8d that there is

significantly more low-wavenumber eddy energy in the

NL cases. Yet the zonal mean energy is always stronger

in the QL case. There is no clear association between the

inverse energy cascade and zonation.

The NL solution shown in right panel of Fig. 7 with

m* 5 0.0545 has an eddy energy spectrum in Fig. 8b

exhibiting the beginning of 25/3 range. However this

solution has hzmfi ’ 0 and thus serves as example of

an isotropic, spatially homogeneous, weakly turbulent,

b-plane flow, without jets. To activate zonostrophic in-

stability the drag must be reduced (e.g., to m* 5 0.0182

in Figs. 1 and 8).

c. The jet scale

If zonation occurs, as evinced by significantly nonzero

values of hzmfi, then by counting the number of distinct

jets one can reliably estimate3 a jet wavenumber mJ. For

example, in Fig. 1 there are seven jets and therefore

m
J
/k

f
5 27/32.

However we noticed that there are cases without jets

in which the zonal energy spectrum EZ(ky/kf) has a strong

peak: an example is the m* 5 0.0545 solution in Fig. 7b:

the corresponding zonal energy spectrum in Fig. 8a has

a distinct peak even though there are no zonal jets. In

cases like this, we report a wavenumber mZ that is the

peak of the zonal spectrum EZ(ky/kf). In cases where

there are strong jets we invariably find that mZ ’ mJ. It is

interesting to compare mJ and mZ with a Rhines wave-

number defined as

mRh 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

2VRMS

s
, (80)

where the root-mean-square velocity is

V2
RMS 5

def 1

(2pL)2

ð
U2 1 u92 1 y92 da

* +
. (81)

We investigated other choices for the velocity in the

Rhines wavenumber; for example, Rhines (1975) ad-

vocated the RMS of y9. We found, however, that VRMS

gave the best estimate of the NL jet spacing at small

values of m*. An advantage of VRMS is that the energy

power integral4 can be used to express VRMS in terms of

external parameters as

« ’ mV2
RMS. (82)

FIG. 7. Snapshots of the vorticity z(x, y, t) with overlaid zonally averaged vorticity 2Uy(y, t) (solid white curve) with

(a) m* 5 0.309 and (b) m* 5 0.0545. Both snapshots are at nondimensional time 2mt 5 25, after spinup from rest, and

b* 5 1.

3 In certain cases the system may be transitioning between a state

with n and n 1 1 jets. Following Panetta (1993), we then count

n 1 ½ jets; no other fractional values are permitted.

4 From (3), the exact energy power integral is hcj 1 mj$cj2 1

(21)n21nnj$n21zj2i 5 0, where hi is both a domain integral and

a time average.
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The relation above applies with an error (due to hyper-

viscous dissipation) of less than 5% in our simulations.

Substituting (82) into (80) one has

mRh ’ kf

b*m1/2
*

2

0
@

1
A1/2

. (83)

Figure 9 compares the zonal wavenumber obtained

from QL and NL solutions with the Rhines wavenumber

on the right-hand side of (83), and with the most un-

stable wavenumber obtained from the linear stability

analysis of section 4. In Fig. 9 we show only the b* 5 1

and b* 5 0.5 solutions: solutions with other values of b*
exhibit a broadly similar dependence of mZ on m*.

At large values m* only the directly forced modes are

excited, and consequently mZ ’ kf in both the QL and

NL cases. At the critical value m* 5 mc
QL in Fig. 9, the QL

solutions undergo zonostrophic instability, and close to

this transition (e.g., at m* 5 0.2 and 0.165 in Fig. 9a) the

QL mZ agrees with the analytic result from Fig. 5. In this

regime the NL solutions start to develop an inverse

cascade (but without exciting zonal jets) and the NL mZ

begins to decrease.

There is an interesting transition at m* 5 mc
Z in Fig. 9.

At this point the QL and NL zonal wavenumbers are

equal, and as m* is reduced the QL and NL wave-

numbers are locked together. At m* 5 mc
NL in Fig. 9 the

NL solutions finally become zonostrophically unstable,

resulting in NL jets and significantly nonzero values of

NL hzmfi. At the smallest value of m* in Fig. 9, which

corresponds to the runs in Figs. 1 and 2, the QL and NL

wavenumbers are almost equal and are estimated roughly

by mRh.

In Fig. 9 the analytic result QLS agrees with the ob-

served QL jet scale only when m* is not too far from the

linear stability boundary mc
QL. In the strongly unstable

regime, with m* significantly less than mc
QL. the observed

wavenumber is much smaller than the most unstable

wavenumber predicted by linear theory. This increase in

FIG. 8. (a),(c) The zonal spectrum EZ(ky/kf) for QL and NL solutions with b* 5 1. (b),(d) The residual spectrum

ER(k/kf), defined as the angularly averaged spectrum after removal of the ‘‘zonal modes’’ with kx 5 0. The largest

peak in EZ(ky/kf) defines the wavenumber mZ, even if there are no quasi-steady zonal jets [e.g., as in the NL sim-

ulation with m* 5 0.0545 in (a)].
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the QL jet scale is a result of merging jets that initially

appear with a spacing, which is well predicted by the

linear theory. This phenomenology begins at about

m* 5 mc
Z and is illustrated in Fig. 10.

Figure 10a shows the Hovmöller diagram of the jet-

less NL solution from Fig. 7b. There is no zonation and

U(y, t) shows ‘‘streaks’’ rather than jets. These streaks

are not strong relative to the turbulent eddy field (i.e.,

hzmfi ’ 0). The corresponding zonal energy spectrum

in Fig. 8a exhibits a strong peak, which is a signature of

these transient zonal steaks.

Figure 10b shows the QL case in which jets initially

appear with a relatively small meridional spacing

predicted by linear theory, followed by a sequence of

mergers so that the mature flow has mZ much less

than the most linearly unstable wavenumber. The QL

jet-merging phenomenology, which is effectively a

one-dimensional inverse cascade, is very similar to

the ‘‘Cahn–Hilliard’’ solutions obtained by Manfroi

and Young (1999) from a model of deterministically

forced zonation.

d. The small drag regime

The flows in Figs. 1 and 2 have relatively light damping

and both flows have organized jets containing a sub-

stantial fraction of the total kinetic energy. Figure 11

shows the time-averaged zonal mean flow hUi and the

corresponding PV gradient b* 2 hUyyi. In Fig. 2 the QL

jets are almost symmetrical in the zonal direction, in

FIG. 9. A summary of zonal wavenumbers (jet scales) for solu-

tions with (a) b* 5 0.5 and (b) b* 5 1. The dot-dashed curve is the

Rhines wavenumber defined in (83). The solid curve labeled QLS

is most unstable wavenumber calculated from the dispersion re-

lation (51). The NL solutions are indicated by asterisks and the QL

solutions by degree signs.

FIG. 10. Hovmöller diagrams for the (a) NL and (b) QL runs with b* 5 1.0 and m* 5 0.0545.

The NL run corresponds to the vorticity snapshot shown in Fig. 7b and shows zonal ‘‘streaks.’’

In (b) the QL jets initially appear at a wavenumber predicted by linearization of CE2. Then

successive mergers result in an increase in jet spacing.
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contrast to the NL jets.5 But the QL jets are not perfectly

symmetric: the PV gradient in Fig. 11b reveals the QL east–

west asymmetry. The NL PV gradient is positive for all y

and thus the NL jets are stable according to the Rayleigh–

Kuo criterion. The QL PV gradient in Fig. 11b reverses

sign on the flanks of the eastward jet, and also at the cen-

ters of the westward jets. Nonetheless the QL zonal mean

flow shows no indication of barotropic instability [i.e., the

deep spikes with b* 2 hUyyi , 0 are permanent features

of the QL zonal mean flow even after time averaging].

Via integration of their SSST system, Farrell and

Ioannou (2007) report equilibrated zonal mean flows with

much stronger east–west asymmetry than the QL flow in

Fig. 11 (e.g., see their Figs. 8 and 9). There are at least6

two nondimensional parameters b* and m*, and the jet

profile depends on both of these. We will not attempt to

characterize this variation systematically. However, to

make some contact with the strong-forcing limit con-

sidered by Farrell and Ioannou (2007), we consider the

QL solution in Figs. 10b and 12a and increase the energy

injection rate « by a factor of 1000, while holding b, m

and kf approximately fixed. Then from (49), b* and m*
are each reduced by a factor of 10. The time-averaged

zonal mean profile of this strongly forced solution is

shown in Fig. 12b and exhibits the parabolic velocity

profile seen in the NL run in Fig. 1: there are fast east-

ward jets with sharp gradients and broad westward jets

with smaller PV gradients. Also, the time-averaged QL

jet profile in Fig. 12b is more asymmetric than the weaker

forced QL jet shown in Fig. 12a, which has a forcing

that is a factor of 10 smaller. To quantify the jet asym-

metry, we use the ratio

a(b*, m*) 5
Umax

jUminj
, (84)

FIG. 11. Comparison of zonal mean velocity profiles of the b* 5 1 NL and QL runs in Figs. 1 and 2.

5 If b 5 0 then the equations of motion are invariant under y /
2y and c / 2c. This symmetry, which induces u / u, is broken in

both QL and NL by nonzero b. This explains the characteristic

east–west asymmetry of U(y, t) on the b plane.
6 Farrell and Ioannou (2007) also employ a forcing with a dif-

ferent correlation function than our isotropic choice.
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where Umax and Umin are the maximum and minimum

values attained in the zonal mean velocity profile. By

increasing the forcing strength by a factor of 1000, the jet

asymmetry increases from a 5 1.25 in Fig. 12a to a 5

1.56 for the profile in Fig. 12b. This is smaller than the

‘‘ideal,’’ marginally stable (i.e., b 2 Uyy 5 0 everywhere

except at the eastward jet where the PV jumps) profile

considered in Danilov and Gurarie (2004), which has

a 5 2.

Thus, although a detailed study of QL jet asymmetry

is not a focus of the present work, our QL numerical

solutions are generally consistent with the equilibrated

SSST jets presented in Farrell and Ioannou (2007).

e. Discussion of the eddy–eddy nonlinearity

An important effect of eddy–eddy nonlinearity is the

stirring of PV, producing an exponential-in-time reduc-

tion in the length scale of vorticity fluctuations. Eddy-

driven stirring is removed from the QL system by (9):

shearing by U(y, t) is the only scale-reduction mecha-

nism acting on the QL eddy vorticity. The small-scale

structure evident in the QL PV gradient in the right

panel of Fig. 11 may reflect the relative inefficiency of

shearing by U(y, t) at removing vorticity fluctuations.

Further differences in the jet structure evident in Fig.

11 can be explained by meandering of the NL jets, so that

the zonal average reduces the sharpness of the NL PV

gradient. The spectral signature of the NL jet meanders

is a high energy mode at (kx, ky) 5 (1/32), (6/32)kf in the

two-dimensional NL spectrum; this same mode is only

weakly excited in the QL spectrum. The excitation of

almost-zonal modes, with a small but nonzero of value of

kx, is a well-known aspect of zonation. These are called

a ‘‘satellite modes’’ by Danilov and Gurarie (2004), and

they correspond to a domain-scale meander of the NL

jets, which is not present in the QL case.

7. Discussion and conclusions

A contribution of this work is the analytic develop-

ment of the linearized theory of zonostrophic instability

within the context of the second-order cumulant expansion

FIG. 12. Comparison of time-averaged zonal mean velocity profiles (thin lines) of QL runs. (a) The solution from

Fig. 10b with b* 5 1.0 and m* 5 0.054; (b) the strongly forced solution with b* 5 0.1 and m* 5 0.005. Also plotted are

the corresponding PV gradients (thick curves).

1650 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 69



(CE2) of Marston et al. (2008) and the stochastic struc-

tural stability theory (SSST) of Farrell and Ioannou

(2003, 2007). These statistical formulations are equiv-

alent to the correlation dynamics derived in section 3,

and that physical-space formulation, in terms of partial

differential equations for the correlation functions C

and Z, provides some insight into the mathematical

structure of CE2/SSST.

In the top panel of Fig. 5 we display the curve of

neutral zonostrophic stability in the (b*, m*)-parameter

plane obtained by solution of linearized CE2 dynamics.

We have shown that with isotropic forcing zonostrophic

instability is not a negative-viscosity instability: the hall-

mark of a negative-viscosity instability is that at the sta-

bility boundary the most unstable wavenumber is zero.

The deterministic model of anisotropically forced b-plane

zonation analyzed by Manfroi and Young (1999) pro-

vides a bona fide example of the negative-viscosity case.

Instead, for the isotropically and stochastically forced

model analyzed here, the onset of zonostrophic instability

is at the nonzero meridional wavenumber shown in the

bottom panel of Fig. 5; only at large b* does this wave-

number approach zero. Moreover, in section 5 we showed

that with isotropic forcing the CE2 eddy viscosity ne is

identically zero.

Comparison of QL and NL numerical solutions in-

dicates that the CE2 linear stability boundary does not

provide an accurate estimate of the onset of zonostrophic

instability for NL flows. This quantitative failure of CE2

is not surprising: neglect of the eddy–eddy nonlinearity

is most plausible in cases where most of the energy is in

the zonal mean flow: close to the stability boundary the

zonal mean flow is only incipient. An outstanding open

problem is improving CE2 to account for the missing

physics in the eddy–eddy nonlinearity. Another impor-

tant problem is obtaining analytic insight into the solution

of the CE2 system in the regime where CE2 is likely to be

valid, namely in the strongly unstable regime where the

drag m* is much less than the critical drag mc and the

fraction of energy in the zonal mean flow is substantial.
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APPENDIX A

Implementation of the Random Forcing j(x, t)

For numerical purposes we model the d-correlated

forcing j(x, y, t) in (3) using a discrete approximation.

The goal is to construct a statistically isotropic and

narrowband forcing localized close to a radial wave-

number kf. Thus, the forcing is confined to an annulus

A in wavenumber space, where wavenumbers k in A

satisfy the inequality

kf 1 dk , jkj , kf 2 dk. (A1)

We take dk 5 kf /8, so that A is tightly around the av-

erage radius kf. We use a fourth-order Runge–Kutta

scheme, with time step dt. Implementing the Runge–

Kutta scheme requires the value of the forcing not just at

points in time separated by the time step dt but also at

the midpoints. Some care must be exercised here, though,

since the Runge–Kutta scheme assumes a certain degree

of smoothness of the solution. To ensure this, we use a

forcing that during the nth time step, when (n 2 1)dt ,

t , ndt, has the form

j(x, t) 5 �
k

i
2A

fji(n 2 1) 1 [ji(n) 2 ji(n 2 1)]xn(t)geik
i
�x,

(A2)

where x
n
(t) 5

def
(t/dt) 2 (n 2 1) varies linearly from zero

to one during the nth time step. The coefficient ji(n)

above is

ji(n) 5

ffiffiffiffiffiffiffiffiffiffiffiffi
2«k2

f

N
A

dt

vuut eif
i
(n), (A3)

where N
A

is the number of wave vectors in A, and

« 5 2hcji is the rate of energy injection. The depen-

dence j
i
(n) } 1/

ffiffiffiffi
dt
p

ensures that the forcing is d corre-

lated in the limit dt / 0. The phase ui(n) is a random

variable, chosen from a uniform distribution in [0, 2p];

the phase is set independently for each wave vector ki

and resets at the start of each time step.

The narrowband forcing is described by the correla-

tion function

~Jb(k) 5
2p«kf

dk

1, if kf 2 dk , k , kf 1 dk

0, otherwise
,

�
(A4)

which has the physical-space form

J
b(r) 5

«kf

dk

ðk
f
1dk

k
f
2dk

J0(kr)k dk,

5
2«kf

r2dk
[zJ1(z)]

(k
f
1dk)r

(k
f
2dk)r. (A5)

A comparison of Jb(r) and its idealized form, J(r) }

J0(kfr) is shown in Fig. A1.
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APPENDIX B

Rapid Temporal Decorrelation: Derivation of (25)

The crucial assumption leading to (25) is that the tem-

poral decorrelation of the forcing is rapid, as indicated

by the d(t1 2 t2) on the right-hand side of (14). Oper-

ationally, this means that we might integrate (11) dur-

ing the first time step from t 5 0 to t 5 dt as

z9(x, t) 5 z9(x, 0) 1
ffiffiffiffi
dt
p

3 ĵ(x) 1 dt 3 AOT(x, 0),

(B1)

where AOT(x, 0) indicates ‘‘all other terms’’ in (11),

evaluated at t 5 0. Also in (B1), ĵ(x) is a spatial random

field with correlation function

J(x, y1, y2, ) 5 ĵ(x1)ĵ(x2). (B2)

The forcing ĵ ‘‘renovates’’ during each time step; that is,

in the nth time step one creates a new independent re-

alization of ĵ, but always with the same spatial correla-

tion function J. According to this recipe the magnitude

of ĵ is independent of dt as dt / 0, and therefore

j 5 ĵ/
ffiffiffiffi
dt
p

/‘ as dt / 0. As demanded by this argument,

notice that ji(n) in (A3) is proportional to 1/
ffiffiffiffi
dt
p

.

Before ensemble averaging, we can multiply (B1) eval-

uated at x1 with (B1) evaluated at x2 to obtain

z91(dt)z92(dt) 5 z91(0)z92(0) 1
ffiffiffiffi
dt
p

[z91(0)ĵ2 1 z92(0)ĵ1]

1 dt[ĵ1ĵ2 1 z91(0)AOT2(0)

1 z92(0)AOT1(0)] 1 O(dt3/2), (B3)

where the subscript n indicates evaluation at xn; for ex-

ample,

z9(x1, dt) 5 z91(dt). (B4)

Upon ensemble averaging, the terms of order
ffiffiffiffi
dt
p

on the

right-hand side of (B3) vanish because ĵ(x) is indepen-

dent of z9(x, 0). Thus,

Z(dt) 2 Z(0)

dt
5 J 1 z91(0)AOT2(0) 1 z92(0)AOT1(0)

1 O(dt1). (B5)

As dt / 0 the left-hand side is the time derivative of the

vorticity correlation function. The
ffiffiffiffi
dt
p

terms in (B3),

which prohibit a differentiable limit, are nulled in (B5)

by the ensemble average. Thus, taking the limit dt / 0 in

(B5), we obtain the deterministic differential equation

(23) for the evolution of the correlation function

Z [ z
1
z

2
.

APPENDIX C

Derivation of the Dispersion Relation (45)

The linearized equations resulting from substitution

of (44) into (34) and (31) are

s 1 2m 1
1

2
nm2 2 2n=2

� �
Ẑ 1 2i sin

my

2

� �
FHxÛ(m)

2 2imbĈxy 5 0, (C1)

(s 1 m 1 nm2)Û(m) 1 imĈxyjx5y50 5 0, (C2)

=2 1 im›y 2
1

4
m2

� �
=2 2 im›y 2

1

4
m2

� �
Ĉ 5 Ẑ,

(C3)

where in (C1)

FH 5
def ZH 1 m2=2CH 5 (=4 1 m2=2)CH . (C4)

A key intermediate step on the path to (C1) is noting

U1 5 U[y 1 (1/2)y] and U2 5 U[y 2 (1/2)y], so that with

U(y, t) in (44) one has

U1 2 U2 5 2i sin
my

2

� �
eimy1stÛ(m) 1 c:c: (C5)

Applying the Fourier transform in (38) to (C1) and

(C3), one has

[2imbpq 1 h2
1h2

2s9] ~C 1 ipÛ( ~F
1

H 2 ~F
1

H) 5 0, (C6)

im

s

ð ð
pq ~C

dp dq

(2p)2
5 Û, (C7)

h2
1h2

2
~C 5 ~Z. (C8)

In (C6)–(C8) we use the notation

FIG. A1. Comparison of the ring forcing dk / 0 (solid line) and the

narrow-band forcing with dk 5 kf/4 (dashed line).
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h
6

5
def

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 1 (q 6 m/2)2

q
, (C9)

~F
6

H 5
def

h2
6(h2

6 2 m2) ~CH( p, q 6 m/2), (C10)

s 5
def

s 1 m 1 nm2, (C11)

s9 5
def

s 1 2m 1
1

2
nm2 1 2nh2. (C12)

Eliminating Û(m) between (C6) and (C7), we obtain the

dispersion relation

s 5 mL
2

(s9, m) 2 mL
1

(s9, m), (C13)

where the functions L1(s9, m) and L2(s9, m) are defined

by the integral

L
6

(s9, m) 5
def
ð ð

p2q
h2

6(h2
6 2 m2) ~CH(p, q 6 m/2)

s9h2
1h2

2 1 2imbpq

dp dq

(2p)2
.

(C14)

Changing variables with p / 2p and q / 2q, and

using the exchange symmetry in (22), one finds that

L
2

(s9, m) 5 2L
1

(s9, m), (C15)

so that the right-hand side of (C13) is equal to 2mL2.

Then with the change of variables q9 5 q 2 m/2 in the L2

integral, and using (41), one can write the dispersion

relation (C13) as

s 5

ð ð
p2(h2

11 2 h2)h2(h2 2 m2)

s9h2h2
11 1 ibp(h2

11 2 h2)

~A(p, q)

2m 1 2nh2

dp dq

(2p)2
,

(C16)

where h
11

5
def

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 1 (q 1 m)2

q
.

If the forcing is isotropic then ~A(p, q) 5 ~A(h), and the

integral on the right-hand side of (C16) can be simplified

using polar coordinates (p, q) 5 h(cosu, sinu):

b2s 5

ð‘

0
h4(h2 2 m2)

~A(h)

2m 1 2nh2
S

s9h2

bm
,
m

h

 !
dh

2p
,

(C17)

where S is the function

S(x, n) 5
def
þ

cos2u(2 sinu 1 n)

x(1 1 2n sinu 1 n2) 1 i cosu(2 sinu 1 n)

du

2p
.

(C18)

One can show that S(x, n) 5 2S(2x, n) 5 2S(x, 2n),

and therefore S(0, n) 5 S(x, 0) 5 0. These symmetries

are important for further work, and they are not mani-

fest from the definition of S in (C18). Thus we seek an

alternative form with more obvious properties. The

change of variables u / u 1 p results in

S(x, n) 5

þ
cos2u(22 sinu 1 n)

x(1 2 2n sinu 1 n2) 2 i cosu(22 sinu 1 n)

du

2p
.

(C19)

The average of (C18) and (C19) is then

S(x, n) 5 xn 3

þ
cos2u(1 1 n2 2 4 sin2u)

[x 1 i sin2u]2 1 n2[x2(n2 1 2 2 4 sin2u) 1 cos2u]

du

2p|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
5
def

Q( x, n)

. (C20)

The function Q(x, n) is manifestly an even function

of n, and u / 2u shows that Q is also an even function

of x.

Substituting (C20) into (C17) gives the dispersion

relation in the form

b2s 5

ð‘

0
h5(h2 2 m2)

~A(h)s9

2m 1 2nh2
Q

s9h2

bm
,
m

h

 !
dh

2p
.

(C21)

If n 5 0 then s9 5 s 1 2m, and we obtain the dispersion

relation in (45).

APPENDIX D

The Function Q(x, n)

In this appendix we summarize some properties of the

function Q(x, n) defined in (C20).

We first note that

Q(x, 0) 5

ð2p

0

cos2u(1 2 4 sin2u)

(x 1 i sin2u)2

du

2p
,

5 1 2
jxj(2x2 1 3)

2(x2 1 1)3/2
. (D1)
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If 0 # n2 # 1 then

Q(0, n) 5 1 1 Pr

ð2p

0

1

n2 2 4 sin2u

du

2p
,

5 1, (D2)

where Pr refers to the Cauchy principal value.

The case b*� 1 requires the approximation of Q(x, n)

in the limit x / ‘. One can expand the integrand in

inverse powers of x and integrate term by term. The

first two nonzero terms are

Q(x, n) 5
3

23x4(1 2 n2)
1

5

25x6

(n4 1 2n2 2 4)

(1 2 n2)3

1 O(x28). (D3)

The case b* � 1 requires the approximation of

Q(x, n) in the limit x / 0. A somewhat laborious

‘‘range-splitting’’ calculation shows that

Q(x, n) 5 1 2
3

2

24 2 7n2

24 2 6n2
jxj 1 O(x2). (D4)

Finally, if x / ‘, with n 5 0 then from either (D1) or

(D3) we obtain

Q(x, 0) 5
3

8x4
1 O(x26). (D5)

APPENDIX E

The Neutral Curve

The neutral curve in the (b*, m*)-parameter plane is

defined by the conditions in (53). For the dispersion

relation in (51), these take the form

mb2 5 2(1 2 m2)Q(x0, m), (E1)

m 5
(1 2 m2)2

mb2

›Q(x0, m)

›m
, (E2)

with x0 5 2m/mb above. (For brevity, in this appendix,

we drop the asterisks indicating nondimensional vari-

ables.) An examination of the numerical values of x0 on

the neutral curve motivates the possibility that x0 / ‘

as b / 0 and x0 / 0 as b / ‘. We now use this nu-

merical observation to derive analytical approximations

for the neutral curve in the complementary limiting cases

b / 0 and b / ‘. To this end, we use the approxima-

tions to Q(x, m) summarized in appendix D.

a. Approximation of the marginal curve,
b� 1 and x0� 1

First in the case of b / ‘, we have from (D4)

Q(x0, m) 5 1 2
m

b

3

m
1

5m

8

� �
1 O(m2x0). (E3)

Clearly, neglecting the O(mx0) term must be justified

post facto once a consistent dominant balance is found.

Substituting (E3) in the neutral curve equations, (E1)

and (E2) and keeping in mind that that b21� 1, we get

mb2

2
5 (1 2 m2) 2

3m

mb
1

29mm

8b
1 O(mm2b21),

(E4)

m3 5 3b23 1 O(m2b23). (E5)

The only consistent balance in the m equation corre-

sponds to m3 ; 3b23 and, consequently,

m 5
31/3

b
1 O(b23). (E6)

Since m ; O(b21) the only consistent balance in (E1) is

m ; 2b22. A higher-order estimate for m can be derived

by substituting for m to get

m 5
2

b2
1 2

35/3

b2

 !
1 O(b26). (E7)

These approximate expressions are superimposed on the

numerically obtained neutral curve in the Fig. 5 with

agreement once b . 2.

b. Approximation of the marginal curve,
b� 1 and x0� 1

A similar analysis is used when b / 0 for which we

can write, from (D3),

Q(x0, m) 5
3

27

b

m

� �4 m4

1 2 m2

� �

1
5

211

b

m

� �6
"

m6(m4 1 2m2 2 4)

(1 2 m2)3

#

1 O(x28
0 ), (E8)

and therefore

›mQ(x0, m)5
3

26

b

m

� �4
"

m3(2 2 m2)

(1 2 m2)2

#

2
5

211

b

m

� �6
"

m5(4m6 2 6m4 2 16m2 1 24)

(1 2 m2)4

#

1 O(x29
0 ). (E9)
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Substituting into (E1) and (E2) one has

mb2 5
3

26

b

m

� �4

m4 1
5

210

b

m

� �6
"

m7(m4 1 2m2 2 4)

(1 2 m2)2

#

1 h:o:t:, (E10)

m 5
3

26

b2

m5
m2(2 2 m2)

2
5

211

b4

m7

"
m5(4m6 2 6m4 2 16m2 1 24)

(1 2 m2)2

#

1 h:o:t: (E11)

Above, h.o.t. refers to the higher-order terms that have

been neglected from the above equation and can be

justified to be small post facto. In (E10), assuming a dom-

inant balance between the term on the left and the first

term on the right-hand side, we have

m ;
3

64

� �1/5

b2/5m4/5. (E12)

Similarly from (E12)

m ;
3

26

b2

m5
m3(2 2 m2), (E13)

which on substituting for m from (E12), gives us m ; 1

and

m ;
3

64

� �1/5

b2/5. (E14)

Proceeding to the next order, we obtain after some algebra

m ’ 1 2
51/3

37/15219/15|fflfflfflfflfflffl{zfflfflfflfflfflffl}
’0:43

b2/5. (E15)

As in the case before, we plot this estimate for m against

the numerical estimate in Fig. 5 and the agreement is

excellent. In fact, the approximations to mc(b) practi-

cally span the entire range of the neutral curve.

c. The small-m expansion

When m / 0 with all other parameters fixed, we

observe in Fig. 4 that s / 2m and therefore in (51) the

first argument of Q is

s 1 2m

mb
’

m

mb
� 1. (E16)

To compute the small-m expansion of the dispersion

relation we write s 5 2m 1 s1 and use (D5) to approx-

imate Q. Thus the dispersion relation (51) becomes

b2s1 ’
3

8

m4b4

m4
. (E17)

This produces the small-m version of the dispersion re-

lation in (59).
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