
Ocean Modelling 76 (2014) 59–71
Contents lists available at ScienceDirect

Ocean Modelling

journal homepage: www.elsevier .com/locate /ocemod
Lagrangian reconstructions of temperature and velocity in a model
of surface ocean turbulence
http://dx.doi.org/10.1016/j.ocemod.2014.02.003
1463-5003/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Address: Polytech’Lille, avenue Paul Langevin, 59650
Villeneuve d’Ascq, France. Tel.: +33 328767394.

E-mail address: stefano.berti@polytech-lille.fr (S. Berti).
Stefano Berti a,b,⇑, Guillaume Lapeyre b

a Laboratoire de Mécanique de Lille, CNRS/UMR 8107, Université Lille 1, 59650 Villeneuve d’Ascq, France
b Laboratoire de Météorologie Dynamique, IPSL, CNRS/ENS, Paris, France

a r t i c l e i n f o a b s t r a c t
Article history:
Received 19 September 2013
Received in revised form 10 February 2014
Accepted 18 February 2014
Available online 26 February 2014

Keywords:
Lagrangian transport
Surface temperature
Oceanic turbulence
Submesoscales
The characterization of submesoscale dynamics is crucial to apprehend their impact on the global ocean
properties. Direct measurements of fine structures over the world oceans, nevertheless, are at present
severely limited by the spatial resolution of available satellite products. In this work we numerically
investigate the possibility to reconstruct tracer fields, like surface temperature, at small scales, from
low-resolution data using a Lagrangian technique based on the properties of chaotic advection. The capa-
bilities of the method are explored in the context of a forced Surface Quasi Geostrophic (SQG) turbulent
flow representing a large-scale meandering jet and smaller-scale eddies. Both qualitative and quantita-
tive comparisons are performed between the original (high-resolution) fields and their reconstructions
that use only low-resolution data. Good agreement is found for filamentary structures, even in the pres-
ence of a large-scale forcing on the tracer dynamics. The statistics of tracer gradients, which are relevant
for assessing the possibility to detect fronts, are found to be accurately reproduced. Exploiting SQG the-
ory, the reconstruction technique is also extended to obtain the velocity field in three dimensions when
temperature is the tracer. The results indicate that relevant features of dynamical quantities at small
scales may be adequately deduced from only low-resolution temperature data. However, the ability to
reconstruct the flow is critically limited by the energetic level of submesoscales. Indeed, only structures
generated by non-local mesoscale features can be well retrieved, while those associated to the local
dynamics of submesoscale eddies cannot be recovered.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years our picture of ocean dynamics has considerably
evolved towards that of a highly complex system characterized by
strong nonlinear interactions, whose spatiotemporal variability ex-
tends over a wide range of scales. In particular, the role played by
relatively small scales is being viewed as more and more impor-
tant. These scales, termed submesoscales, are characterized by thin
(�10 km) filamentary and frontal structures elongated over several
hundreds of kilometers (Ledwell et al., 1993), which are created by
the stirring of mesoscale (�100 km) eddies. Here we define sub-
mesoscales in a broad sense, as scales below the deformation ra-
dius, with relative vorticities of the order of the Coriolis
frequency. This generally implies order one Rossby number and
ageostrophic velocities comparable in magnitude to the geo-
strophic ones (but note, too, that QG theory has been shown to still
apply at these scales, see e.g., Klein et al., 2008). Signatures of such
features have been detected in high-resolution observations of sea
surface temperature (SST) and ocean color. Recent theoretical work
suggests that submesoscale fronts play a leading role in the vertical
transport of biochemical tracers and heat exchanges (Lévy, 2008;
Klein and Lapeyre, 2009; Ferrari, 2011). Indeed, high-resolution
three-dimensional (3D) numerical simulations showed that the
energetic content of submesoscales is much higher than previously
hypothesized (Capet et al., 2008; Klein et al., 2008).

A major problem in studying submesoscale dynamics, however,
is that we still practically have no experimental access to these
scales, except for in situ observations (Thomas et al., 2010;
Shcherbina et al., 2010; Cole and Rudnick, 2012) or for data from
surface drifters (see, e.g., LaCasce and Ohlmann, 2003; Koszalka
et al., 2009; Lumpkin and Elipot, 2010; Berti et al., 2011). On a glo-
bal scale, direct measurement of submesoscale features is limited
by the spatial resolution of available satellite products. For instance,
altimetry now routinely provides measurements over the world
oceans of surface currents, geostrophically derived from sea surface
height (SSH), but it only allows to resolve structures of size
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�100 km (Le Traon et al., 1998). The resolution of the velocity fields
can be enhanced through the use of combined altimeters (see, e.g.,
Pascual et al., 2006), but the requirements needed for resolving sub-
mesoscale motions are still not met. Similarly, estimates of SST
from microwave radiometers, such as AMSR-E, have a resolution
of order 50 km, also not suited for the direct detection of submeso-
scale structures. High-resolution products are also available, such
as those obtained from instruments like AVHRR which provide
SST data at a resolution of about 1 km. Nevertheless, even in this
case it is rare to have good quality images over large regions, due
to cloud coverage.

Together with the efforts dedicated to improving the knowledge
of horizontal surface flows, a further great challenge for the ocean-
ographic community is currently represented by the determination
of the full 3D structure of submesoscale features. While satellites
provide information on the ocean surface, subsurface information
is considerably more difficult to retrieve.

In order to tackle the above questions an interesting approach is
to resort to new techniques, relying on transport processes, that
suggest the possibility to infer some characteristics of submeso-
scale dynamics from low-resolution data (SSH or SST). In this paper
we consider a Lagrangian method, based on the properties of cha-
otic advection (Ottino, 1989) or the tracer cascade to small scales
(Batchelor, 1959), for the reconstruction of small scales and fronts
of SST. Our main goal here is to test such a method in numerical
simulations of upper-ocean turbulence. The dynamical configura-
tion we consider is obtained in the framework of the Surface Quasi
Geostrophic (SQG) model (see e.g., Lapeyre and Klein, 2006), which
has been shown to resemble surface flows like the Gulf Stream or
the Antarctic Circumpolar Current, at mesoscale and submesoscale.
In particular we will be concerned with the reconstruction of fila-
mentary and frontal structures. Then, by exploiting the basic rela-
tions defining SQG dynamics, in conjunction with the Lagrangian
technique, we provide an extension of the reconstruction method
to calculate the 3D velocity field.

The paper is organized as follows. The first two sections are de-
voted to general aspects: in Section 2 we introduce the Lagrangian
method of reconstruction, and in Section 3 we describe the flow con-
figuration that is used, corresponding to an instance of forced SQG
turbulence, that will create our synthetic SST high-resolution field.
The analysis of the results obtained from reconstructions is presented
in Section 4. There, we discuss the effect of reconstructions on SST
fields by means of qualitative comparisons and we focus our atten-
tion on the quantification of statistical properties of reconstructed
SST fields. In particular, we address the potential of the Lagrangian
technique for the detection of fronts. We then consider the possibility
to reconstruct the velocity field. In Section 5 we discuss how the
dynamical properties of the advecting flow affect the quality of
reconstructions. In particular we show that local dynamics of the
velocity field represent a major limitation of the present method. In-
deed, we find that only structures generated by the stirring of non-lo-
cal mesoscale features can be well reconstructed, while oceanic
submesoscales are often characterized by local dynamics. Finally,
we offer a discussion and some conclusions in Section 6.
Fig. 1. Schematic view of the Lagrangian method (see text in Section 2) based on
backward advection of synthetic particles from time t to time t � sa .
2. Lagrangian reconstruction method

Let Cðx; tÞ be a tracer field and uðx; tÞ the velocity field trans-
porting it. The evolution of C is, then, described by the following
equation:

@C
@t
þ u � $C ¼ H; ð1Þ

where H accounts for source and sink terms. If we assume that, at
least in a certain range of scales, the contributions from sources
and sinks are negligible, then the tracer is conserved along the
Lagrangian flow:

DC
Dt
¼ 0; ð2Þ
dxðtÞ
dt
¼ uðxðtÞ; tÞ: ð3Þ

This conservation property is at the base of the reconstruction tech-
nique we want to use.

The method of reconstruction of the tracer field consists in
advecting a large number Np of particles (defined by their position
xp and their tracer value CðxpðtÞ; tÞ) with the flow field u, i.e.,

d
dt

xp ¼ uðxp; tÞ; ð4Þ

where p ¼ 1;2; . . . ;Np is an index labeling the trajectory associated
with a particle. Under the hypothesis that the tracer is a passive
field, by conservation of particle identity (Bennett, 2006), its value
at the position (at time t) xpðtÞ of a trajectory will be the same as
the one at its Lagrangian origin (xpðt � saÞ at the previous time
t � sa), i.e., CðxpðtÞ; tÞ ¼ Cðxpðt � saÞ; t � saÞ, and the latter can be as-
signed to the new particle position (see Fig. 1).

For low-resolution tracer fields, the property of chaotic advec-
tion to generate small-scale structures (Welander, 1955; Batchelor,
1959; Ottino, 1989) implies that the resulting tracer field com-
puted at the new particle positions, i.e., the reconstructed one, will
have a higher resolution than the low-resolution tracer field we
start with. The method described above does not generally provide
a tracer field on a regular grid: particles advected forward in time
starting from uniformly spaced positions get concentrated in par-
ticular regions of space (e.g., eddies). However, one can easily avoid
this inconvenient by advecting particles backward in time. Assume
that we have a low-resolution tracer field at time t � sa on a regu-
lar grid of spacing Dx. The initial positions of the particles are cho-
sen on the finer grid corresponding to the resolution we want to
sample (at time t), with grid spacing dx < Dx. After advecting back-
ward our particles, we assign to each particle the value of C at time
t � sa by doing spatial interpolation on the low-resolution grid at
time t � sa (see Fig. 1).

This method has been developed and validated for stratospheric
flows (Sutton et al., 1994; Mariotti et al., 1997; Orsolini et al., 2001)
and tropospheric flows (Legras et al., 2005). Concerning oceanic
flows, it was recently used by Desprès et al. (2011a,b) to address
the dynamics of frontal structures in the North Atlantic subpolar
gyre, by advecting sea surface salinity (SSS) or SST with altimetry
derived geostrophic flows. A critical review of Lagrangian methods
using virtual tracers for diagnosing lateral mixing in the ocean has
been recently carried out by Keating et al. (2011).
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Fig. 2. Meridional profile of the zonal component of velocity averaged in time and
in space along the zonal direction.
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3. Flow configuration and SQG turbulence

To apply the method described in Section 2, we are interested in
working with a turbulent flow field characterized by the simulta-
neous presence of a jet and vortices, as the ones encountered in
the real ocean (as, e.g., the Gulf Stream). In order to obtain such
a flow, we consider the dynamics of surface temperature in the
surface quasi-geostrophic approximation. This model has been
proven to correctly represent mesoscale and submesoscale dynam-
ics of the upper ocean layers (LaCasce and Mahadevan, 2006;
Lapeyre and Klein, 2006; Isern-Fontanet et al., 2006, 2008), at least
when SST is a good proxy of the density at mesoscale. Such a con-
dition is expected to be met in the presence of a homogenized
mixed-layer as, e.g., after strong wind events. Moreover, this type
of dynamics can provide energetic submesoscales with spectral
behavior close to the one found in high-resolution numerical inte-
gration of 3D primitive equations for a baroclinically unstable oce-
anic flow (Klein et al., 2008). Therefore, despite its idealized
character, we expect the SQG model to carry some generality for
oceanic flows. Note that more sophisticated models incorporating
both classical QG vertical modes and the SQG solution exist
(Tulloch and Smith, 2009; Wang et al., 2013).

In this framework the active tracer is sea surface temperature
which evolves following

@thþ u � $hþ bv ¼ F þ D: ð5Þ

The resulting dynamics is equivalent to that of a quasi-geostrophic
flow with uniform potential vorticity (PV) (Held et al., 1995). Here h
is an anomaly of the whole SST field

H � hþ by ð6Þ

and b is a constant parameter that represents a mean temperature
gradient (b < 0 in the northern hemisphere). The horizontal velocity
u ¼ ðu;vÞ can be expressed in terms of a streamfunction w such that
ðu;vÞ ¼ ð�@yw; @xwÞ. The streamfunction is obtained from the sur-
face temperature by inverting the uniform PV equation
@2

x wþ @
2
ywþ @

2
z w ¼ 0 subject to the boundary conditions:

hðz ¼ 0Þ ¼ @zwjz¼0 and w! 0 for z! �1; z being the vertical coor-
dinate. Solving this system in Fourier space provides the relation-
ship FðwÞ ¼ FðhÞ=k between temperature and velocity, where FðÞ
stands for the horizontal Fourier transform and k is the modulus
of the horizontal wavenumber. Note that here we work with non-
dimensional variables and we assume that density anomalies are
proportional to the opposite of temperature anomalies.

The system is forced by a relaxation term

F ¼ �jðhhix � �hÞ; ð7Þ

where h� � � ix denotes a zonal average and �hðyÞ is an assigned merid-
ional temperature profile. This can be thought as a heat forcing from
the atmosphere.

Eq. (5) is numerically integrated by means of a pseudo-spectral
method in a square of size L0 ¼ 2p with doubly periodic boundary
conditions. The spatial resolution corresponds to Nhr ¼ 512 grid
points per direction and a 4th order Runge–Kutta scheme is used
in time. With a doubly periodic model, it is generally not possible
to confine a meandering jet, as the one we want to simulate, in the
central part of the domain. Also, eddies tend to move in all direc-
tions, so that they can reenter the computational box from the
north–south direction. To overcome this issue, a possible solution
is to strongly damp perturbations at the northern and southern
boundaries through a dissipative term D. That way, both the jet
and the eddies will be localized in the central part of the domain,
as it will be observed below. The dissipation D is parameterized
by linear friction as �fdðyÞhðx; y; tÞ=s, with fdðyÞ ¼ 1 in two thin lay-
ers close to the boundaries and fdðyÞ ¼ 0 elsewhere. The dissipation
coefficient is set to 1=s ¼ 10:5. Small-scale dissipation is taken into
account by means of an exponential filter acting beyond a cut-off
wavenumber kc ¼ 40 (LaCasce, 1996, 1998; Smith et al., 2001).
For comparison purposes, in Section 5 we will also consider a flow
with similar large-scale structures but less intense small scales, ob-
tained by setting the cut-off wavenumber for small-scale dissipa-
tion to kc ¼ 1. This way, limitations of the reconstruction method
related to the local or non-local dynamics of the advecting velocity
field will be discussed.

The mean meridional temperature gradient is set to b ¼ �1:2.
Concerning the forcing, we choose a temperature profile which is
nonzero only in two thin layers, where it has opposite sign, cen-
tered around y1 ¼ L0ð1� dÞ=2 ’ 2 and y2 ¼ L0ð1þ dÞ=2 ’ 4 and
smoothly matched by hyperbolic tangent functions. Specifically,
we use the following expression:
�hðyÞ ¼ A 1� tanh
y� yd

n

� �� �
1þ tanh

y� yc

n

� �� ��

� 1� tanh
y� yb

n

� �� �
1þ tanh

y� ya

n

� �� ��
; ð8Þ
where A ¼ 0:5; n ¼ 1=8; ya;b ¼ L0=2ð1� d� �Þ; yc;d ¼ L0=2ð1þ d� �Þ,
with d ¼ 1=4 and � ¼ 1=24.

Moreover, we use the value j ¼ 0:3 for the relaxation rate
appearing in Eq. (7). The configuration obtained from Eq. (8) is a
generalization of the unstable temperature filament case studied
in Held et al. (1995) and Juckes (1995) and is characterized by
two temperature strips, each one unstable, creating a westerly jet
between them.

Starting from random initial perturbations, after a transient
period (t < 70) a statistically steady state is attained, as diagnosed
from the temporal behavior of spatially averaged quantities, such
as kinetic energy or enstrophy (not shown). In the following we
will mainly refer to this regime; typically reconstructions will be
considered in the interval t 2 ½100;150� and the origin of times will
be shifted to t� ¼ 100.

The meridional profile of the zonal component of velocity
uðx; tÞ, zonally and temporally averaged, is shown in Fig. 2. An in-
tense eastward jet can be noticed in the center of the domain,
which is flanked by two weaker westward jets. In Fig. 3a we show
a typical snapshot at a fixed time of the SST field H. The main char-
acteristics are here easily recognized: a large-scale temperature
gradient, a central meandering jet and several structures of differ-
ent sizes, from large (mesoscale) eddies to small (submesoscale)
filaments and vortices.
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(b) low−resolution field at t 0 − τa
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(c) reconstructed field at t0with τa =1

Fig. 3. Snapshots of SST: original field at time t0 ¼ 50 (a), low-resolution field for sa ¼ 1 (b), reconstructed field at t0 for an advection time interval sa ¼ 1 (c).
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The statistical description of the turbulent dynamics in this
regime is given by the spectrum of temperature fluctuations
h0ðx; tÞ � hðx; tÞ � hhðx; tÞix. Notice that, because of the SQG rela-
tionship FðwÞ ¼ Fðh0Þ=k, it is identical to the spectrum of kinetic
energy. The spectrum, time averaged during the statistically steady
state, is reported in Fig. 6 (curve with circles). The scaling behavior
is not far from k�2, that is slightly steeper than the k�5=3 predicted
by SQG theory (Held et al., 1995; Smith et al., 2001), but in agree-
ment with 3D primitive-equation simulations at submesoscale
(Capet et al., 2008; Klein et al., 2008).

A quantity of interest for the ensuing discussion is the typical
timescale associated with the Eulerian flow, the eddy turnover
time sE. One possible estimation of the latter is sE 	 hf2i�1=2 where
f ¼ ð@xv � @yuÞ is vorticity and h� � �i indicates an average over the
spatial domain. This definition provides a value of sE between 0.1
and 0.2. Alternatively, sE can be dimensionally estimated from
the typical sizes and velocities of the largest eddies. This second
definition provides a larger value sE 	 0:35.

4. Analysis and results

In this section we present the results of Lagrangian reconstruc-
tions. The tracer field that we aim to reconstruct is the total tem-
perature field C � H. Before coming to the results it is useful to
summarize the main settings and parameters used.

We proceed as follows. From the simulations described in
Section 3 we build a time history of velocity and temperature fields
uðx; tÞ and Hðx; tÞ, respectively, which are stored with a time inter-
val Dt ¼ 0:1. The value of the latter is chosen to be somewhat smal-
ler than the characteristic time sE 	 0:35 associated with the
dynamics of the largest eddies. It has been checked that the results
are not too sensitive to the value of the time interval Dt. These
fields are the high-resolution (dx ¼ 2p=Nhr 	 0:012 with
Nhr ¼ 512) data constituting our numerical ‘‘reality’’, with which
we will compare the different reconstructions. In the following
we will refer to them as uhr and Hhr . Two procedures were tested
to obtain from uhr and Hhr the fields degraded at low-resolution
ulr and Hlr . In the first case we spectrally degrade the fields by
elimination of all Fourier modes with wavenumber larger than a
cut-off value kd. In the second case, we apply a low-pass Butter-
worth filter (of order 3 and with a cut-off wavenumber equal to
20) to uhr and Hhr , which operates a smoothing in physical space
and leaves a smoothly decreasing spectrum beyond the wavenum-
ber kd. The two types of degradation procedure give similar results
for comparable values of kd and in the following we will present
only the results for the smoothly degraded fields, which we expect
to be more similar to those usually found in satellite data. Other
cut-off scales were chosen and the results did not change qualita-
tively. Filtering provides low-resolution fields with an effective
resolution of order Dx ¼ 16p=Nhr 	 0:1. Notice that this is similar
to what happens in a realistic situation where satellite data are
available at a resolution Dx 	 100 km and one is interested in sub-
mesoscale features of size dx 	 10 km.

Reconstructions are then performed to obtain the field Hrec , as
described in Section 2, with a number Np � N2 of particles. In order
to ease the comparison we typically choose N � Nhr ¼ 512, but
some calculations have been performed also with N ¼ 1024 or
N ¼ 2048. Particles are advected backward in time by means of a
4th order Runge–Kutta algorithm with a time-step dt ¼ Dt=25.
Similar values of time-step ratios are used in observational studies
(e.g., in Desprès et al. (2011a), where Dt ¼ 7 days and dt ¼ 6 h). At
intermediate times between those where it is known, the low-res-
olution advecting velocity field is linearly interpolated. However,
using a piecewise constant (in time) velocity does not dramatically
change the results. The values of the fields Hðxp; tÞ and uðxp; tÞ at
the particle position xp are obtained by bicubic spatial interpola-
tion using the 16 neighboring points on the low-resolution grid.

In the following we will examine the reconstructed tempera-
ture field Hrec at a given instant of time t0. The time t0 is chosen
in the statistically steady state of the SQG simulation and it has
been checked that the results do not significantly depend on its va-
lue. We will then consider backward advection of trajectories until
time t0 � sa and we will vary sa to explore the sensitivity of recon-
structions to this parameter. The values of sa will be compared to
the eddy turnover time of the low-resolution velocity field, esti-
mated as slr 	 hf2

lri
�1=2, where flr is vorticity. This time roughly cor-

responds to the typical timescale of structures of size comparable
to k�1

d ; its value is slr 	 0:2 in the present case. It is interesting to
observe that such a quantity is accessible also from altimetry
measurements.

Finally, let us mention that an important aspect of the present
study is the fact that the tracer to reconstruct is not conserved,
since it is forced by the relaxation term F in Eq. (5). Indeed, we
are interested in assessing the capability of the reconstruction
method in a situation where the conservation property of H is vio-
lated. Such a case is relevant for oceanographic applications where,
typically, SST is not a passively transported quantity and, in gen-
eral, it is hard to find a tracer field which evolves in the absence
of any forcing mechanism.

4.1. Reconstruction of SST fields

In Fig. 3 we provide an example of how the technique works.
Panel (a) shows a high-resolution field Hhrðx; t0Þ at time t0 ¼ 50,
which we aim to reconstruct. Here we choose to fix a time interval
sa ¼ 1 for which the reconstruction will be performed (by back-
ward advection up to t0 � sa). In the low-resolution field
Hlrðx; t0 � saÞ at time t0 � sa, shown in panel (b), many small-scale
features have disappeared, such as long and thin filamentary struc-
tures and small size vortices. Then we reconstruct the temperature
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field at time t0;Hrecðx; t0; saÞ, through our Lagrangian technique
using the low-resolution temperature field Hlrðx; t0 � saÞ at time
t0 � sa, panel (b), and the Lagrangian particles. By this method,
we obtain panel (c) of Fig. 3, which shows the appearance of tracer
small scales in the form of filaments. For comparison, the low res-
olution temperature field at time t0 (corresponding to sa ¼ 0) is re-
ported in Fig. 4b.

Considering reconstructions as a function of sa (as shown in
Fig. 4) returns a more detailed picture. The advective timescale
sa is the main parameter controlling the production of small scales,
since increasing it corresponds to extend the tracer cascade to
small scales. For small advection times, only a small amount of fine
scales emerges (Fig. 4c). In the interval 5slr < sa < 10slr , with
slr ¼ 0:2, (Fig. 3c and Fig. 4d) we observe the best agreement be-
tween the original SST image (Fig. 4a) and the reconstructed ones.
In this range of values of sa a conspicuous part of filamentary struc-
tures is recovered, namely those produced by the stretching in-
duced by large-scale eddies. For sa ¼ 7:5slr or close to it, the
reconstructions work rather well and the similarity with Hhr is
quite impressive by visual inspection (compare Fig. 4a and d).
However, some differences can also be noticed, when looking at
large-scale structures. The intensity of the latter is weaker than
in the original field and it decreases as the advection time sa grows
(see the vortex at ðx; yÞ 	 ð0:25;5Þ in Fig. 4, panels (c) to (f)). This
effect is related to the fact that, in the reconstructions, SST is as-
sumed to be a passive quantity; we will come back to this point
at the end of the present section. For large enough advection times
(sa > 10slr) a sort of granularity spoils the reconstruction, with this
phenomenon becoming more pronounced at increasing sa (see
Fig. 4f). This is due to the absence of any dissipation mechanism,
like diffusion, during advection of virtual particles, which produces
an endless growth of small-scale gradients (Legras et al., 2005).

An interesting question we now want to address concerns the
possibility to reconstruct thermal fronts. To identify fronts we
compute the intensity of the gradient field, given by j$h0j, which
is shown in Fig. 5. The gradients of the original temperature field
h0hr at t0 are shown in panel (a), those of the low-resolution field
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Fig. 4. Snapshots of SST: original field at time t0 ¼ 50 (a); reconstructed field for diffe
advection time sa ¼ 0 corresponds to the low-resolution field.
at the same time in panel (b). In panel (c) we present the gradient
field j$h0recðx; t0; saÞj for a reconstruction with an advection time
sa ¼ 8slr within the interval previously estimated as optimal. Here,
due to the fact that gradients are by definition small-scale quanti-
ties, the effect of low resolution is even more clearly visible than in
Fig. 4b. Indeed, after filtering, nearly all small-scale structures have
disappeared (see Fig. 5b). In the reconstructed field, on the other
hand, a striking number of frontal structures are recovered. Despite
some differences exist, filaments now bear a very good resem-
blance with those found in the original SST field. Consider, for in-
stance, the front attached to the vortical structure centered in
the vicinity of the point ðx; yÞ ¼ ð4:5;3Þ, which had practically dis-
appeared after filtering, or the elongated double-vortex structure
extending from about (5, 1.5) to about (5.5, 3.5), which is absent
in the low-resolution field.

It is worth to remark, here, that the dynamics of the gradients of
a tracer conserved along Lagrangian trajectories is tightly related
to the concept of Finite Time Lyapunov Exponent (FTLE) (Crisanti
et al., 1991). This is due to the strong similarity between the evo-
lution equation for the tracer gradient and that for a small dis-
placement d ¼ x2 � x1 between two trajectories x1ðtÞ and x2ðtÞ.
Indeed, both evolutions are essentially governed by the velocity
gradient tensor. As a consequence, the images shown in Fig. 5
could also be interpreted as maps of FTLE (see also Lapeyre, 2002).

So far we have presented qualitative comparisons, as in the
majority of studies devoted to the issue of improving low-resolu-
tion oceanographic data. In order to get a more quantitative char-
acterization of their effectiveness, we now turn to the statistical
properties of reconstructions.

In Fig. 6 we report the horizontal wavenumber spectra of the
reconstructed temperature perturbations (without zonal mean)
h0, with an advection time interval sa ¼ 8slr , for three different
resolutions N ¼ 512;1024;2048. In the figure we also show the
spectra computed from the original (black circles) and the low-
resolution (black crosses) fields at t0 ¼ 50. Here the effect of filter-
ing is well evident: beyond kd ’ ð20� 30Þ, the spectrum of the
low-resolution field steeply decreases due to the elimination of
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rent values of sa ¼ 0; 2:5; 7:5; 15; 22:5 (in units of slr ¼ 0:2), panels (b) to (f). The
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Fig. 5. Intensity of temperature gradients j$h0 j: original field at time t0 (a), low-resolution field at the same time (b), reconstructed field at t0 for sa ¼ 8slr (c).

64 S. Berti, G. Lapeyre / Ocean Modelling 76 (2014) 59–71
small scales, while at scales larger than k�1
d it is indistinguishable

from that of the original field h0hr . The reconstruction procedure al-
lows to smoothly extend the spectrum at wavenumbers k > kd. In
other words, the small-scale energetic content is progressively re-
built when increasing the duration of reconstruction. This reflects
the cascade of tracer variance to small scales which is associated
with the chaotic advection of our synthetic Lagrangian particles
and demonstrates the presence of small-scale features in the
reconstructions. The logarithmic slope of the spectrum is close to
that obtained from the original field, for reconstructions with
sa ¼ 8slr . Interestingly, this advection time belongs to the interval
5slr < sa < 10slr , for which we already found that the similarity of
Hhr and its reconstruction is most evident. The energy content at
the smallest scales grows with sa and accumulates at the highest
wavenumbers. We remark that this is not a physical effect, but
rather a numerical one, directly related to the granularity of recon-
structions seen in Fig. 4 for large sa. Because no small-scale dissi-
pation is present, energy piles up at the largest wavenumber, due
to limited resolution. Indeed, when reconstructions are performed
with a larger number of particles, that is at higher spatial resolu-
tion (N ¼ 1024 and N ¼ 2048), the power law scaling range is ex-
tended (see Fig. 6).

The statistics of thermal fronts is quantified by the probability
density function (PDF) of SST gradients. In Fig. 7 we compare the
gradients PDF Pðj$h0jÞ for the original field (black triangles) and
for reconstructions (thin gray lines) at several advection time
intervals sa increasing of Dsa ¼ 0:5 ¼ 2:5slr from inside out. The
thick red line refers to advection with sa ¼ 8slr , corresponding to
a gradient field like the one in Fig. 5c. The statistics of gradients
Fig. 6. Power spectrum of SST fluctuations h0 ¼ h� hhix . Circles correspond to the
spectrum of the original field, crosses to that of the low-resolution field. The thin
gray lines are for N ¼ 512;1024;2048 (from lighter to darker) with sa ¼ 8slr .
computed on the original field are markedly non-Gaussian (as it
can be deduced from Pð@yh

0Þ shown in Fig. 7b, or Pð@xh
0Þ which

gives analogous results), as is typical in turbulent flows. The high
tails of the PDFs correspond to high frequencies of extreme events,
in this case very intense fronts. The probability distributions com-
puted on the reconstructed fields are close to Gaussian for short
advection times but they soon depart from this behavior develop-
ing higher and higher tails, when sa is increased. This indicates a
progressive increase in the abundance of strong gradients, a typical
manifestation of the tracer cascade to small scales. As already dis-
cussed, the production of fine scales does not stop, due to the ab-
sence of dissipation, and for large values of sa leads to an excess
of intense gradients. We observe that for advection times in the
interval 5slr < sa < 10slr , in particular for sa ¼ 8slr , the PDFs of
SST gradients of the reconstructed field are remarkably close to
those of the original field (compare the thick red curve with the
black triangles in the figure). The good agreement indicates the po-
tential of the Lagrangian reconstruction technique for the repro-
duction of the statistical features of fronts. Moreover, it gives us
a further estimation of an optimal reconstruction duration
sa ¼ 8slr , in reasonable agreement with what previously found.

Having assessed the quality of reconstructions in a statistical
sense, it is then interesting to see how they perform at some specific
locations. For this purpose we now consider transects of the full SST
field H ¼ hþ by. In Fig. 8 we show a meridional section at half
width of the domain (x� ¼ p), going from y ¼ 1:75 to y ¼ 4:25 (for
t0 ¼ 50); similar results are obtained for different transects, both
in the meridional and in the zonal directions, and for other values
of t0. The figure presents a comparison between the original SST
(black curve) and the reconstructed one (red curve); the duration
of advection is sa ¼ ð0; 5; 7:5; 10Þslr in panels (a) to (d), respec-
tively; recall, also, that sa ¼ 0 corresponds to the low-resolution
field at t0. The following features can be observed. For the low-res-
olution field (Fig. 8a), as expected, we find the correct large-scale
structure; however it is apparent that this field is considerably
smoothed, as small-scale gradients are no longer present. In the
reconstructed SST, on the other hand, the latter gradually reemerge
with increasing sa (Fig. 8b–d) as a consequence of the chaotic
advection of virtual particles. Interestingly, even rather steep gradi-
ents are found in the reconstructions, but part of them is slightly
displaced with respect to the correct position in the ‘‘real’’
high-resolution field Hhr (e.g., the sharp front at y 	 3:9 in
Fig. 8c). It is worth to notice that the same problem was found in
observations of submesoscale filaments (Legras et al., 2005; Mario-
tti et al., 1997; Desprès et al., 2011a). For sa large enough, more and
more small scales can be seen, but the agreement with the original
SST gets worse (Fig. 8d). As already pointed out, these are unphys-
ical gradients produced by the cascade of tracer variance (associ-
ated with the reconstruction procedure) in the absence of
diffusion. Finally, as also seen in Fig. 4c–f, some differences are



Fig. 7. PDFs of the magnitude (a) and of the meridional component (b) of SST gradients at various advection times sa ¼ 2:5;5;7:5; . . . ;50 (in units of slr ¼ 0:2) from inside out
(gray curves). Triangles correspond to PDFs computed with the original field, the thick red curve is for a reconstruction with sa ¼ 8slr . (For interpretation of the references to
colour in this figure caption, the reader is referred to the web version of this article.)

Fig. 8. Meridional transects of SST at half width (x� ¼ p) of the spatial domain, for sa ¼ 0;5;7:5;10 (in units of slr ¼ 0:2), panels (a) to (d). The black lines are for the original
field, the red ones for the reconstructions. Notice that sa ¼ 0, panel (a), is the same as considering the low-resolution field. In panel (c), the dashed blue line is for the
reconstruction taking into account the forcing. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this article.)
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found at large scales; for instance, in correspondence of the low
temperature vortex centered in ðx; yÞ ¼ ðp;2:5Þ the magnitude of
the reconstructed SST decreases when sa is increased.

This last remark leads us to comment on the role of the forcing.
Despite many reconstructed structures are found in the correct
place, their intensity is not always appropriate. This feature is more
prominent at large scales. For instance, as it can be seen in Fig. 4, a
continuous reduction with sa is visible in the intensity of a warm
vortex and a thick filament located close to ðx; yÞ ¼ ð5:7;4Þ. The
reason for this type of mismatch can be traced back to the
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non-conservative nature of the field H. Indeed, while SST is pas-
sively transported in the Lagrangian reconstructions, in the Euleri-
an simulations the term F ¼ �jðhhix � �hÞ provides a (large-scale)
mechanism which forces it to continuously relax to the unstable
temperature profile. Let us recall that the latter is nonzero only
in two strips centered around y1 ’ 2 and y2 ’ 4. The lack of inten-
sity originates at short advection times from these strips, where
the relaxation to the profile �h is most effective, and then propa-
gates into larger portions of the spatial domain. We carried out
reconstructions taking into account the action of the forcing by
means of an algorithm (described in the Appendix A) based on
the discrete time approximation of the ‘‘reactive’’ dynamics in-
duced by F. This way it was possible to compensate, at least to
some extent, the reduction of intensity. Cross sections at x� ¼ p
confirm this: when the forcing is included in the reconstruction
algorithm the agreement with the profile of the original SST is im-
proved, as it can be seen in Fig. 8c (compare the red and the dashed
blue curves with the black one). This effect is more relevant in the
neighborhood of large-scale structures, as the aforementioned vor-
tex at ðx; yÞ ¼ ðp;2:5Þ.

4.2. Reconstruction of the flow field

A strong advantage of the SQG framework described in Section 3
is the possibility to retrieve the full velocity field, as a function of
depth, from surface information alone, namely from the knowledge
of the surface buoyancy (or temperature) field. Using the hypothe-
sis of uniform quasi-geostrophic potential vorticity (see Lapeyre
and Klein, 2006, for details), one can derive from this theory that
the streamfunction w is strongly correlated to the surface temper-
ature h. At the surface the relation between the two reads

FðwÞ ¼ FðhÞ
k

; ð9Þ

in Fourier space, where FðÞ is the direct Fourier transform, k is the
horizontal wavevector and k � jkj. From Eq. (9), after performing
the inverse Fourier transform, the horizontal flow is easily calcu-
lated as ðu;vÞ ¼ ð�@yw; @xwÞ.

As a consequence of the uniform PV hypothesis, in this model
horizontal and vertical structures of the flow are related to each
other. In order to take into account three-dimensional effects, an
interesting quantity to consider is the ageostrophic divergence,
which is tightly linked to the vertical velocity. The surface ageos-
trophic divergence field D can be calculated starting from the geo-
strophic variables (see e.g., Hakim et al., 2002). In non-dimensional
units, this gives

D ¼ �$ � fufþ GðkFðuhÞÞg; ð10Þ

where f ¼ ð@xv � @yuÞ ¼ $2w is vorticity and GðÞ stands for the in-
verse Fourier transform.
0 1 2 3 4 5 6
0

1

2

3

4

5

6

−40

−30

−20

−10

0

10

20

30

40

(a)
0 1 2 3 4

0

1

2

3

4

5

6

(b)

Fig. 9. Vorticity at the surface for the original field (a), the low-re
Therefore, once the small-scale surface temperature has been
reconstructed through the Lagrangian technique, it is in principle
possible (using the SQG formalism) to reconstruct the flow field,
too. From the streamfunction, the vorticity and ageostrophic diver-
gence fields, respectively accounting for horizontal and vertical
motions, can be derived as discussed above. In Fig. 9 we present
the vorticity f for the high-resolution field at t0 ¼ 50, the low-res-
olution one at the same time, and a reconstruction with sa ¼ 6:5slr .
For this advection time we observe the best agreement between
the original and reconstructed fields; results with sa ¼ 8slr are sim-
ilar, apart from the presence of smaller scales. In the high-resolu-
tion field (Fig. 9a) very large values of vorticity are found in
large-scale eddies, but also in small-scale structures (both fila-
ments and eddies). This is a main difference with respect to tem-
perature (Fig. 3a), since vortices capture most of the SST
anomalies. As a result, vorticity is contained in a variety of scales.
The low-resolution field (Fig. 9b) is much weaker in magnitude
(about one half). In comparison with temperature (Fig. 4b), the vor-
ticity contours associated with large-scale eddies are now blurred,
and filaments are almost not visible. On the other hand the recon-
structed field (Fig. 9c) possesses numerous and intense vorticity
structures at fine scales, which were present also in its high-reso-
lution counterpart. However, many submesoscale vorticity anoma-
lies are missed by the reconstruction (for instance the small-scale
eddies near ðx; yÞ ¼ ð3;3Þ) and part of the space is empty of struc-
tures. This corresponds in general to filaments that roll up in small
eddies. Hence, reconstructions permit to recover several submeso-
scale dynamical structures, but only those corresponding to almost
elongated fronts.

The ageostrophic divergence D shown in Fig. 10a is dominated
by submesoscales with very patchy patterns. Some structures are
nonetheless visible, and they are consistent with what was ob-
served in realistic simulations (Lévy et al., 2001). Filaments are
associated with convergence and divergence across them caused
by frontogenesis (see the filament at ðx; yÞ 	 ð5:5;2:5Þ). Vortices
are associated with quadrupolar patterns in divergence, such as
the eddies at ðx; yÞ 	 ð1:8;4Þ and ðx; yÞ 	 ð4:2;3Þ. These are induced
by the curvature variation of the flow that impacts the stretching of
temperature fronts and the divergence associated with subsequent
frontogenesis. The low-resolution divergence only displays large
scales with weak intensity (Fig. 10b). Except for some quadrupolar
patterns (like those corresponding to the two eddies previously
mentioned), only very few and broad filaments are visible. In the
reconstructed field with sa ¼ 6:5slr (Fig. 10c) significantly more
submesoscales with high values of divergence are found. Many of
them are present in the original field as well, but many others
are missing, as evidenced by the empty regions in the figure. This
confirms what was already observed for vorticity, namely that
the reconstruction is essentially unable to recover small-scale ed-
dies and their dynamics.
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solution field (b), the reconstructed field with sa ¼ 6:5slr (c).
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Fig. 10. Ageostrophic divergence at the surface for the original field (a), the low-resolution field (b), the reconstructed field with sa ¼ 6:5slr (c).

0 1 2 3 4 5 6
0

1

2

3

4

5

6

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a)
0 1 2 3 4 5 6

0

1

2

3

4

5

6

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b)
0 1 2 3 4 5 6

0

1

2

3

4

5

6

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(c)

Fig. 11. Snapshots of SST: original field (a), low-resolution field (b), reconstructed field for an advection time interval sa ¼ 6:5slr (c). Simulation with enhanced dissipation
(kc ¼ 1).

Fig. 12. (a) Power spectra of high-resolution SST fluctuations compensated by k�2 for simulations with kc ¼ 40 (black circles) and kc ¼ 1 (gray crosses). The dashed line is a
reference to a constant. (b) Power spectra of SST fluctuations for the kc ¼ 1 case: black circles correspond to the high-resolution field and black crosses to the low-resolution
one. The gray crosses correspond to a reconstruction of SST with sa ¼ 6:5slr .
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5. Effects of nonlocality

An important point for the possibility to reconstruct the tem-
perature field at small scales is that the velocity field is mainly gov-
erned by large scales (see e.g., Methven and Hoskins, 1999;
Bartello, 2000; Keating et al., 2011). In that situation there is a clear
scale separation between the advecting features responsible for the
stretching of filaments, and the filaments not contributing to their
own stretching. The corresponding flows are considered ‘‘non-lo-
cal’’ and this is the case when the kinetic energy spectrum is stee-
per than k�3. The production of small scales is then primarily
driven by the large-scale stretching, i.e., those scales at the top of
the k�3 (or steeper) range. In the method we propose, reconstruc-
tions are necessarily non-local because, after filtering, the kinetic
energy spectrum is much steeper than k�3 beyond the cut-off
wavenumber kd (see Fig. 6). As a result, the most relevant scale
for small-scale advection is given by the smallest resolved one
ðk�1

d Þ.
However, SQG flows are considered ‘‘local’’ as the kinetic energy

spectrum is predicted to be in k�5=3 and because of the formation of
vortices at any scales (see e.g., Held et al., 1995). In this case disper-
sion processes should be substantially affected by the structure of
the velocity field at different scales. The analysis carried out in the
previous section indicates that it is still possible to reconstruct a
relevant part of the small-scale temperature field, even if this re-
sult appears to contradict our thinking about locality. A close
inspection of the temperature gradients (Fig. 5a and c) or the vor-
ticity field (Fig. 9a and c) actually reveals that small-scale vortices
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Fig. 13. Vorticity at the surface for the original field (a), the low-resolution field (b), the reconstructed field with sa ¼ 6:5slr (c). Simulation with enhanced dissipation (kc ¼ 1).
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are present in the high resolution field but are completely absent in
the reconstruction. Therefore our results are not in contradiction
with locality arguments. Indeed, they show that only filaments
produced by the stirring of large-scale eddies can be retrieved by
our method. The production of small scales is due to both small-
scale eddies and larger ones and, depending on the flow properties,
one will be more important than the other.

Scott (2006) investigated the transition from locality to nonlo-
cality by examining the behavior of a passive tracer advected by
a velocity field coming from a SQG simulation and taken at differ-
ent depths. In this case, the different flows have steeper spectra
when depth increases. He found that a non-local behavior occurs
for steep spectra. To examine in our experiment if reconstructions
improve for steeper energy spectra, we repeated the reconstruction
procedure using a flow in the same configuration as in Section 3
but with a cut-off wavenumber kc ¼ 1 (instead of kc ¼ 40). The
resulting flow is smoother, i.e., its kinetic energy spectrum is stee-
per (see Fig. 12a), which should be more appropriate for non-local
dynamics. The eddy turnover time of the corresponding low-reso-
lution velocity field is rather close to the value slr ¼ 0:2 already
found for kc ¼ 40. Filaments associated with the stretching of
large-scale eddies are still abundant, but the population of small-
scale vortices is substantially reduced (Fig. 11a). Small-scale fila-
ments that were absent in the low-resolution field (Fig. 11b) are
now apparent in the temperature reconstruction (Fig. 11c). The
quality of the reconstruction seems better than for the reference
case kc ¼ 40. Spectra of temperature perturbations are shown in
Fig. 12b for the original field at a fixed time, the low-resolution
one at the same time and a reconstruction with a duration of
advection sa ¼ 6:5slr . Similarly to the previously examined case
(kc ¼ 40) the advection time interval appears to be optimal for val-
ues of order few slr , though now its value is likely a little smaller.

The computations of vorticity and divergence for this flow are
presented in Figs. 13 and 14. The observed behavior is the same
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Fig. 14. Ageostrophic divergence at the surface for the original field (a), the low-resolut
dissipation (kc ¼ 1).
as in the reference case, namely the small scales that can be recon-
structed correspond to filaments associated with large-scale ed-
dies. This shows that, as long as one is concerned with this type
of structures, the local dynamics of small eddies does not prevent
the possibility to reconstruct them. However, from a quantitative
point of view small eddies certainly have an impact. To character-
ize their role we measured an error based on temperature or on
vorticity, the last being an appropriate indicator of small-scale con-
tent. The error is calculated as follows. First, the spectrum of the
difference between the temperature (vorticity) of the high-resolu-
tion field and that of a reconstruction with a given advection time
sa is computed, after removing a large-scale gradient with a least
squares method. Then, the normalized variance of this quantity
in the wavenumber interval 20 < k < 100 (corresponding to the
range of scales to be reconstructed) is computed as a function of
sa. The normalization factor corresponds to the variance of the ori-
ginal field in the considered wavenumber interval. The results are
shown in Fig. 15 (panel (a) for temperature and (b) for vorticity). In
both cases, the error is found to be smaller for the flow with kc ¼ 1,
as expected considering that in this case small-scale eddies are
dynamically less important. Moreover, the error is larger for vortic-
ity (Fig. 15b), which also indicates that a major factor limiting the
quality of reconstructions at small scales is the presence of intense
eddies governed by local dynamics, which cannot be captured by
the advection of virtual particles by the largest structures.

The behavior of the error as a function of the advection time is
in both cases characterized by a minimum for sa equal to few slr ,
specifically sa between 4slr and 5slr , for both kc ¼ 40 and kc ¼ 1.
Though the error reduction is not very large, the decrease is clearly
measurable. The value of sa corresponding to the minimum is not
far from the advection time estimated as optimal in Section 4.1, but
a little smaller. In this regard, however, it should be noted that the
precise value of such an optimal time depends on the indicator
chosen. For what concerns the divergence, hence the vertical
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ion field (b), the reconstructed field with sa ¼ 6:5slr (c). Simulation with enhanced
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Fig. 15. Normalized error computed from (a) temperature and (b) vorticity. Continuous lines correspond to the simulation with kc ¼ 40 and dashed lines to the simulation
with kc ¼ 1. Time is measured in units of the eddy-turnover time slr ¼ 0:2.
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velocity, the overall picture is the same, except that the minimum
is found for smaller values of sa and that its value is larger, that is
the error stays larger (not shown).
6. Discussion and conclusions

In this study we have considered Lagrangian reconstructions at
the surface of the ocean. The method we used relies on the possi-
bility to generate fine scales of a conserved quantity, like a pas-
sively transported tracer, by means of advection. In a nutshell, it
consists in advecting a large number of synthetic particles with a
given velocity field and in assigning to their final positions the va-
lue of the tracer at the origin of their trajectories, assuming tracer
conservation. This way it is possible to use the information con-
tained in a time series, at low resolution, of the tracer field and,
in principle, to recover its small-scale features in space.

We have investigated the usefulness of this technique in the
case of a turbulent SQG flow which resembles, in its main features,
real oceanographic systems at mesoscale and submesoscale. The
flow configuration consists of a westerly meandering jet in the
presence of a large-scale mean temperature gradient. An important
point of our study is that the dynamics of SST is forced by means of
a relaxation to an unstable temperature profile. Clearly, such a sit-
uation is relevant in view of applications of Lagrangian reconstruc-
tions to realistic conditions, where the temperature at the surface
of the ocean is not exactly conserved but, instead, is subject to air-
sea forcing for instance.

We further addressed the possibility to extend the Lagrangian
technique to reconstruct the flow field itself. This is an issue of
great importance in consideration of studies aimed at the charac-
terization of the dynamics of oceanic submesoscales. The recon-
struction of the full 3D velocity field has been carried out by
coupling the Lagrangian method with SQG theory. In this theory,
a strong dynamical link exists between temperature at the surface
and the streamfunction which accounts for the horizontal geo-
strophic flow. Moreover, it is possible to obtain the ageostrophic
divergence, which is related to the vertical flow (Hakim et al.,
2002; Lapeyre and Klein, 2006).

Inspection of the images resulting from the Lagrangian method
reveals an overall agreement between the spatial patterns of the
original high-resolution fields and their reconstructions. However
the intensity of the reconstructed structures is not always correct,
due to the absence of forcing in the Lagrangian procedure. As a
consequence, reconstruction at large scales is limited by the role
of the forcing, which is most effective in this range of scales, as also
confirmed by reconstructions in which we take into account its
presence by means of a modified algorithm. Nevertheless the forc-
ing does not impact too much the reconstruction and this is likely
due to its slower timescale (1=j ¼ 3 ¼ 15slr) compared to the time
for best reconstruction (sa 	 1:5 ¼ 7:5slr).

The main characteristics of reconstructions are most evident
when looking at physical quantities that better represent the small
scales, like the gradients of SST, or the surface vorticity. Here it is
seen that the filamentary structures associated with the stretching
by large-scale eddies are well reproduced, although slightly shifted
in space. This is an important result, due to the relevance of such
structures for fluid dynamical as well as biogeochemical aspects.
Moreover, concerning the statistics of thermal fronts, the results
indicate a good agreement between the probability distribution
of SST gradients in the original and reconstructed fields in a narrow
range of reconstruction time intervals.

By comparing the images of gradient fields (of temperature as
well as of velocity, namely vorticity and divergence) it is nonethe-
less apparent that the agreement is essentially limited to filaments
produced by large eddies. Indeed, not all small scales are repro-
duced, particularly small intense eddies are absent in the recon-
structions. This feature can be understood by noticing that the
turbulent advecting flow is non-smooth and characterized by a
quite flat spectrum EuðkÞ � k�2, some factors which have been
shown, e.g., by Bartello (2000) and Keating et al. (2011), to limit
the effectiveness of reconstructions in terms of virtual particles,
due to locality of relative dispersion in this regime. We remark,
at this regard, that the agreement found in our study refers to fine
scales produced by the deformation field at large scales, and that
small-scale vortices cannot be, and indeed are not, captured
through the present Lagrangian method. Interestingly, the pres-
ence of such vortices does not prevent the reconstruction of the
submesoscale associated with large eddies, at least from a qualita-
tive point of view. However, comparing these results with those
obtained with a flow possessing less intense small eddies and a
steeper spectrum, we showed that this has a quantitative effect
on the quality of reconstructions. This was quantified by measur-
ing a relative error based on temperature and vorticity. Our results
show that this quantity is smaller for the case in which small-scale
eddies are dynamically less important. For both flow types the er-
ror reaches a minimum for advection times sa between 4 and 5, in
units of the eddy turnover time slr ¼ 0:2, suggesting this could be
an optimal value for the reconstruction procedure.

The value of the optimal advection time deduced from the
reconstructions of the flow is in reasonable agreement with that
found from the analysis of the reconstructed SST images and re-
lated statistical quantities, like the spectrum of temperature fluctu-
ations or the probability distribution of thermal fronts. As a way of
comparison with a realistic situation, where slr 	 5 days, using an
estimate based on a mean strain rate c 	 0:2 days�1 which appears
reasonable in regions of intense mesoscale activity (Waugh and
Abraham, 2008), let us observe that the present result would imply
an optimal reconstruction time between 20 days and a month. This
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estimate is quite close to the value of 30 days found in observa-
tional studies (Desprès et al., 2011a), but actually a little smaller.
However two remarks are in order. First, the precise value of the
optimal time depends on the indicator chosen. Second, several def-
initions of slr are possible, which also affect the comparison. Nev-
ertheless, the order of magnitude provided by the present study
supports the value found in observational data.

To conclude, our analysis shows that Lagrangian methods are
suited to reconstruct certain, but not all, characteristics of oceanic
flows, for both tracer fields and three-dimensional currents. In par-
ticular they may be useful to reveal submesoscale filaments pro-
duced by mesoscale eddies, as well as to reproduce some
statistical features like the distribution of thermal fronts. The cou-
pling with SQG formalism appears to be an interesting tool permit-
ting to access the three-dimensional structure of the flow, at least
to some extent. Remark that, though the approach is here tested
with SQG dynamics, it is more general and can be equally applied
to other flow models. Nevertheless, from a quantitative point of
view the agreement that can be obtained in a realistic configura-
tion is limited. Oceanographic applications demanding quantita-
tive estimations and detailed predictions at specific locations
should then be considered with some caution. Indeed, as it has
been shown, Lagrangian reconstructions in the ocean might be del-
icate due to two main factors: the forcing on the transported tracer,
e.g., SST, and the dynamical role of intense small scales. Future
developments should be directed to taking into account these as-
pects, in order to retrieve more and more quantitative information
on submesoscale processes. This study is a first step as the valida-
tion was carried out in a controlled situation. It remains to be pro-
ven that the method can be used with real satellite images. We
expect it to be more successful in regions (like the Gulf of Mexico
and the eastern Nordic Seas) where the analysis of surface drifters
data (LaCasce and Ohlmann, 2003; Koszalka et al., 2009) revealed
non-local dispersion below the deformation radius.
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Appendix A. Lagrangian reconstructions with forcing

The numerical method we used for including the forcing in the
reconstructions is an adaptation of a pseudo-Lagrangian algorithm
developed in Abel et al. (2001) to study the propagation of fronts in
reaction–diffusion systems in terms of discrete-time maps. Let us
recall that we are interested in the tracer Hðx; tÞ ¼ hðx; tÞ þ by.
The evolution of this ‘‘reactive’’ scalar field is obtained from Eq.
(5) without difficulty. In a Lagrangian framework we have

d
dt

H ¼ FðHÞ; ðA:1Þ

where the forcing term

FðHÞ ¼ �jðhHix � by� �hÞ; ðA:2Þ

accounts for the reactive dynamics. The above equation for H can be
integrated along Lagrangian trajectories xpðtÞ. These are the solu-
tions of Eq. (4) for the position of the virtual particles used in the
reconstructions. Within this approach, the formal solution at time
t2 > t1 is

Hðxpðt2Þ; t2Þ ¼ Hðxpðt1Þ; t1Þ þ
Z t2

t1

FðHðxpðsÞ; sÞÞds: ðA:3Þ

Denoting Dt ¼ t2 � t1, we have, for small Dt:

Hðxpðt2Þ; t2Þ ¼ Hðxpðt1Þ; t1Þ þ FðHðxpðt1Þ; t1ÞÞDt: ðA:4Þ

The above equation can be used to modify our method of recon-
struction. If all quantities at time t1 (on the right hand side) are
known at low resolution, the values at the particle positions can
be computed by spatial interpolation to obtain the field H at higher
resolution at a later time t2 (on the left hand side). Iteration over
longer time intervals is straightforward. Finally, notice that in the
absence of forcing (F ¼ 0) the purely advective reconstruction algo-
rithm (Section 2) is recovered.
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