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A theory of wind-driven circulation. I. Mid-ocean gyres 

by Peter B. Rhines1 and William R. Young1, 2 

ABSTRACT 
A theory of the wind-driven ocean circulation is presented in which the key feature is strong 

deformation of interior density layers and consequent production of closed geostrophic-contours 
by the flow itself. The constraint imposed on the subsurface flow by the imposition of a no flux 
condition where a geostrophic contour strikes a coastal boundary is thus removed. Within 
regions where the geostrophic contours close the potential vorticity is uniform. This expulsion 
of gradients of q to the rim of the wind-driven gyre relies on a lateral eddy flux of potential 
vorticity or equivalently (for gyre-scale mean flows) a vertical transport of momentum by 
eddy 'form drag'. The same result can also be obtained by invoking interfacial drag propor-
tional to the velocity difference between layers as a specific model of form drag. 

The circulation models constructed here are intended as the simplest possible theoretical 
application of the potential vorticity homogenization results previously given by Rhines and 
Young (1982). There it was argued that potential vorticity homogenization amounts to a 
singular perturbation with respect to eddy processes; infinitesmal eddy fluxes can produce a 
finite mean flow in a region where the geostrophic contours close. In this article we show how 
the extent of the homogenized region, and the three-dimensional structure of the mean flow 
within it, follow directly by requiring the potential vorticity to be uniform. 

The theory exhibits the poleward migration of gyre centers with depth, and an abrupt pole-
ward gyre boundary familiar to observations of the major subtropical current systems. The 
Sverdrup constraint on the vertically integrated velocity applies throughout. The solutions 
develop discontinuities which are important to their maintenance. 

Comparisons are made with classical advective thermocline theory. The major difference 
in philosophy is that we consider the development of the wind-driven circulation on a known 
basic density profile, over a 'fast' time-scale, with evolution of the basic stratification left to a 
'slow' time-scale. The solutions given here rely on vertical eddy momentum transport (which 
is also a lateral potential vorticity transport), usually ignored in the classical theory. The 
results are unique and almost independent of details of the eddy processes. The lateral eddy 
fluxes ·of potential vorticity become very weak once the circulation is spun up, yet they are 
essential to its creation and existence. The solution near outcropping regions, where fluid 
is injected from the mixed layer, is not calculated here. Coastal boundaries are omitted from 
this study to simplify the development. The indications are that western boundary currents, 
though important to the vertically integrated dynamics, play a weak role on the ''interior' 
density surfaces. They are treated in a succeeding paper (Young and Rhines, 1982). 

I. Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 02543, U.S.A. 
2. Present address: Scripps Institution of Oceanography, A005, La Jolla, Californi a, 92093, U.S.A. 
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1. Introduction 

The ocean circulation posed as a theoretical problem is so complex that it is 
necessary to look at parts of it in isolation. In this spirit valuable progress has been 
made with steady homogeneous-fluid wind-driven circulations, with idealized meridi-
onal circulations driven by buoyancy forcing, and with the spin-up of wind circu-
lation from rest. Unfortunately most of these investigations, excepting that known 
as thermocline theory and certain boundary layer theories, imagine the basic po-
tential-vorticity field to be dominated by /3, the northward gradient of Coriolis fre-
quency. Rhines and Holland (1979) discuss the way in which flow may reshape 
the potential vorticity, q, so that flow paths q = canst. in quiet regions connect with 
surface boundary conditions. They show examples of less quiet regions in which 
eddy transport of q drives mean flow across q-contours as well. In this paper we 
extend these ideas to consider explicit, idealized models of wind-driven gyres. We 
treat a case in which repeated circulation of fluid about the gyre leads to a unique 
mean circulation. This contrasts the opposite extreme, 'meridional' view of water 
entering the ocean interior from the upper mixed layer, descending along isopycnal 
surfaces, taking perhaps half a turn about the gyre, then exiting. The real oceans 
no doubt involve something of both extremes. 

Suppose the ocean is at rest, with density p(z) prescribed. Shortly after the onset 
of a known wind-stress pattern the development of the planetary-scale ocean cir-
culation can be calculated with linear wave theory (e.g., Anderson and Gill, 1975). 
The flow is initially barotropic (velocity independent of depth), and remains so un-

til something occurs to break the zonal uniformity of vortex stretching throughout 
the water column. If there is a rigid boundary to the east, or if the stress-curl varies 
in the east-west direction, horizontal density gradients are created which propagate 
westward as planetary scale baroclinic Rossby waves. The arrival of successively 
higher vertical modes progressively brings the deep water to rest, so long as friction 
and eddy effects are locally weak. The vertically integrated north-south velocity is 
given by Sverdrup's relation as soon as barotropic adjustment has occurred. But 
the vertical distribution of this Sverdrup flow becomes increasingly singular as more 
baroclinic modes arrive; in a continuously stratified ocean the flow approaches a 
"delta-function jet" concentrated at the surface, while in a layered model the fl.ow 
is eventually entirely in the uppermost layer. This result can be understood physi-
cally by realizing that in the linear model the potential vorticity is dominated by the 
/3-effect so that all the geostrophic contours are open and can be traced back to 
either coastal boundaries or unforced, quiescent regions. Thus the no-motion bound-
ary condition relevant to these regions is eventually communicated to all the interior 
flow with the result that the subsurface flow is "switched-off" by the baroclinic 
modes. 

In this paper we show how simple nonlinear effects halt this vertical concentra-
tion of the wind circulation. Mesoscale eddies are the 'microscopic' phenomenon 
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that makes the nonlinear equilibration possible, but their detailed nature is relatively 
unimportant. In particular, they may be vanishingly weak. The result is a theory 
for inertial, wind-driven circulation in which there is near-conservation of potential 
vorticity, q, along streamlines (q = Q(lj,, p), where 1/J is the geostrophic streamfunc-
tion). The variation of potential vorticity across streamlines is determined by a 
development of the Prandtl-Batchelor theorem (Batchelor, 1956) given by Rhines 
and Young (1982) and summarized in Appendix A. The result is simply uQ / uif, = 
0 in many cases. 

Jsofation of the subsurface circulation in both the horizontal and the vertical 
occurs so that boundary conditions are prevented from affecting the interior poten-
tial vorticity of the gyres at lowest order. In the vertical sense this means that in-
terior density surfaces, at levels deeper than that of direct influence of wind or 
surface cooling, obey free-flow equations. The only driving effects forcing these 
equations are weak averaged eddy--or molecular fluxes of potential vorticity, which 
tend to redistribute momentum principally in the vertical. 

This means that we are omitting the processes that build up the basic thermo-
cline, particularly the influx into the deep interior levels from the upper mixed layer: 
not totally ignoring them, but rather making them secondary in strength to the ver-
tical flux of momentum by eddy stresses and subsuming them in the known basic 
stratification p(z). 

In the horizontal sense the closed streamlines of the gyre coincide with closed 
geostrophic contours, which are defined by q = const. Thus the influence of lateral 
boundary conditions cannot propagate into and influence the gyres, at least at high 
vertical mode numbers, since for weak signals the curves q = const. are character-
istics of the wave equation. 

The detailed discussion of western boundary intensification is deferred to a suc-
ceeding paper; some remarks can be found here, Section 6. 

2. A two-layer model 
We develop ideas with a layered quasigeostrophic calculation. The neglect of 

thermohaline processes is presumed in the use of the quasigeostrophic equations 
in which the basic buoyancy field is a prescribed function of z, the vertical co-
ordinate only. These equations often reproduce qualitatively correct 'fast time-scale' 
phenomena even in cases where constant density surfaces penetrate from the upper 
boundary deep into the fluid (e.g., baroclinic instability in the atmosphere). 

Each layer has mean depth H. The j3-plane equations for the time-averaged, 

large-scale (Eulerian) flow are: 

J(if,1, q1) = Wo - 'v • Cl>1 

J(if,2, qz) = - 'v • Cl>2 - D "12 "12 

(2.1 a) 

(2.lb) 
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ql = f3y + F(t/12 -:- o/1) 

q2 = f3y + F(t/11 - t/12) 

[ 40, Supplement 

(2.lc) 

(2.ld) 

F = /0
2/ g'H = Lp-2 = {Rossby radius of defonnation}-2 

Wo(x,y) = v'x-r • z/ pofJl. 

(2.le) 

(2.lf) 

The subscripts here denote the layer (upper = 1). o/i and q, in the above are mean 
flow quantities. In the remainder of this article we will occasionally use an overbar 
to distinguish averaged variables. In most cases, however, when there is no risk of 
confusion, unadorned symbols denote mean quantities associated with the large-
scale, wind-driven circulation. In (2.1) I is the Jacobian, l(a,b) = o(a,b)/a(x,y), 

with respect to x and y (east and north, respectively). F is the Froude number, or 
the inverse square of the Rossby deformation scale, Lp. t/J, are the streamfunctions 
and ui the velocities. g' is the reduced gravity, g!::..p / p. !::..p is the density step be-
tween adjacent layers. W0 is the Ekman layer divergence, ,: the wind stress and z 
a vertical unit vector. The relative vorticity of the mean flow is ignored because 
we are dealing with wind-gyre length scales, Lm > > Lp where Lm is the length scale 
of the mean flow. The vertical vortex stretching component, which thus dominates 
q, is just f / h, where his the thickness of a constant density layer. In the quasigeo-
strophic n-layer equations, the interface height is proportional to o/i - t/J,- 1 • D '72 

~,2 is bottom drag on the lower layer. 
<!> i represents the effect of friction or geostrophic eddies. For exaJ11.ple, with verti-

cal friction, say an interfacial drag proportional to the velocity difference between 
the layers 

(a) (2.2) 

Alternatively, <I> may describe eddy flux of potential vorticity. With a prime denoting 
a fluctuation variable and the overbar a time-average, 

(b) <I>, = q/ u/ . 

In either case the principal effect is the vertical transport of horizontal momentum.a 

3. Recall that q'u' is dominated in baroclinic fields by th.is vertical (rather than lateral) momentum 
flu x if typicall y, 

I U''n ' 
0 ., >> 1 
a -

H Ty (u'v') 

where r, is the vertical perturbation height of an isopycnal surface due to the eddies. In terms of the 
lateral scale of eddies, L ., and of the mean flow, L m, this is 
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Steady, frictionless, flow. Take the former prescription (a) for Cl> and consider the 
lowest-order problem for small RI f3L,,. (where L 111 is the length scale of the circula-
tion gyre). We will also assume D = O(R). Then (2.1) are: 

(2.3) 
l(if, 2,/3Y + F o/1) = O(R) . 

We have used the fact that J(if,2, ti1i) = 0, and neglected the O(R) frictional terms. 
One acceptable solution at this stage is 

o/2 = 0 

o/1 = -/3-1 s: Wodx'. 

In this article we will develop simple theories in unbounded oceans, rather than 
closed basins. This is why the upper limit in the above integral is oo • The above is 
the traditional choice in which all the flow is confined to the upper layer. Provided 
w0 is small enough (with weak winds) it is also the result of spinning up an. inviscid 
ocean from rest. One might accept this as a reasonable solution were it not for the 
behavior as the vertical resolution (governed by n, the number of density layers) is 
increased. In a continuously stratified ocean confinement to the "uppermost" layer 
is the delta function catastrophe described earlier. 

The general solution is found as follows: form the Sverdrup constraint by sum-
ming equations (2.2), 

SXE(y ) 

o/1 + o/2 = -(3-1 ir Wodx' 

= o/B(X,y) (2.4) 

tf,8 is the (known) transport streamfunction. In (2.4) xB(y) is the position of an east-
ern boundary where if,1 = if,2 = 0 or equivalently where Wo vanishes. Although (2.2) 
are nonlinear they become linear by combining with (2.4): 

l(if,1,f3Y + F -/Jn) = Wo + O(R) 
(2.5) 

Frequently fo'L .2 / N'IP ~ 1 so the ratio of the vertical to lateral stress becomes just the scale separa-
tion parameter L ,./L , between eddies and mean fields. If the 7/' fluctuations are primarily due to strong 
eddies, u,, in the upper layer this ratio derived for the lower layer becomes: 

L ,. u, 

L, U. 
which is 'doubly' large when u, >> u, and L ., >> L , (Rhines and Holland, 1979, p. 320). 
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(o) yo = 2r1 (b) Yo = 1/ 2 r1 

Figure 1. Contours of q,. The dashed circle is r = r, i.e., the bounding contour of the barotropic 
streamfunction. (a) The forcing is weak so q, is dominated by {3y and all the contours are 
open. (b) The forcing is stronger so there is a region of closed contours. The flow in this 
region is shielded from the eastern no-flux boundary condition which switches off the flow 
(iJ,. = 0) in the open contour region. 

This defines once and for all the geostrophic contours in the lower layer, they lie 
along isolines of the function 

'12 = /3Y + F IPB 

(112 also is the pattern of geostrophic contours that would exist in the upper layer 
under the assumption (2.3)). 

These contours serve as characteristics for the first-order equation (2.5). The 
normal procedure, based on Rossby-wave group velocity arguments, is to integrate 
westward along IJ2 contours. The starting point is somewhere far to the east where 
\i'x,: vanishes (and q2 = f3y) or where an eastern boundary is encountered, see 
Figure 1. These zero values fill regions connected to the quiescent east by 'open' 42 
contours. In the linear theory 1~2 vanishes in this way.4 For further discussion see 
Charney and Flierl (1980), Rhines and Holland (1979), Rooth et al. (1978). 

Rooth et al. (1978) concluded that models with layered stratification cannot cir-
culate at all, below the uppermost layer. This is not the case, for if 1/JB is sufficiently 
great, 'closed' IJr Contours may exist beneath the regions of strongest Ekman diver-
gence, where the slopes of FI/JB exceed /3. These closed contours are completely 
isolated from eastern boundary conditions. The solution for the flow in such a 
region is given by 

(2.6) 

for layer 2 where A 2 is, as yet, an undetermined function. Once A 2 is found, the 

4. A nonlinear theory allowing finite excursions of the density surfaces has been discussed by An· 
derson and Killworth (1980). 
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upper-layer flow is given by: 

o/1 = o/B(X,y) - o/2 . 
The full potential vorticity functions are 

(2.7) 

Notice that 'i.q; = 2{3y; the contributions from the tilted interfaces vanish in the 
vertically integrated potential vorticity. If V q should be reduced in one layer, there-
fore, it must increase in another. 

Figure 1 shows the q2 contours produced by a particularly simple pattern of 
Ekman pumping: 

{

-ax 

Wo= O 

if r < r 1 

if r > r 1 

where r 2 = x 2 + y 2
• The ensuing barotropic circulation given by (2.4) is: 

{ 

(r l 2 - X 2 - y 2) 
l/JB = 2(3 

0 

if r < r1 

if r > r, . 

The q2 contours are circles or arcs of circles if r < r 1 ; outside this circle they are 
just f3y contours: 

•·={ 
where 

;; [r/ + Yo2 
- X

2 
- (y-yoFJ 

{3y 

132 
Yo = aF . 

if r < r1 

if r > r, 

The q2 contours close only if the forcing is sufficiently strong; more precisely if: 

r, > Yo 
or equivalently: 

ar, > {3 2/F. 

It is important to note that the forcing, w0 , in the example above has been con-
trived so that the barotropic streamlines given by the Sverdrup balance (2.4) close 
"naturally," i.e., it is not necessary to append a western boundary layer. For sim-
plicity the present discussion is confined to these "mid-ocean" gyres produced by 
forcing patterns which satisfy: 
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Seo Wo dx' = 0. 
-co 

(2.8) 

Determination of the flow about closed geostrophic contours when R = D. With 
realistically strong winds (8t/JB/8y > {3 somewhere) there will be regions with closed 
q2 contours. If R and D vanish identically the unknown function A2 in (2.6) cannot 
be found by spinning the circulation up from rest. In fact, the flow would never be-
come steady. The fluid has perfect memory for its initial potential vorticity and the 
region of closed characteristics "traps" the baroclinic modes, preventing outward 
radiation of transients (Young, 1981). This is apparently not a satisfactory closure. 

It is important to realize that if the right-hand side of (2.lb) were identically zero, 
A 2 would be completely arbitrary; any choice would be an acceptable solution. The 
resolution of this difficulty is provided by the small (order R) right-hand side of 
(2.lb). It is the nonconservative processes neglected to obtain tpe approximate 
solution (2.6), which determine A 2 • 

A relation which clearly exposes the importance of the small nonconservative 
terms, and also determines A 2 , is obtained by integrating the steady balance (2.lb) 
about the region within a closed geostrophic contour: 

R § ( 02 -+ u1 ) • ds = 0 (2.9) 

where U; = z X Vt/Ji and ds is a vector element tangent to the circuit q2 = const. 
For convenience we have assumed that R in (2.2) is equal to Din (2.lb). Note how 
the large advective term and the {3-effect vanish identically, leaving only the contri-
bution from the nonconservative terms. Equation (2.9) is equivalent to: 

I 
§ u , • ds = 3 § Us • ds (2.10) 

where Us = z X V t/Js . These statements are true regardless of the size of R. The 
unique solution for small R is found by combining (2.6) and (2.10). Equation (2.6) 
gives 

f 0 2 • ds = f A/ (ii 2) V ii 2 • fids 

= A/ (q2) f (Fus - {3x) • ds 

where the primes indicate differentiation, and x is an eastward pointing unit vector. 
Applying (2.10) and f i • ds = 0 one has: 

I 
3F f Us• ds = A / (q2) §Us• ds 

or 

A'- I 
2 - 3F. 

Hence: 
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t/12 = 3~ ii~ + const. 

1 1 f3y 
= 3 t/Jn +TT+ const. 

o/2 = 0(R/ f3L) t/11 < < t/11 

567 

(2.11) 

(closed CJ.z regions) 

(open Cf2 regions). 

The constant is chosen so that tf,, vanishes at the periphery of the 'island' of closed 
geostrophic contours. 
Finally 

(2.12) 

The complete solution at 0(1) [(2.4), (2.11), (2.12)] is independent of friction. The 
vertical structure is reminiscent of the quasigeostrophic flow in an /-plane cylinder 
where top and bottom rotate at different rates, in which the inviscid fluid interior 
takes up solid rotation with vorticity equal to the average of that of the top and 
bottom plates. 

In Figure 2, we plot various fields for the previous example, w0 = -ax, r r1 • 

The Sverdrup depth-integrated transport is a solid-body rotation about (0,0). The 
lower-layer flow, 

a t/lz = - 613 (x 2 + (y - Yo>2) + const. (in closed q2) (2.13) 

= const. (elsewhere) 

vanishes outside the closed contour region, and is a solid body rotation about a 
center displaced poleward by a distance y0 = {32/aF. The upper-layer flow (the 
difference between tf,8 and tf,2) is comprised of two sets of arcs of circles about cen-
ters (0,0) and (0,-1/ 2 Yo), 

tf,1 = - 3~ ( x 2 + ( y +-½-Yo ) 
2 

) + const. (closed q2) 

(elsewhere) (2.14) 

The velocity and temperature profiles have a north-south asymmetry with the north-
eastward branch of upper-level flow suddenly broadening as it crosses the boundary 
of the deep gyre. 

Flow about closed geostrophic contours when R ¥= D. In the previous subsection 
we discussed the calculation of A 2 in (2.6) when R =Din (2.1) and (2.2). This re-
striction was purely for convenience. When the interfacial and bottom drags are 
unequal it is still straightforward to apply the integral theorems. One finds 

A,_ R 
2 

- (2R+D)F 
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X 

X 

1 
Figure 2. The streamfunctions given by (2.13) and (2.14) when y, = 2 r,. The lower layer 

flow is confined to the region where the /i.2 contours close; see Figure l(b). 

so that the generalization of (2.11) is 

lf,2 = (2R:D) [ 1/Jn + : y ] + (const.) (inside closed q2 contours) 

The limits R > > D and D > > R are physically intuitive: in the first case the flow 
is essentially barotropic while in the second the strong bottom friction prevents the 
establishment of lower layer flows, even in the closed q2 regions. 

In view of subsequent developments it is instructive to calculate the lower layer 
potential vorticity in the closed q2 regions: 
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= '12 - 2F tf;2 + const. 

= ( 2R~D ) ij , + const. (2.15) 

In the limit D < < R the potential vorticity becomes uniform. This is perhaps the 
simplest concrete example of the rather abstract arguments presented by Rhines 
and Young (1982): when the dissipation is equivalent to lateral diffusion of potential 
vorticity, the potential vorticity becomes uniform inside closed geostrophic contours. 
Equation (2.15) is particularly instructive because it shows the limitations of these 
homogenization arguments: arbitrary vertical stress does not homogenize potential 
vorticity. Only vertical stress equivalent to lateral diffusion of potential vorticity 
works. 

3. A three-layer model 

Despite its simplicity the two-layer model illustrates all the physical processes we 
wish to emphasize in this note: 

(i) The production of closed geostrophic contours in the lower layer if the forc-
ing is sufficiently strong. 

(ii) The nonuniqueness of the flow in these closed regions if dissipation is en-
tirely neglected. 

(iii) The selection of a unique solution by the weak dissipation. 
(iv) The calculation of this flow using the geostrophic contour integrals. 
(v) The homogenization of potential vorticity within the closed contours when 

the dissipation is lateral potential vorticity diffusion. 
In addition the two-layer model exhibits some features of the actual subtropical 
wind-driven gyres, namely a tight subsurface circulation shifted poleward relative to 
the broader surface flow. It would be interesting to explore the two-layer model 
further (for example, by relaxing the quasigeostrophic approximation and using a 
model such as that of Veronis, 1973). Instead we intend to discuss the shape of the 
gyre more thoroughly by increasing the vertical resolution. 

The simplest model with increased vertical resolution is of course the three-layer 
model. A significant new feature of this model is the vertical isolation of the middle 
layer: it is not directly forced by Ekman pumping nor does it feel bottom drag. It 
is in regions like this, where the eddy flux of potential vorticity is likely to be the 
dominant dissipative process, that one expects to see potential vorticity homog-
enization. 

The three-layer quasigeostrophic equations are: 

J(tf;1, q1) = Wo - "v • <1>1 
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l(tf,2, q2) = - "v • Cl>2 

J(t{,a, qa) = - "v • Cl>a - D '1 2 o/a 

where the potential vorticities are: 

ql = /3Y + F(tf,2 - o/1) 

q2 = /3Y + F(tf,1 - 2 tf,2 + tf,a) 

qa = /3Y + F(tf,2 - tf,a) • 

[40, Supplement 

(3.1) 

(3.2) 

For simplicity we assume that the mean layer depths and density jumps are equal. 
If Cl>, is due to interfacial friction then: 

Cl>1 = R "v(tf,1 - tf,2) 

Cl>2 = R "v(2tf,2 - o/1 - tf,a) 

Cl>a = R "v ( o/a - tf,2) . 

(3.3) 

As in the previous section we can calculate the barotropic mode immediately by 
summing (3.1 a,b,c) and neglecting the bottom drag (the nonlinear and interfacial 
fric tion terms cancel): 

SXE(y) . 

o/1 + o/2 + o/a = -/3-1 x Wodx' = l/lB(x,y) . 

When this is inserted in (3.lb) a linear equation: 

l(tf,2,/3Y + F o/B) = O(R) 

(3.4) 

is obtained. Notice that as in Section 2 this linear equation determines the shape of 
the geostrophic contours once and for all, but not the functional dependence of q2 
and l/12 on ii 2 = /3Y + F o/B· It is significant that here, and in the two-layer model, 
the reshaping of the geostrophic contours is done by the barotropic mode, o/B• We 
write the general solution 

(3.5) 

ii 2 = /3Y + F o/R 

and from it solve for the lowest layer, from (3.lc) and (3.2c): 

o/a = Aa(ija) + O(R) 

(3.6) 

ii a = /3Y + F Alii z) . 

A a is a second undetermined function. A 2 and A 3 are now calculated using the in-
tegral method of Section 2; for simplicity we again take R = D. One has in the 
middle layer: 
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§ ( D2 -+ (u1 + U3)) • ds·= 0 

from integrating (3.1 b); on application of (3.4), 

1 
.f 0 2 • ds = 3 § uB • ds 

as before. The analogous circulation balance in layer 3 gives (recall R = D): 

1 .f u~ • ds = T .f 0 2 • ds . 

Combining (3.5) and (3.7) gives as before: 

1 ( f3y ) o/2 = 3 1P B + F + const. (closed q2) 

= O(R/ f3L) 'Pi (elsewhere) . 
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(3.7) 

(3.8) 

(3.9) 

The constant is set so that o/2 vanishes at the edge of the closed contour region. 
Now layer 3 is solved in like fashion. Equations (3.6) and (3.9) lead to: 

l] 3 = + F o/B + : {3y 

while (3.8) and (3.9) give: 

1 .f 0 3 • ds = 6 f uB • ds . 

Hence (3.6) combined with (3.10b) gives 

_ 1 2 f3y 
o/:i - 6 o/B + 3 F + canst. 

= O(R/ {3L) o/2 
Finally 

(3.10a) 

(3.10b) 

(closed q 3) 

(3.11) 
(elsewhere) . 

(3.12) 

The region of closed <J3 is smaller than, and properly contained in, the region of 
closed '12 contours (see Fig. 3). If the forcing is sufficiently weak, the '12 contours 
may close while all the <J3 contours remain open. In this case the wind-driven flow 
is confined to the upper two layers while the lowest layer is motionless. The com-
plete 0(1) solution [(3.9), (3.11), (3.12)] is independent of friction and obeys a 
•simple "Couette" numerology, in which the average circulation in the jth layer of 
the velocity about <Ji is the average of that above and below (Fig. 4). 

Expulsion of potential vorticity gradients. Quite a general feature emerges when 
the full potential vorticity is calculated. Because: 
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Figure 3. Contours of tj 2 from (3.5) and ij, from (3.10a). (a) Strong forcing. The forcing is 
strong enough to produce both closed q, and closed q, contours. The subsurface fl ow is con-
fined to the region of closed contours. (b) Weaker forcing. The q, contours are closed but 
all the q, contours are open. Consequently there is no flow in the deepest layer. 

(3.5), (3.9) yield 

( 1 1 f3y ) q2 = f3y + F I/In - 3F 3 tJ!n + 3 F + const. 

= const. 

within the gyre. Without explicitly using that theory we have recovered the result 
of Rhines and Young (1982), that potential vorticity tends to homogenize in plane-
tary gyres, on interior density layers. They give several proofs appropriate to a 
variety of assumptions about the flux <I> of potential vorticity by mesoscale eddies 
or friction. A review of these arguments is given in Appendix A. 

The physical content of the idea is quite simple. The integral potential vorticity 
balance obtained by integrating the conservation equation over the region within a 
closed contour (which may be a contour of constant tjJ or q) involves no advection 
of q by the mean Eulerian flow . If the flow is statistically steady the net flux 
f cJ> • ii ds of q across the mean streamline must then vanish. Since there is a strong 

,I 

'I 

11 

:1 
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Figure 4. A schematic meridional section through the three-layer gyre. The numbers indicated 
the fraction of the Sverdrup transport carried by each layer. Note that each nonzero number 
is the average of those above and below. 

tendency toward down-gradient q-fluxes on interior density layers of a large gyre, 
and since the bounding contour has a constant q, "vq itself must vanish if the flux 
$does.Support for the idea comes from recent numerical models (Holland, 1982) 
and from ocean observations; see McDowell et al. (1982). 

Calculation of the value of q1 inside the closed contours. The constant value of 
q2 inside the closed geostrophic contours is determined by requiring that .p2 = 0 on 
the outermost closed contour. From (3.9) and Figure 1 it then follows that 

since 

_ l( /3) 1/3 "12 - 3 t/Jn + F y - 3 F r1 

C/2 = f3y + F .PB= f3r1 on this contour. Thus 

qz = C/2 - 3F "12 

= /3r1 = value of f3y at the most northerly point 
in the gyre. 

Character of the solution. The flow patterns are plotted in Figure 6 using the sim-
ple 1/JB pattern in Section 2, corresponding to a dipole of vertical velocity forcing 
w0 = -cu, or a wind-stress pattern like -r = (xy, 0) inside a circle of radius r1• The 
streamlines again consist of arcs of circles: 

"12 = - ( 6~) (x 2 + (y - Yo)2) + (const.) 

Yo= /32/a.F 

"13 = - ( l;/3) (x 2 + (y - 4yo)2) + (const.) 

"11 = .Pn - "12 - tf,3 

(closed q2) 

(closed q3) 

(3.13a) 

(3.13b) 

(3.13c) 
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Figure 5. The potential vorticity in the middle layer, q2. There is a large region of homogeneous 
q within which is the wind-driven flow . There are steep q-gradients as one passes out of the 
wind gyre. 

= -( 3~ )( x 2 + ( y + + Yo r ) + (const.) (closed q3, open qz) 

= -( ~) (x2 + (y + 2y0) 2) + (const.) 

The center of the gyre in layer 2 is a distance y0 = /32 / aF poleward of the center 
of lf,8 , the barotropic gyre, while the deepest, smallest gyre (layer 3) is displaced a 
distance 4y0 poleward of the center of 'PB regardless of the choice of parameters 
(for equal mean layer depths, H). This skewed shape is a key feature of the theory, 
following simply from the constancy of q in the layer 2. As the figure indicates, the 
constancy of f / h2 requires a poleward thickening of the isopycnal surfaces. Since the 
density surfaces are bowl-shaped, this thickening is created by a poleward shift of 
each deeper bowl relative to the one above. Equivalently, we may visualize the con-
tours of q2 = (3y + F 1/JB as being the height contours of the surface 1/JB after tip-
ping through an angle (3/F. The gyre center is inevitably displaced poleward of the 
center of 1/Jn. 

An anticyclonic gyre thus develops a steep poleward boundary (and a cyclonic 
gyre an abrupt boundary on the side facing the equator). The plot of q 2 (Fig. 5) 
exhibits this property. Also evident are 'fringes' surrounding the gyre in which one 
interface is sloping, the layer above is moving, and yet the layer below cannot. Be-
cause of the weak stress exerted from above there develops in these regions of open 
q2 contours a weak O(R) flow. On the west side of the gyre this flow reaches far 
(O(R- 1)) to the west, while on the east side a viscous boundary layer develops. 
Further discussion of O(R) corrections is found in Appendix B. 

4. Solution for the mean circulation of a turbulent 3-Iayer ocean 

Instead of laminar interfacial friction and steady flow (choice (a) in (2.2)) sup-

ll 

ti 
1: 
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Figure 6. The streamfunctions 1/1i, l/Jz and l/J, fr om (3. I 3) with Y• = 1/ 8. Note the poleward 
shift of the gyre center as one moves downward. The outer dashed circle is x2 + y• = r,•. 
The inner dashed circles are the outermost closed ij, and q, contours. 

pose we have a turbulent ocean, with eddy-induced stresses acting on the Eulerian 
mean circulation (choice (b) in (2.2)). As we discuss above (or in Rhines and 
Young (1982)), the sign of <I> • V q is negative on density layers free of external 
forces, providing that a scale separation exists between eddies and mean flow. 
Layer 2 of the model thus has uniform potential vorticity in regions of flow. Under 
these same conditions 
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where K = K i J is the Lagrangian diffusivity tensor and we temporarily use overbars 
to distinguish mean quantities. In layer 3 the circulation balance in (3.10) then 

becomes 

or 

§ ii (D + KF) V l{,3 ds = {3§iiKy ds + + F§iiK V l{ls ds 

Here we have left in a bottom friction with coefficient D. As a simple example take 
K iJ to be isotropic, diagonal and uniform, ,c,1 = A8ii. Then 

§ ii 3 • ds = + [ A:: D ] f iis • ds 
which is the generalization of (3.10), to which it becomes identical when A = D/F. 
Hence 

_ 1 _ 1 {3y 
t/12 = 3 V's+ TF + const. (closed c1.2) 

as before, yet 

( closed £13) 

and 

tP1 = 'ifls --$2 -'if13. 
It is also instructive to calculate q; one finds in closed-contour regions 

'12 = const. 

'13 = [ AF~ D ]( f3y +-} F lfn) + (canst.) 

= [ AF~ D] (] 3 + (const.). 

As in Section 2, q3 is uniform if AF > > D; this is to be expected from the general 
results of Rhines and Young (1982) since this inequality ensures that the dissipation 
in the lower layer is equivalent to lateral diffusion of potential vorticity. In the mid-
dle layer '12 is always uniform, as in Figure 5. 

5. The continuously stratified model 

In this section we will extend the results of Section 3 to a continuously stratified 
model. Our goal is to develop more intuition about the shape of the bowl which 
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contains the wind-driven circulation. With continuous stratification the mean, 
Boussinesq potential vorticity equation is 

l(tf, ,q) = - 'v • Cl> + Wo(x,y)o(z) 

q = 1/J,,,, + o/yy + ( ~: o/z ) z + {3y . (5.1) 

As before tf, is the streamfunction and N the Brunt-Vaisa\a frequency. The vertical 
velocity is 

w = -f o N- 2 J(tf,, 1/Jz) 

and the density field associated with the wind-driven flow is 

p = Po { 1 - g-l s: N 2dz' - for 1 t/Jz} 

where g is the gravitational acceleration, p0 the average density, N the buoyancy 
frequency and 1/Jz the perturbation due to the wind-driven flow. 

The boundary conditions are 

w = w0 (x,y) 

and 

1/J, •o/z 0 

at z = 0 

as z -co 

(5.2) 

(5.3) 

where w0 is the Ekman velocity produced by the wind stress curl. Suppose for the 
moment that the wind-curl vanishes north of y = Lv and has zero integral in the 
east-west direction i.e., (2.8) (the condition for a 'mid-ocean' gyre). The first bound-
ary condition, (5.2), is the standard condition applied at the base of the upper 
Ekman layer. The second condition, (5.3), comes from requiring that the perturba-
tions due to the wind-driven circulation vanish in the deep water. 

Now nondimensionalize the above using the following scalings 

Z- -- -- Z• _ ( f O ) ( U) 1

/

2 

No /3 
(x,y) = Ly(x.,T.) 

w= Ww. (5.4) 

where Wis a typical vertical velocity scale forced by the wind curl. We will assume 
that the flow is in Sverdrup balance, f3v = fwz, so with the above estimate of the 
vertical scale one can express U in terms of the external parameters: 

U = (NoW)21a 13-11s (5.5) 

and so (5.4b) gives: 



578 Journal of Marine Research [ 40, Supplement 

(vertical length scale) = lo(N0{3)- 2! 3 w11s. 

In (5.4) and (5.5), N0 is a typical value of the Brunt-Viiisiila frequency in the wind-
driven part of the water column. The potential vorticity is (dropping the *'s): 

q = f3Ly(e2 V 2 1/1 + (F 1/Jz)z + y) 

where 

e2 = U/ f3Lv2 (5.6) 

As before e2 < < 1, so that the relative vorticity is negligible in the interior. The 
density fi eld is 

.Tll is last relation shows that the quasigeostrophic relation is valid to the ex(ent that 
(/3L1,lf o) is small. 

The most important part of (5.4) is the choice of (! 0 / No) yU/ {3 as a vertical 
scale. This scale is determined by requiring that the deformation of the isopycnal 
'surfaces create potential vorticity gradients comparable to the /3-effect so that the 
geostrophic contours can close (Rhines and Holland, 1979). 

Now suppose that the wind-driven circulation lies between z = -D(x,y) and z = 
O;: D(x,y) is the "bowl" which vertically bounds the wind-driven flow. A primary 
goal of this section is to determine the unknown D in terms of w0 and F. The poten-
tial vorticity is uniform on density surfaces within the bowl, (see Appendix A) so 
that 

(F 1/Jz)z + y = Y(z) if-D < z < 0 . (5.7) 

Y(z) is the initially unknown value of the potential vorticity at the level z. Outside 
the bowl lJ, vanishes so that 

if z <-D. (5.8) 

We will now solve (5.7) assuming that Fis constant; because of (5.6) we can set 
F = 1 without loss of generality. The function Y(z) is determined from the match-
ing conditions at the outermost closed q-contour. Recall that in an anticyclonic gyre 
the three-layer model developed uniform potential vorticity, with the constant value 
being close to the value of planetary vorticity, fo + {3y, at the poleward extremity of 
the barotropic gyre (y = 1 in the nondimensional units of this section). This sug-
gests setting Y equal to this extreme latitude here. We will justify this choice below. 
The solution of (5.7) which satisfies 

is then 
onz=-D 

1 
1/1 = - (z + D) 2 (Y - y) 

2 (5.9) 
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since Y is a constant. For example if o/B = 1 - x2 - yz (when x2 + y2 < 1), as in 
Section 2, then Y = 1. D(x,y) is determined by applying the boundary condition 
(5.2). The vertical velocity is 

w = + (z + D)2 (Y - y) D,, (5.10) 

so that (5.2) implies 

or, since D vanishes at large x, 

D 8 = 6(Y - y)- 1 o/B (5.11) 

The above is the principal result of this section viz., an expression for the depth of 
the wind-driven fl.ow in terms of the forcing and other external parameters. 

The full solution (5.9), (5.11), may be combined to give 

o/ = _!_ [z(Y _ y)112 + (6 o/B)'/a (Y _ y)'IG]2 
2 

where Y is determined by the curve o/B = 0; Y is the poleward-most value of y on 
this curve if o/B > 0, and the equatorward-rnost value if o/B < 0. In the above ex-
pression we have assumed that o/B > 0 so Y - y > 0. 

The displacement of an isopycnal surface, 7J, in this solution is proportional to o/z, 

o/z = (Y - y) (z + D) (5.12) 

and the isopycnals in Figure 7 are contours of z + ( /3f~Y ) o/z with /3L 11/ fo = 
1 
4· 

The streamlines corresponding to (5.9) and (5.11) are surprisingly hard to visual-
ize. For simplicity we shall use the by now familiar barotropic streamfunction: 

l 
1 - x2 - y2 

o/B = 
0 

(if x 2 + y 2 < l) 

(otherwise) . 
(5.13) 

Since y = 1 is the most northerly point of this anticyclonic circulation we expect 
that: 

Y= 1. 

The gyre is deepest at (x = 0, y = l) where 

D = (12)113 = Dmar. 
from (5.11). 

These continuously stratified models have vanishing velocity and density pertur-
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Figure 7. Three meridional sections through the gyre at x = 0, + , + showing the den-

sity field z; + ( 13t•) tf,, computed from (5.12) with (/3L,lfo) = +. The isopycnal slope 

is discontinuous at z = -D(x,y) (shown as a heavy line in the figure). An additional contour 
(dashed) has been included near the surface to show the isopycnal intersections with z = 0. 
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bation as well as vanishing vertical velocity gradient at the rim of the gyre (tf, = tf,. 
= 'vtf,. = 0 at z = -D). The solutions are smoother than with the layered models, 
which have vortex-sheet discontinuities of horizontal velocity. They exhibit, how-
ever, an interestingly abrupt poleward edge at the latitude of zero-wind-curl. [A 
wind profile more relevant to the oceans would have an extended line of vanishing 
curl where '1'J is discontinuous. In such a case (say tJ,n = siny sinx) the poleward 
front is long and deep.] 

The northward horizontal velocity predicted here increases linearly with z, from 
a zero value at the base of the gyre. The eastward velocity is a quadratic in z, which 
may reverse with depth due to the skewed shape of the gyre. The hodograph of v 
against u spirals with depth to the right if the vertical velocity, w, is negative and 
conversely. w itself is quadratic in z. 

The choice of Y (i.e., the vertical variation of q}, and the spin-up of the fiow. The 
form of (5.9) has q taking on the same constant value, Y, at each depth in the gyre. 
This requires some explanation, and some apology for a case in which this choice 
of Y(z) is incorrect. 

To see how the gyre selects its potential vorticity, recall the arguments accom-
panying the three-layer model: if all the Sverdrup flow were initially confined to the 
upper layer, it would produce in the layer below a potential vorticity field q2 com-
posed of /3Y plus the contribution off o'Y'J/ H due to the dish-shaped thermocline over-
head, Figure 8a. In section, this is a 'dish' tipped up on a ramp. Supposing the flow 
to be strong enough to produce an island of closed geostrophic contours, any verti-
cal flux of momentum (no matter how weak) will spin-up the flow in layer 2. As 
this occurs, the true potential vorticity q2 descends as a plateau, Figure 8b. We 
know q2 to be a constant, and this constant is reached when q2 is tangent to q2 on 
the poleward side. Then flow has developed fully about all available geostrophic 
contours. 

q2 goes no further downward because it now has no impetus to and it has no 
more free paths: the eddy force causing this spin-up is proportional to q'u', and we 
equate this to -K 'v q. Suppose K is a constant diagonal tensor; then the eddy 
force is directed pseudo-westward about the contours in Figure 1. It accelerates the 
flow about the island until the mean state adjusts toward 

'vq= O 

so that the eddy forces vanish. The circulation thus incapacitates the force field, 
-K 'v q, that created it, and henceforth rests in equilibrium.~ 

The source of the eddies that do this work is most likely to be instability of the 

initial flow, which occurs as a baroclinic instability if that flow is strong enough to 

5. The eddy force does not go entirely into accelerating the flow, but also sets up the altered density 
field by a 'meridional' circulation. This greatly reduces the rate of spin-up of the deeper layers, as the 
Coriolis force acting on the great mass-field adjustment opposes the acceleration that creates it. 
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Ffgure 8. (a) A section showing q, = /3, + Fi/Jn as a function of y. (b) A schematic of the 
evolution of q, from the init ial state ij, in (a) to the fin al homogenized state. The constant 
value of q, is determined by the condition on the poleward boundary. (c) If I/ls fails gradu-
ally to zero as y 00 , the poleward boundary of the homogeneous region does not coincide 

. , with the poleward boundary of the 1/Jn pattern. 

·cause the potential vorticity gradient to reverse somewhere in the gyre. Indeed the 
~ppearance of closed {j2 contours as the strength of the forcing is increased coincides 
with the first reversal of the northward potential vorticity gradient in the lower 
layer if one assumes that the flow is given by: 

"11 = t/ln 

"12 = 0' 

so that qz = fi 2-This observation provides an additional physical interpretation of 
the homogenization result: the flow develops in the subsurface layer so as to just 
cancel the change in sign of qv. Thus the mean flows poleward of the gyre center, 
calculated using the potential vorticity homogenization argument, are marginally 
stable according to the Charney-Stern generalization of Rayleigh's theorem. Equator-

' I 
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h+O h 

Figure 9. An illustration of the geometry accompanying (5.14). Unless the gyre boundary (the 
dashed line) is vertical, a discontinuity in slope of the isopycnals implies a discontinuity in 
the potential vorticity at y = Y. 

ward of the gyre center the reversal of qv in the upper layer provides for baroclinic 
instability. 

Notice that if iJln decreases to zero quickly enough as one approaches y = Y, the 
final state (which lies tangent with the minimum of the original {12 curve) is nearly 
a ledge with q intersecting {3y near the 'contact point' {3Y. This shows that, as the 
number of layers, n, of an n-layer model is increased, (i) q tends to a ledge with a 
discontinuity on the equatorward side, and continuity on the poleward side (for an 
anticyclone, conversely for a cyclone). 

Now it follows simply that for q to be continuous at y = Y, the gyre boundary 
must be vertical there. [As Fig. 9 shows, the jump inf /h across the gyre boundary 
is .simply 

8q 8h a~ 
--=-- = cotcp -.-

q n dy 
(5 .14) 

where cp is the angle of repose of the boundary z = -D(x,y). Therefore if 8q = 0, 

q> = ; . ] 

Thus, the latitude of intersection of q with {3y is independent of depth, and so 
Y is a constant, the potential vorticity of the gyre is a single constant6 and there is 

6. This uniform q has the dimensions of H j/(H + h'), where H and h' are mean and perturbation 

I f il p diff . ct· · layer thicknesses. The form used frequent Y, - -,,- , ers m unens1ons. In a nonuniform stratifi. 
p o vZ 

cation our q is constant in the vertical whereas +. ~: varies like N2• 
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a vertical 'front' terminating the anticyclonic gyre on the poleward side. We remark 
that all these features arose naturally and without assumption in the three-layer 
model, but the method of integration for the continuous stratification required these 
further arguments. 7 

Failures of the choice Y = const, Although the layer theory works regardless of 
the nature of the winds, we find in the continuous-N2 theory that the above choice 
Y = const. leads to inconsistencies if t/Jn falls to zero too gradually with y: more 
exactly, if (o t/Jn/oy)/t/Jn < (y- Y)- 1 somewhere. Then the base of the gyre, 

D = ( 61/,n )
1
1

3 

Y-y 

deepens somewhere south of y = Y rather than shoaling. For instance, if o/B ~ (y -

Y) 2 near y = Y, then D ~ (y - Y) 1/s there. This implies (5.14) that q cannot be 
continuous, and our chain of reasoning is broken. It is easy to see (Fig. 8c) in the 
layered model how the point of vanishing I/In can become distant from the termina-
tion of the constant q region if I/In is slowly falling to zero with y in this way. (fhe 
appropriate changes in the theory for this case remain to be carried out.) 

A singularity arises if I/In drops precipitously to zero. For example, if t/Jn ~ (Y -
y)1

/ 2 near y = Y then D ~ (Y - y)- 1
/ 2 is singular at that point. This appears to be a 

physically consistent result which in the real fluid would be limited by the presence 
of the sea floor, or by eddy fluxes of q. 

Realistic wind-stress patterns rarely suffer from either of these problems; for 
example a zonal wind-stress varying like siny produces a pair of wind gyres anti-
symmetric about y = 0 with a vertical 'front' between them. 

Density boundary conditions. The greatest difficulty in any of the vast set of 
'stratified spin-up' problems is connected with the mixing and exchange of density 
near the fluid boundaries. In the layer models given earlier the wind-induced pump-
ing at the surface involves homogeneous fluid, and standard Ekman theory suffices. 
The continuously stratified model requires more discussion, for the fluid at z = 0 is 
not isopycnal. The model described just above is valid if (i) we understand it to be 

the limit of an n-layer model as n becomes large but with n < (NH)( f ) 
fL (U/3) 11~ 

(to insure that no out-cropping of isopycnals occurs at z = 0), or (ii) if we artificially 
prescribe the density of fluid at z = 0 in downwelling regions (as with forcing by 
injection of fluid rather than wind stress), or (iii) and perhaps most appealing, if we 
modify the theory by putting a single, thin, homogeneous layer to overlie the strati-
fied fluid below. This last resolution might occur in an experiment where surface 

7. The transition from the layered to continuous stratification has other interesting features. The 
resolution here assumes that the number of layers, n 00 , R 0 with nR << 1 where R is the drag 
coefficient between the layers. ' 
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stresses eventually mix the uppermost region, and the upper surface is insulating 
(rather than insolating). 

In spite of these qualifications this ,8-plane theory is far closer to being a satis-
factory solution than one finds with the same boundary stresses applied to an /-plane 
fluid. There, the linearly stratified spin-up solution breaks down quickly, as heavy 
fluid flows over light, unless molecular diffusion of density is very strong. 

6. Discussion: dynamics 

q-geometry. The wind-driven circulation is described here as a restructuring of 
the density surfaces and hence the dynamical environment from one of blocked 
geostrophic contours to one of closed geostrophic contours, along which flow can 
freely proceed. This can occur in a variety of initial-value problems as with flow 
burrowing down from the upper ocean or relaxing from the barotropic motion that 
follows a sudden onset of winds: but the result is always the same. The Sverdrup 
transport, which is fixed by the pattern of wind-curl, distributes itself with depth in 
such a way that ledges of uniform potential vorticity are built on the ,8-'hillside'. 
The communication of the flow vertically, across isopycnal surfaces, is carried out 
by mesoscale-eddy pressure drag, simply a generalization of Rossby-wave drag, that 
works against the ambient gradient of q. As the circulation reaches its final con-
figuration, these q-gradients disappear inside the gyre, and hence the eddy forces 
drop away to nothing. Subsequently there is almost no eddy flux of potential vor-
ticity, nor any perturbation potential vorticity.8 The mean flow is then also mar-
ginally stable according to the generalized Rayleigh criterion, on the poleward side 
of the gyre, and strongly unstable on the equatorward side. 

At the large scales of the 'mid-ocean' gyres described here the relative vorticity 

is slight, so that q _f _ 8
8
P can be calculated from hydrographic data alone. 

Po z 
The /3-effect is cancelled if isopycnal layers thicken poleward at just the right rate. 
To do so, the gyre center at each deeper level must be displaced poleward (for 
anticyclones). This is a familiar property of the observed wind gyres (Montgomery 
and Pollack, 1942). It is interesting that the barotropic mode, o/B, plays the domi-
nant role in determining the deep geostrophic contours. 

The constant value selected for q is not a simple average of the neighboring en-
vironment, but is skewed to the poleward side (for anticyclones), conversely for 
cyclones. The vertical variation of f dp I dz follows that of N 2

• The scale depth of 

. f ( lj ) 1/ 2 /2 
the wind gyre, -,;r T , arises simply by requiring that Uzz ~ ,8 so 

as to ensure that the deformation of the density surfaces can cancel the ,8-effect. 

8. This warns against the conclusion that eddies must be unimportant if their average q-transport is 
observed to be weak. 



5.86 Journal of Marine Research [ 40, Supplement 

Boundary currents. The absence of strong sources and sinks of q below the mixed 
layer determines this structure (eddies are sources of q in the interior, but they are 
not strong enough to violate u • V q = 0 over planetary scales). The models here 

avoid boundary currents by the choice s:00 Wadx = 0. However if we insert a 

rigid meridional boundary in the center of the model gyres given here, we find far . 
less need to construct dissipative western boundary currents: the interior stream-
lines are nearly geostrophic contours, so the fluid must have the same value of q 

when it exits the boundary region, as when it entered. In contrast to the traditional 
one-layer ocean theory we expect inertial boundary layers to dominate upon these 
deep density surfaces. Inner frictional layers must exist in most prescriptions for 
the coastal boundary conditions, but their net effect may be small. 

In the homogeneous-fluid circulation theory we find that fluid columns lose poten-
tial vorticity in mid-ocean by the wind, and must regain it by frictional flux in the 
boundary current. In a vertically integrated sense, this must still be true, but we 
relegate the changes to near-surface layers, and perhaps to benthic boundary layers. 
In the interior regions, where the potential vorticity is uniform, there is no com-
pelling reason to introduce a frictional flux in the western boundary. We should 
also be willing to allow the possibility that, far from the coast, bottom topographic 
wave-drag, interior bottom friction, or lateral eddy q-transport each could balance 
the net wind-stress curl, rather than invoking frictional or pressure-drag processes 
concentrated at the western boundary. 

Outcrops and renewal. Fluid enters the interior from the upper mixed layer and. 
proceeds along a sort of stochastic helix, circulating in the gyre while descending. 
The whole sense of the theory presented here is that this helix is tightly pitched, 
with fluid going round enough times to expel gradients of q before eventually exiting 
(by eddy scattering at the gyre boundary or by flow out the base of the gyre). Thus, 
we do not ignore the outcropping of density surfaces, but consider for the expulsion 
theorem only the circulation contours which.encircle no strong q-sources on a poten-
tial density horizon. 

The ratio of the rate of recirculation about the wind-gyre, to the rate of renewal 
from the surface is thus a key measure of the strength of the gyre, and of the process 
of expulsion of potential vorticity gradients that determine its mean structure. 
Chemical tracer data may be particularly useful in observing the vertical penetra-
tion of the gyre from above; indeed tritium analyses (Jenkins, 1980; Fine et al., 
1981; Sarmiento, 1982) have recently been used in this way. Figure 10, from 
Jenkins' paper is particularly revealing of the renewal process. At the Panulirus 
site, near Bermuda (32N, 64W) the vertical profile of tritium shows that, indeed 
significant renewal from the surface has occurred since the early 1960's, down well 
below the base of the wind-gyre. By contrast, the helium-3 nearly vanishes at levels 
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Figure 10. (a) Tritium concentration vs. potential density. There is a significant concentration 
of tritium down to the bottom of the wind gyre (a-0 = 27.5 or roughly 1000 m). (b) 'He vs. 

potential density. 3He is the decay product of tritium. The absence of 3He above 0-0 = 26.5 
(roughly 400 m) indicates that this water above this level is frequently by contact with the 
atmosphere. From Jenkins ( 1980). 

above a potential density, <re, of 26.5. This is characteristic of very rapid renewal 
of these upper levels (helium-3 is removed efficiently at the sea surface, but develops 
below by tritium decay). 

These profiles suggest that what we term 'interior' density layers lie below <.re = 
26.5 corresponding perhaps to the deepest level of winter convection in the intensely 
recirculating parts of gyre. 

A problem for the near future will be to construct a theory allowing the surfacing 
of isopycnals in a layered model. It will take on some of the aspects of Veronis' 
(1973) two-layer model of the world ocean. 

We have avoided considering the creation of the thermocline, itself, which is 
studied in parallel with the wind circulation by Welander (1971), Needler (1972). 
There are intersections with the present work (for example, thermocline similarity 
theory often proceeds by assuming q to be constant on density surfaces, whereas 
we show q to evolve in this direction in gyres, but with important discontinuities of 
q at the gyre boundary). Although we assume the basic stratification as given, the 
circulations are unique functions of the wind-stress distribution, unlike the non-
unique families of solutions that arise from the more difficult thermocline theory. 

The rate of expulsion of q-gradients during spin-up of the gyre has not been 
analyzed here. It is important to consideration of the competition between 'homog-
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enization' of q and direct injection of surface values of q from the upper mixed 
layer. A _new manuscript on this subject is available from the authors. 

Deep :circulation. Pl~netary flow subject to weak eddy effects obeys l(tf,,q) = 0 
in the interior. This conservation can be resolved with nearly closed streamlines, 
"v q = 0, tf, # 0 as in the wind gyres above. On the other hand, the deep and abyssal 
circulations below seem to flow more directly from source to (distributed) sink. We 
expect that well-structured q-gradients can then occur (no expulsion theorem being 
possible), with q = Q(tf,) being a first approximation. These are indeed found by 
McDowell et al. (1982) below <re~ 27.5 in the North Atlantic. 

Stability of circulation. It is fascinating to observe how the mean state of the 
wind-gyre relates to eddy production. We have already discussed how the homoge-
nized gyre is a limit point at which the eddy forces just cease to operate on the 
Eulerian mean flow. We rely on the eddy stresses to spin up9 the gyre and maintain 
it. We are therefore relieved, rather than dismayed, to find that the mean gyres are 
in some regions marginally stable and in others very· unstable. 

The homogenization of q might make it seem that fluid particles could move 
freely about a a-e surface, the {3-efiect having been cancelled. But to the contrary 
the flow in these homogenized regions is determined by the 'outer' density surfaces 
into· which the q-gradients have been concentrated (in the sense that in the homog-
enized regions tf, is determined by inverting an equation of the form (F tf,.)z q -

{3(y - y0) subject to boundary conditions at the outer density surfaces). Just as in 
Eady's instability problem, the motion in the near-boundary sheets of potential 
v~rticity determines the interior flow perturbations. This might suggest a way of 
rea~cing the numericai computations necessary to model the circulation o~ a . com-
puter. It will be interesting to study the perturbation problem both with a view to 
instability, and to the behavior of baroclinic. Rossby waves encountering the major 
abrupt change in "v ij and in current. · 

Topography. Thinking primarily of the shallow wind-gyres, we have not men-
tion'ed bottom topography. A level bottom was included in the layered model; in 
the continuously stratified model (5.11) must be simply rewritten to satisfy the 
Sverdrup relation wherever the predicted D exc.eeds H. q may be affected in the 
deepest layers through bottom-friction drag ·(as in the three-layer model). Topo-
graphic roughness, to a first approximation, merely accentuates the down-gradient 
mixing of the large-scale q, and is in this sense already present in the theory. It and 
other kinds of eddy enstrophy dissipation can replace western boundary drag as the 

. 9. ·The vertical transport of momentum by eddy pressure drag may be thought of as a spin-

h . . hih r-up mec arusm m w c Aii :: = K '\J ij ~ "'Ff, ii ,. determines the effective vertical viscosity, A. 

r 
Thus A ~ N' K is large ~ IO'cm'sec-1 typically, K being the Lagrangian lateral diff usivity. 
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principal opposition to the integrated wind-curl. Major topographic features like 
the mid-ocean ridge system, however, pose another problem. It may be shown that 
westward flows over such obstacles are deformed only to a height ~ (f / N) yU / {3 
above them (i.e., just the thickness scale of the gyres). Eastward flows, however, 
generate modal vertical structure which penetrates through the water column. Even 
the upper wind-gyres may thus be deformed. The deep penetration of the anti-
cyclonic wind gyre in the South Pacific might in part be due to interaction with the 
Antarctic Circumpolar Current where it flows over the East Pacific Rise. 

Other tracers. The expulsion property works for other conservative tracers than 
potential vorticity. If the input and output of a geochemical tracer is sufficiently 
gradual at a given density level, the action of the gyre will be to homogenize it, and 
to concentrate its gradients at the rim of the gyre. This effect is quite visible in some 
tracers (for example (Niiler, 1981), salinity in the North Atlantic above the strong 
Mediterranean influence, and also tritium at some levels) yet less so in others (for 
example, salinity at levels of Mediterranean input, and dissolved oxygen at the 
levels of strong consumption). Study of the advection-diffusion properties of tracers 
in these gyres will be rewarding. 

{3-spiral. In constructing a dynamically based method of determining the reference 
level for geostrophic velocity computation from density data, Stommel and Schott 
(1977) find a local best-fit tangent-plane to the geostrophic contours, q = constant. 
Their results suggest a level of no motion near 750 m at 28N, 36W in the eastern 
North Atlantic. Consistent with our theory, however, they find the gradients of q 

vanish above about ere = 27.0. Of course the ,8-spiral method must fail in these 
homogenized regions. However their method succeeds on the basis of well-deter-
mined geostrophic contours below the strongly flowing wind gyre. Were there no 
density-driven flows below the wind gyre, we would have predicted a level of no 
motion (tf, 0) at levels where 'vq becomes nonzero, and this is not a bad approxi-
mation to the actual state of affairs. In the more intense <::irculation nearer the Gulf 
Stream the gyre base does seem much deeper, as in the models,. and regions of 
homogeneous q reach to deeper ere levels. 

Other ocean observations. The ,8-spiral method may be regarded as locally fitting 
tangent planes to the surfaces q(x,y,ere), to determine the direction of flow. A com-
plementary. approach, initiated by Behringer (1972) is to develop maps of q == 
foere/oz from hydrographic data for entire ocean basins. The resulting charts of 
geostrophic contours are useful in several ways: as idealized flow paths at each 
density horizon; in showing 'expelled' regions where gyre activity is strong; in sug-
gesting where eddy activity or interaction with surface or bottom will force fl ow 
across q-contours; in diagnosing boundary-current dynamics by viewing the q-dis-
tribution of fluid exi ting to mid-ocean; in providing the. mean. field for calculation 
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of wave propagation, and, in showing regions where flow instability is possible, due 

to reversals of the gradient of q. 
Charts of q for the North Atlantic (McDowell et al., 1982) show that despite the 

outcropping of density surfaces and the presence of western boundary currents, 
much of the subtropical wind gyre contains uniform potential vorticity in the density 
range <re = 26.5-27.3. Below, the q-contours show well-defined gradients which 
may indicate the paths of flow of various source-sink flows like Labrador Sea Water 
and Mediterranean Water. 

Not all methods of observing the general circulation show close agreement with 
cine another. Moored current meters are particularly susceptible to small-scale gyres 
induced by eddies and rough topography, which may mask the large-scale circula-
tion. In order to circumvent the problem clusters of five moorings each were de-
ployed as a part of the POLYMODE program. The 12-month records, augmented 

• by site moorings and hydrography, show a substantial northward flow of the water 
below 500 m depth near 28N, 48W and 27N, 41W (Keffer and Niiler, 1980). These 
are sites on either side of the Mid-Atlantic Ridge. Above 500 m, the general sense 
of the circulation agrees with the usual picture of the wind gyre but in the deeper 
water this northward flow is not easy to reconcile with the generally east-west strike 
of the. mid-depth geostrophic contours. Neither the dynamical nor the observational 
reconstruction of flows beneath the wind gyres is in particularly good order. 

Numerical models. The sequence of ocean models being developed by Dr. Holland 
is particularly well suited to exploring q-expulsion and the structure of the wind 
gyre. Recent experiments (Holland; 1982) with three density layers in a 4000 X 

4000 km basin (200 x 200 grid) show, in the intermediate density layer, regions 
roughly 3000 km x 1500 km in size with uniform potential vorticity (both instan-
taneously and in the mean), (Fig. 11). The potential vorticity is homogeneous to 
within a few percent, even in the presence of western boundary currents. These ex-
periments give us the opportunity to watch the detail of the expulsion process, and to 
include inertial-gyre effects not present in the detailed circulation models given here. 

The recent model of Bleck and Boudra (1981) allows density surfaces to outcrop 
at the sea surface. The potential vorticity, in agreement with this theory, forms 
'islands' with closed contours and, in the deeper layers remote from direct forcing, 
large areas of uniform potential vorticity. 
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figure 11. A meridional section, showing potential vort.icity ·. as a function of latitude, through 
Holland's three-layer eddy resolving general circulation model. The solid line is the instan-
taneous q, field while the dashed curve is an 1,800-day average. The large region of uniform 
q is striking. 

We _are indebted to L. V. Worthington for lending us over the years his insight and good 
humor. He has characterized the North Atlantic as being dominated by recirculating gyres 
r2ther than ins and outs. We hope he finds these mathematical gyres, conceived in the same 
spirit, to be appealing. As to the role of eddies we apologize to him for their necessity, but at 
least they are weak· in their interaction with the fully developed gyres. One day, during his 
rounds as Chairman, L VW peered over our shoulders at his North Atlantic Atlas, seized on an 
isolated salinity contour drawn about a single station, and said, "that's real, an eddy: a blemish 
on the face of an otherwise perfect ocean." He remains a laminar animal. 

APPENDIX 

A. A general discussion of potential vorticity homogenization 

The·following discussion follows Rhines and Young (1982) closely and has been included 
here for the sake of completeness. 

We will be primarily concerned with the interaction between the mean flow, characterized 

by velocity and horizontal length scales O and L and vertical length scale given by (5.5b), and 
mesoscale eddies, characterized by V' and L'. These scales are used to define nondimensional 
variables, denoted temporarily by ~, 
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ij = {3Lq., VJ= ULVJ• 

q' = {3L'q'., ,JI= U'L',f/• 
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where q = q + q' and 1/1 = VJ+ I/I. 
For statistically steady flows driven externally by wind or buoyancy sources we write the 

time-average of the potential vorticity equation, (nondimensionalized): 

o(VJ•,4·> o . 
o(x,y) = -E'v • ci,. + Wo(x,y) S(z) + JJ, OZ• (F'v • B.) + 11D• 

where q. = ij-(x,z) + q'.(x,z,t), 
ll(z) = the delta function 

cii.=q .'u.' 

•/I· = VJ• + 1/1•' • ••• 

(At} 

B. =The buoyancy flux by deep convection or small-scale processes (including density 
diffusion) 

D. = The dissipation of potential vorticity by small-scale processes other than geo-

strophic eddies (e.g., internal waves). 

E=U'L'!OL 
,, = scale estimate of / /3 0 
µ. = 11{30 X (vertical length scale) 

w0 = vertical velocity (xfol /3U) produced by wind-stress curl at the base of the Ekman 
layer. 

The boundary conditions for insulating level upper and lower boundaries are 

and 

_!!__(!_l:._)=o 
Dt oz 

onz=O,-H 

OVJ•=o 
us 

on a free-slip lateral boundary (s being the displacement along the boundary). oVJ/oz is propor-
tional to perturbation density. Note the wind stress forcing at the upper boundary has been 
shown explicitly on the RHS of (Al) using the mathematical artifice of a delta function 
(Bretherton, 1966). 

The equations allow significant interaction oi the upper boundary with the deep interior only 
by vortex stretching, but not by advection from the surface. A necessary condition for their 
'validity is 

L 
~<<1 

where L is the lateral scale of a gyre streamline and a is the earth's radius. It is just to this 
same degree that the mid-latitude /3-plane is valid. 

In analyzing a particular ocean circulation model Holland and Rhines .(1980) found it useful 
to study the vorticity balance integrated over an area bounded by a time-averaged streamline. 
In the uppermost layer, the circulation of the wind-stress, po/off wodxdy = §,: • ds, was bal~nced 
by a combination of. lateral momentum flux by eddies (to adjacent gyre streamlines) and down-
w1:rd momentum flux, which dr.ove a deep circulation. In the deep layer the effect of this d,own-
ward. e,ddy flux was balanced principally .by bottom friction. The procedure is analog~us to-
zonal averaging in simplified atmospheric 'channel' models. 
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·· Here we use a similar· inte·gral balance to prove ·that, if gyres exist, (defined by curves tf, or 
q •::;: const. being closed upon themselves) then q must in many cases be uniform within the 

gyres ... There is an abrupt jump to an external q-field .as one passes through the boundary of 
the wind gyre. If the exterior is at rest, this external field is just the 'ramp', q = f3y . 
• Jhe ;1ssumptions-mad.e in the following derivation are: 
(i} The right-hand. side of (Al) is small i.e., z < 0 and e,v,µ << 1. Thus as a first approxima-

tion the mean flow is dissipationless·and ij and VJ contours are almost coincident: 

ij = Q(VJ,Z) • 

(ii) The eddy flux divergence has intermediate strength i.e., 

. - . a 
l(VJ,ij) >> E\J • Cl)>> vD, µ-a (F"v • B). . z 

(A2) 

(Al) 

The first inequality is assumption (i); the second 'inequality i'mplies that the eddies are 
stronger than the process subsumed in D and B such as .internal waves, penetrative con-
vection, etc. Equation (Al) suggests that the solution of (Al) can be obtained as a per-
turbation expansion 

. ij = Q(,J,,z) + Eq, + . . . 

where the first term in the expansion is (A2). 
(i ii) The eddy flux of potential vorticity can be approximated by 

where: 

. Cl>, =u',q' 

Bij -
=- K,,-a-+ O(y} x, 

_ eddy particle excursion << l 
'Y -: length scale of mean flow 

K , 1 = Lagrangian diffusivity of fluid particles 

=the ensemble average <u,x1> where x, and.u, 
are the displacement and velocity of a particle. 

(A4) 

(As) 

-, • The parameterization (A5) has been discussed in detail elsewhere (Rhines and Holland, 1979). 
(iy)· The symmetric part of K, 1: 

(A6) 

i~ positive definite i..e., 
S,; a, a1 > 0 (A7) 

for all nonzero• vectors a,, everywhere in the flow. Note that the above is guaranteed if 
· S,, = A(x) 8,1• In general, however, the condition is: 

SuS.,>S,,'. 

This condition on the symmetric part of K11 is related to the assertion that in a turbulent 
fluid a cloud of particles expands about its center of mass, rather than contracts. Since: 

-- a4 a4 
u'q'. "vij = - K,, ax, ax, + O(y) 

. a4 aq 
= - Su .ax, ai; + O(y) (AS) 
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. (A 7) amounts to an assertion that the eddy flux of potential vorticity is downgradient 
everywhere. It will become apparent in the course of the derivation below that this last 

• assumption is stronger than necessary; we will only require that (A7) apply in an inte:-

grated sense. 
Begin by integrating (Al) over the area enclosed by a ,],-contour. This area will be denoted 

by :A ~ and its boundary by B~ .. The large advective term on the left-hand side vanishes identi-
cally leaving an integral balance between eddies, dissipation and heating: 

- d 4> • Ii ds + 11 ff D d"a + µ § (FB), • Ii ds = 0 

B., 

(A9) 

(we take z 7'a 0, so there is no contribution from the Ekman pumping wo(x,y)). Note that (A9} 
i~ ari exact result, not relying ~n assumptions (i)-(iv) above. 

N<;>w fro~ (A3) and (A5), (A9) reduces to: 

1~ K, J ;;, n, ds = 0 ( ": ) << t 

and substituting the perturbation expansion (A4) into the above together with: 

n = V,Jil/v',Ji/ = unit normal to B,i, 
gives: 

aQ ds _ ( 11,µ ) ' 
a,Ji §n"' s,, ,Ji,, ,r,, j /v',Ji/ - 0 - €- . (AlO) 

Assumption (iv) then ensures that the line integral is nonzero so that to leading order the poten-
tial vorticity is uniform. It is clear from (AIO) that (A7) is stronger than necessary; S,1 n.eed 
only be positive definite in the integrated sense required by assuming that the line integral in 
(A 10) is nonzero. Since this notion is rather ill defined we thought it best to make the strong 
assumption (A 7) from the outset. 

B. O(R) Corrections 

Although some of the properties described here (like homogenization of q) may be fairly 
general, the specific model circulations have assumed that the vertical transport· of momentum 
by eddies or by analogous friction, R, to be small , RI f3L ,. << 1. This allowed q = Q(,JJ,p). to 
l:le the first approximation to the dynamics and caused the flow to vanish on open geostrophic 
contours, at lowest order. 

Without calculating any detailed higher corrections we outline here what their nature should 
be. The spinning circulation terminates at the surface z = -D(x,y) where the velocity (u,v,w) 

vanishes, but the gradients (u,,v,) are discontinuous. T aking fri ction to model the eddy q-trans-
port, there is thus a stress imbalance R(u, ,v, ) which will tend weakly to accelerate the water 
beneath the gyre. On the western sides of the gyre the correction field will radiate westward 
along q = {3y contours. To the east the correction field will tend to form a boundary current 
along the rim of the 'bowl'. 

Notice that the interior homogenized field has ,µ,, = {3(y - Yo), hence the frictional vorticity 
term R'v' ,JJ,, vanishes; there is no correction field in the gyre interior. But there is a weak, 
spatially uniform eastward force there (for an anticyclone, conversely for a cyclone) correspond-
ing to the quadratic u(z) profile. The opposit ion to this force must come from motions gen-
erated below, which will tend to be weak, but could produce locall y stronger velocities in thin 
boundary layers on the deep eastern sides of the gyre. 
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