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Synopsis: The significance of the potential vorticity (PV) for atmosphere–
ocean dynamics was first explored by Carl-Gustaf Rossby in the 1930s. Re-
viewed here are its key properties including invertibility, material invariance,
and the impermeability theorem — the last two suggesting mixability along
stratification surfaces. These properties easily explain the once-mysterious
anti-friction or ‘negative viscosity’ of strongly nonlinear atmosphere–ocean
eddy fields, outside the scope of linear theory and homogeneous turbulence
theory. Invertibility implies that eddy fluxes of momentum are intimately
related to isentropic eddy fluxes of PV, including those due to strongly non-
linear disturbances, as summarized by the quasigeostrophic Taylor identity.
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1 The fundamental definition

The idea of the potential vorticity (PV) as a material invariant central to
stratified, rotating fluid dynamics was first introduced and explored by Carl-
Gustaf Rossby in the 1930s. Material invariance means constancy on a fluid
particle. The potential vorticity, a scalar field, will be denoted here by P
and can be defined in several ways, as shown shortly. We have

DP/Dt = 0 (1)

for dissipationless flow, where D/Dt is the material derivative. For such flow
we also have material invariance of the potential temperature θ,

Dθ/Dt = 0 . (2)

Rossby’s idea, as it originally emerged from his papers of 1936, 1938 and
1940, was to introduce a vorticity-like quantity that is related to the vertical
component of vorticity in the same way that potential temperature is re-
lated to temperature. In his 1938 and 1940 papers he recognized, moreover,
that ‘vertical’ can more accurately be replaced by ‘normal to stratification
surfaces’, i.e., in the atmosphere, normal to isentropic or constant-θ surfaces.

Equivalent to this is the idea, clearly emerging on page 252 of the 1938
paper, that P is exactly proportional to the absolute Kelvin circulation CΓ,
Eq. (7) below, around an infinitesimally small closed material contour Γ lying
on an isentropic surface. The exact material-invariance property (1) is then
obvious from Kelvin’s circulation theorem, as generalized by V. Bjerknes, since
(2) ensures that the material contour Γ remains on the isentropic surface.

Rossby’s idea is today recognized as having central and far-reaching im-
portance for understanding the dynamical behavior not only of planetary

1Article in press for the 2nd edition of the Encyclopedia of Atmospheric Science, edited
by Gerald North, Fuqing Zhang and John Pyle (Elsevier, 2012), finalized 24 July 2012.
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Figure 1: Sketch showing the material mass element defined by a small isentropic contour
Γ and a pair of neighboring isentropic (stratification) surfaces with potential temperatures
θ and θ + dθ. The exact PV is the mass-normalized Kelvin circulation around Γ, in the
limit of an infinitesimally small element (see text). In a layer model, the two surfaces are
taken instead as the layer boundaries.

atmospheres and oceans but also of the radiative interiors of solar-type stars.
It is especially important for understanding balanced flow and thence a vast
range of basic dynamical processes, such as Rossby-wave propagation and
breaking and its many consequences including, in the Earth’s atmosphere,
global-scale teleconnections, anti-frictional phenomena such as jet stream self-
sharpening, and the genesis of cyclones, anticyclones and storm tracks, an-
swering the child’s age-old question of where the wind comes from.

The relation P ∝ CΓ provides the simplest and most fundamental way
to define P exactly, not only for continuously stratified systems but also for
single-layer shallow-water or ‘equivalent barotropic’ models and their multi-
layer extensions. For continuous stratification, today’s standard definition of
P chooses the constant of proportionality to be dθ, the potential-temperature
increment between a pair of neighboring isentropic surfaces (see Fig. 1), di-
vided by the mass of the small material fluid element lying between those
surfaces and having perimeter Γ. Mass conservation is assumed throughout
this article.

For the single-layer and multi-layer models one need only replace the pair
of isentropic surfaces by layer boundaries. Then for finite layer thickness
the proportionality constant can be chosen as simply the reciprocal of the
mass of the material element, or of its volume when the usual incompressible-
flow assumption is made. Then from Stokes’ theorem P becomes absolute
vorticity divided by layer thickness, the formula first presented in Rossby’s
1936 paper.

For continuous stratification Rossby derived an approximate formula ad-
equate for use with synoptic-scale observational data. With the foregoing
choice of proportionality constant, Rossby’s formula is

P ≈ g
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where g is the gravitational acceleration, p is pressure, and f is the Coriolis pa-
rameter, a function of latitude. To obtain (3) from the exact relation P ∝ CΓ

one must assume that the mass and pressure fields are related hydrostatically
and that the slopes of isentropic surfaces are small in comparison with unity.
In practice these conditions usually hold to more than sufficient accuracy.
The horizontal coordinates x, y in (3) are local Cartesian coordinates in a
tangent-plane representation, with corresponding horizontal velocity compo-
nents u, v relative to the Earth. The formula converts to spherical or other
coordinates in the same way as the ordinary vertical vorticity.

However, as Rossby pointed out, the quantity within braces is not the
ordinary vertical vorticity. The subscript θ is crucial. It signifies that the
horizontal differentiations of the horizontal velocity components are to be
carried out with θ held constant. That is, one stays on a single isentropic
surface, just as one does when calculating CΓ. Rossby explains this point
very clearly on, for instance, page 253 of his 1938 paper. The resulting quan-
tity, bearing a superficial resemblance to the ordinary vertical vorticity, can
more aptly be called Rossby’s isentropic vorticity. Within the approxima-
tions involved in (3), this isentropic vorticity is the same as the component
of the vorticity vector normal to the isentropic surface. It can differ substan-
tially from the vertical vorticity.

Such differences are commonplace in balanced flows with strong vertical
shear (∂u/∂z, ∂v/∂z) where z is geometric altitude or pressure altitude. That
is, they are commonplace in balanced flows with high baroclinicity. Exam-
ples include tropopause jet streams. Baroclinicity means tilting of isentropic
surfaces relative to isobaric surfaces, usually the cross-stream tilting that
balances the vertical shear as indicated by the so-called thermal wind equa-
tion. A natural measure of baroclinicity is 1/Ri where Ri = N2/(∂|u|/∂z)2,
the gradient Richardson number, where N2 = gθ−1∂θ/∂z, the square of the
buoyancy frequency. The shear and cross-stream tilting effects were shown to
make substantial contributions to the right-hand side of (3) in, for instance,
the 1950s work of R. J. Reed, F. Sanders and E. F. Danielsen on obser-
vational data describing tropopause fronts and jet streams, in which air of
stratospheric origin was recognized by its relatively high values of P . Slopes
are geometrically small but Ri values low enough for the subscript θ to be
important in (3).

Equations (1)–(3) provide a remarkably succinct description of how dis-
sipationless processes affect the component of absolute vorticity normal to
an isentropic surface. There are two distinct effects. The first is that the
normal component of absolute vorticity increases through vortex stretching
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Figure 2: Estimated isentropic distribution of the (Rossby–Ertel) PV on the 320 K isen-
tropic surface on 14 May 1992 at 1200UT (Greenwich mean time), derived from observa-
tions as explained in the text. Over Europe the 320K surface lies near jetliner cruising
altitudes z ∼ 10 km. The estimate used data from the operational weather-prediction
analyses of the European Centre for Medium Range Weather Forecasts (ECMWF). Val-
ues from 1 PVU upwards are colored rainbow-wise from dark blue to red, with contour
interval 1 PVU, where 1 PVU = 10−6m2s−1K kg−1. Courtesy W. A. Norton (personal
communication); further details in Appenzeller et al. (1996). Figure 15b on p. 1450 of that
paper checks that the wind field does, as expected from PV inversion, exhibit the usual
tropopause jet structure around the periphery of the large high-PV region on the left. See
PV mixability and strong jets below.
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if the isentropic surfaces move apart. This is a generalization of angular
momentum conservation, i.e., a generalization of the ballerina effect or ice-
skater’s spin. The second is that the normal component of absolute vorticity
is preserved if the isentropic surfaces do nothing but tilt away from the hor-
izontal.

The generalized ballerina effect often contributes to the spin-up of cy-
clonic vortices, such as the small vortex over the Balkans in Fig. 2. The
colors mark air with different estimated values of P , on the θ = 320K isen-
tropic surface at geometric altitudes around 10 km, with the warmest colors
marking the highest P -values. The vortex over the Balkans has a core of
high-P air that has undergone stretching, while moving equatorward out of
the stratosphere. The cyclonic, i.e. counterclockwise, rotation of the core
relative to the surrounding air shows up as a tendency of the surrounding
colored filaments to be wound up into spirals.

The estimated isentropic distribution of P shown in Fig. 2 was derived
from an initial coarse-grain estimate from operational weather-forecasting
analyses together with an assumption that material invariance, (1) with (2),
holds to sufficient accuracy over 4 days. A highly accurate tracer advec-
tion technique, contour advection, was used. It was first introduced into the
atmospheric-science literature by W. A Norton, R. A. Plumb and D. W.
Waugh following work of N. J. Zabusky and D. G. Dritschel. The pattern
thus revealed, reminiscent of cream on coffee, illustrates the typical advective
effects of the layerwise-two-dimensional flow characteristic of mesoscale and
larger-scale flow regimes heavily constrained by stable stratification. Such
regimes can often be considered to be balanced flows, whose isentropic dis-
tributions of P contain nearly all the information about the dynamics. This
will be made precise in the section on PV inversion below.

2 Ertel’s formula

For continuous stratification it is a simple exercise in vector calculus to show,
via Stokes’ theorem, that Rossby’s fundamental relation P ∝ CΓ is exactly
equivalent to

P = ρ−1ζζζa ·∇θ (4)

when the constant of proportionality is chosen as before. Here ρ is the mass
density, ∇ is the three-dimensional gradient operator, and ζζζa is the absolute
vorticity vector, the curl of the three-dimensional velocity field viewed in
an inertial frame. In the Earth’s rotating frame, ζζζa is the three-dimension-
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al relative vorticity added vectorially to twice the Earth’s angular velocity
vector ΩΩΩ. The formula (4) was first published in 1942 by Hans Ertel, who had
visited Rossby at MIT in 1937. The formula has attracted much attention
in the mathematical fluid-dynamics community and has been generalized in
various ways.

In strongly stratified flows like that of Fig. 2 we have N2 ≫ 4|ΩΩΩ|2. Also,
the small-slope approximation is valid, making ∇θ nearly vertical. In (4),
the scalar multiplication by ∇θ picks out f , the latitude-dependent vertical
component of 2ΩΩΩ, to good approximation. This is the fundamental reason
why f and its latitudinal variation often suffice to capture the main effects
of the Earth’s rotation ΩΩΩ, including the so-called beta effect.

Under the small-slope and hydrostatic approximations, ρ−1|∇θ| is ap-
proximately equal to g|∂θ/∂p| in (3). The contributions to (3) and (4) from
2ΩΩΩ therefore agree. It is straightforward to show that the remaining con-
tributions also agree in these circumstances provided that, for consistency
with the hydrostatic approximation, the vertical component of velocity is ne-
glected when taking the curl of the relative velocity field to form the relative
vorticity.

The small-slope and hydrostatic approximations are usually so good that
(3) and (4) give practically indistinguishable results when evaluated from
typical meteorological datasets, and from the output of numerical weather
forecasting models. So (3) and (4) are often treated as equivalent for prac-
tical purposes, both being called ‘exact’ when distinguishing them from the
much less accurate formulae for the material invariants possessed by cer-
tain approximate balanced models, such as quasigeostrophic theory and semi-
geostrophic theory. Their material invariants are also called potential vortic-
ities but are defined by formulae that differ substantially from (3) and (4),
for instance (15) below. Unlike (3) and (4) these formulae cannot be con-
sidered quantitatively accurate. The potential vorticity in its quantitatively
accurate sense will be referred to as the Rossby–Ertel potential vorticity or
simply, for brevity, the PV, whether defined by (3) or (4) or by any other
formula accurately equivalent to P ∝ CΓ.

To check that (4) is accurately, indeed exactly, equivalent to P ∝ CΓ

and materially invariant for dissipationless flow, we note first that (4) can be
rewritten exactly as

P = σ−1ζζζa ·n (5)

where σ = ρ/|∇θ|, and n = ∇θ/|∇θ|, the upward-directed unit normal to
the isentropic surface S, say, on which P is being evaluated. The scalar field

6



σ, a stratification-related mass density, is a strictly positive quantity. Under
the small-slope approximation it is the mass density in isentropic coordinates.
With the definition just given, σdθ is exactly the mass per unit area between
neighboring isentropic surfaces, such as those sketched in Fig. 1, whose θ
values differ by dθ. Thus if dA is the area element of integration on the
surface S, then σdAdθ is exactly the mass element of integration.

For dissipationless flow we have (2) as well as mass conservation, hence
∫ ∫

S(Γ)

σ dA = constant (6)

where S(Γ) denotes any simply-connected portion of S enclosed by a material
contour Γ. Here Γ can, but need not, be small. By definition its Kelvin
circulation is

CΓ =

∮

Γ

ua · dx = constant (7)

for dissipationless flow, where ua is the three-dimensional velocity field in
the inertial frame. From Stokes’ theorem and (5) we have exactly

CΓ =

∫ ∫

S(Γ)

ζζζa ·n dA =

∫ ∫

S(Γ)

P σ dA (8)

and if, as before, we now take Γ to be small — more precisely, if we take
the greatest diameter of Γ to be arbitrarily small in comparison with all
lengthscales of the flow — then P is simply (8) divided by (6). This verifies
not only the material invariance of P but also the equivalence of (4) and (5)
to P ∝ CΓ for small Γ, with the choice of proportionality constant made
earlier.

For completeness we sketch the alternative derivation given by Ertel, writ-
ten using the three-dimensional velocity field u relative to the rotating frame.
One takes the scalar product of ∇θ with the frictionless three-dimensional
vorticity equation, the curl of the nonhydrostatic equation for Du/Dt, and
then makes use of ∇(Dθ/Dt) = 0, from (2). Note that D/Dt = ∂/∂t+u ·∇
and that the three-dimensional gradient operator ∇ acts on u as well as on
θ. The baroclinic term in the vorticity equation, proportional to ∇p × ∇ρ, is
annihilated when the scalar product with ∇θ is taken, because the thermody-
namics says that θ is a function of p and ρ alone (the standard approximation
to this function implying that θ ∝ T/pκ, κ ≈ 2/7 ≈ 0.286, with temperature
T ∝ p/ρ). The result is a conservation relation in the general sense of the
term, in ‘flux form’,

∂

∂t
(ρP ) + ∇ · (ρuP ) = 0 (9)
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with P defined by (4) or (5). Putting this together with the corresponding
equation

∂ρ

∂t
+ ∇ · (ρu) = 0 (10)

expressing mass conservation, we immediately obtain Eq. (1) for dissipation-
less flow.

A corollary of material invariance and mass conservation is the existence
of so-called Casimir invariants. They are important in theories that make ex-
plicit the Hamiltonian mathematical structure of the dissipationless dynamics,
and in associated theorems on instability and on wave–mean interaction. Note
first that we have not only constancy of (8) but also

∫ ∫

S(Γ)

ϕ1(P ) σ dA = constant (11)

where ϕ1(P ) is an arbitrary function and Γ is again arbitrary. This is because
each mass element has a single value of P and therefore a single value of
ϕ1(P ). Extending S(Γ) to span the whole fluid domain and integrating over
all surfaces S, with arbitrary θ-weighting, we obtain

∫ ∫ ∫

ϕ2(P, θ) σ dA dθ = constant (12)

with ϕ2(P, θ) another arbitrary function, where the integral is taken over the
whole fluid domain. These domain integrals (12) are the Casimir invariants.
They are exactly constant for any dissipationless flow whatever.

3 PV units and the extratropical tropopause

Rossby’s original choice of proportionality constant differed from today’s
standard choice. As noted in his 1940 paper, Rossby chose the physical di-
mensions of P to be the same as those of ordinary vorticity, namely (time)−1,
drawing on the analogy with potential temperature. (See text between his
Eqs. (11) and (13).) However, the usual practice today is to tolerate the
slightly looser analogy and different physical units implied by (3)–(5), for
the sake of having simpler formulae. The standard PV unit used today is
10−6m2s−1Kkg−1, abbreviated PVU.

By a strange accident, cross-sections of the atmosphere show P values
typically around 2 PVU at the extratropical tropopause, and this has proved
extremely useful as a way of defining the tropopause outside a tropical
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band of latitudes, say outside ±20◦ or so. More precisely, the extratropi-
cal tropopause is often marked by steep isentropic gradients of P with values
ranging from about 1 to 4 PVU. The shape of the 2-PVU contour in Fig. 2,
dividing dark blue from light blue, gives no more than a slight hint of the com-
plicated three-dimensional shape of the tropopause, where it intersects the
320K isentropic surface at the instant shown. The instantaneous tropopause
is a highly convoluted surface with an overall poleward-downward slope, so
that the white areas in Fig. 2 are in the troposphere and the main colored
areas are in the stratosphere.

Airborne measuring instruments flown along the 320K surface and cross-
ing from white through dark blue into light blue and warmer-colored areas
would see changes in chemical composition characteristic of the transition
from tropospheric to stratospheric air. Indeed, such changes have often been
observed in association with finer-scale, filamentary structures of the kind
seen in the figure, beginning with the pioneering work of D. W. Waugh and
R. A. Plumb in the early 1990s using chemical data from NASA’s ER-2
aircraft.

The usefulness of the PV as an extratropical tropopause marker is an
accident because, for one thing, it depends on the choice of θ as the thermo-
dynamical material invariant that satisfies (2) and appears in the definitions
(3)–(5). There is no fundamental reason for that choice. Everything in the
dynamical theory works just as well with other thermodynamical material in-
variants such as the specific entropy, or indeed any other smooth, monotonic
function of θ. The PV thus redefined is sometimes called a modified PV.
Isentropic distributions of P like that in Fig. 2 remain the same after such
modification, apart from changes to the units and to the numerical values as-
signed to each color. Notice, however, that the normalizing factors for those
changes depend on θ and are therefore different on each isentropic surface.

4 PV inversion and generalized PV

Any flow that can be considered balanced whether geostrophically or at
higher accuracy (see Dynamic Meteorology: Balanced Flow) satisfies what is
now called the invertibility principle for PV. The principle says that, to an
accuracy limited only by the accuracy of the balance relation, one can capture
all the dynamical information about the flow by specifying only the following:

1. the mass under each isentropic surface S,

2. the isentropic distributions of P , on all the surfaces S, and
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3. the distributions of θ on the lower boundary and on the
upper boundary if present.

By implication there exists, then, a nonlocal diagnostic operator, the PV

inversion operator associated with the given balance relation. Its input is the
foregoing information at some instant. Its output is the remaining dynamical
information at the same instant including the p, ρ, T , and u fields. Very often
u is dominated by its horizontal component, the weaker vertical component
nevertheless being dynamically significant thanks to its role in the generalized
ballerina effect, and in moving and tilting isentropic surfaces.

The idea of PV inversion is implicit in textbook descriptions of, for in-
stance, the Rossby-wave mechanism. The idea is used at the point in the ar-
gument where the horizontal component of u is deduced diagnostically from
the disturbance PV field associated with PV-contour undulations. Some-
times the term induced velocity, borrowed from aerodynamics, is used. In
this context it means the velocity field deduced from the PV field by inver-
sion.

What are PV inversion operators like, qualitatively? A partial answer is
that calculating the horizontal component of u is like calculating the electric
field E induced by a certain electric charge distribution, and then taking
the horizontal component of E and rotating it counterclockwise through a
right angle, for instance from northward to westward. The electric charges
correspond to isentropic anomalies in P and boundary anomalies in θ. Thus,
for instance, the positive isentropic anomaly in P over the Balkans in Fig. 2
corresponds to a positive electric charge, inducing an outward-pointing E

field and hence a cyclonic or counterclockwise velocity field around it. This
provides us with a way of saying what the terms vortex, cyclone, and anti-

cyclone really mean. For instance the vortex over the Balkans, an upper-air
cyclone, is nothing but a positive isentropic anomaly in P together with its
induced velocity field.

Because of the balance relation, these velocity fields are accompanied by
p, ρ, and T fields that to a first approximation satisfy the thermal wind
equation; for instance the upper-air cyclone has a warm T anomaly above
it and a cold T anomaly beneath. Conversely, an upper-air anticyclone has
a cold T anomaly above, a fact crucial to lower-stratospheric polar ozone
chemistry. Flow through such a cold anomaly cannot advect the negative PV
anomaly beneath, but can give rise to fast cloud formation and accelerated
chemical processing.
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Similar statements about vortices apply to the distributions of θ at, say,
the lower boundary surface. (In practical terms, taking friction into ac-
count, this translates to ‘just above the planetary boundary layer’.) A sur-
face cyclone or heat low is nothing but a positive, i.e. warm, lower-boundary
anomaly in θ together with its induced velocity field, and conversely for a
surface anticyclone.

Severe cyclonic storms in the extratropical atmosphere often arise from
the vertical alignment of warm lower-boundary anomalies in θ and positive
upper-air isentropic anomalies in P like the large cyclonic anomaly seen on
the left of Fig. 2. Helped by such vertical alignment, the induced velocities
can add up to give storm-force winds. Furthermore, the development of such
a situation by upper-air positive-P advection along with near-surface warm
advection, and poleward upgliding along sloping isentropes, induces large-
scale upward motion. Such upward motion is described by any sufficiently
accurate PV inversion operator. Alternatively, it can be computed via the
so-called omega equation. The large-scale upward motion may trigger latent
heat release, creating or intensifying isentropic anomalies in P . Especially
in moist air over the extratropical oceans, the upshot can be the sudden
explosive marine cyclogenesis feared and respected by sailors: “Three days
from land a great tempest arose...”

It hardly needs saying that, whenever the invertibility principle holds
to sufficient accuracy, it gives us a vastly simplified conceptual view of the
dynamical evolution. The dynamical system is completely specified by a PV
inversion operator together with the remarkably simple prognostic equations
(1) and (2) or their diabatic, frictional generalizations. Those equations
provide us with the simplest way to cope with the bedrock mathematical
difficulty of fluid dynamics, the advective nonlinearity.

Since P and θ are scalar fields, keeping track of them using pictures like
Fig. 2, actual or mental, is a far simpler task than keeping track of the evolv-
ing p, ρ, T , and u fields in three dimensions, including the nonlocal effects
mediated by the p field under the constraints imposed by the balance relation.
The nonlocal effects are all encapsulated in the PV inversion operator. The
foregoing points, implicit in Rossby’s work, were articulated with increasing
clarity by Jule G. Charney and Aleksandr M. Obukhov in the late 1940s
and by Ernst Kleinschmidt in the early 1950s. They allow us to make sense
not only of Rossby-wave propagation, cyclogenesis, and anticyclogenesis but
also, for instance, of aerodynamical ideas like vortex rollup — the idea that
a strong isentropic anomaly in PV can roll ‘itself’ up into a nearly circular
vortex, as in the Balkans example of Fig. 2.
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In 1966 Francis P. Bretherton pointed out that an even greater conceptual
simplification is possible. The single prognostic equation (1) is enough to
determine the dissipationless evolution by itself, provided that we consider
the PV field P (x, t) to contain delta-function contributions at the upper and
lower boundaries, with strengths determined by the θ distributions at the
boundaries. Ignoring frictional boundary-layer phenomena, we may relate
this to the idea that isentropic surfaces S intersecting the lower boundary,
say, can be imagined to continue along the boundary in an infinitesimally thin
layer of infinite |∇θ| hence infinite P . In the electrostatic analogy, surface
θ distributions correspond to surface charge distributions — electric charge
per unit area rather than per unit volume. The PV field with surface θ
distributions included may be called the generalized PV field, containing all
the information in the second and third numbered items above.

5 Some illustrations

The idea of PV inversion can be illustrated in a simple way by consider-
ing the theoretical limiting case of infinite sound speed and infinite stable
stratification. The buoyancy frequency N and gradient Richardson number
both tend to infinity. The isentropic surfaces S become rigid and horizontal
— horizontal in the billiard-table sense, with the sum of the gravitational
and centrifugal potentials constant. The balance relation degenerates to a
statement that the flow on each S is strictly horizontal and strictly incom-
pressible. Then, in the rotating frame, we have u = ẑ × ∇Hψ for some
streamfunction ψ, where ẑ is a unit vertical vector, and, from (5),

P = σ−1(f + ∇ 2
Hψ) (13)

with σ now strictly constant. Here ∇H is the two-dimensional horizontal
gradient operator and ∇ 2

H the corresponding Laplacian, so that ∇ 2
Hψ is the

relative vorticity. We may regard (13) as a Poisson equation to be solved for
ψ when P is given. Solving it is a well defined, and well behaved, operation,
given suitable boundary conditions such that the P field on each S satisfies
(8) with Γ taken as the horizontal domain boundary; see also (16) below.
Symbolically, in the rotating frame,

u = ẑ × ∇Hψ with ψ = ∇−2
H (σP − f) , (14)

expressing PV invertibility in the limiting case. The PV inversion prob-
lem now resembles an electrostatics problem in two, rather than three, di-
mensions. The charge distribution corresponds to σ times the PV anomaly
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(P − σ−1f), with −ψ in the role of the electric potential. In this limiting
case, as in general, PV inversion is a diagnostic, nonlocal operation.

Notice that our limiting case is degenerate in another sense as well. The
altitude z now enters the problem only as a parameter. There is no derivative
∂/∂z anywhere in the problem, either in the horizontal Laplacian or in the
material derivative D/Dt = ∂/∂t + u · ∇ in (1), with u strictly horizontal.
Not only is the flow layerwise-two-dimensional, but the layers are completely
decoupled from each other. For the validity of this picture there is, therefore,
an implicit restriction on magnitudes of ∂/∂z, i.e. an implicit restriction on
the smallness of vertical scales in the limit, with the further implication that
the picture cannot be uniformly valid for all time.

More realistically, when N and Ri are large but finite, and when f is finite,
∂/∂z reappears in the problem and brings back vertical coupling. The flow
remains layerwise-two-dimensional in the sense that notional ‘PV particles’
move along each isentropic surface S — see impermeability theorem below —
but the surfaces S themselves are no longer quite horizontal, nor quite rigid.
Aside from the vertical advection that moves and tilts the surfaces S, all
the vertical coupling comes from the PV inversion operator. The two-dim-
ensional inverse Laplacian in (14) is replaced by an inverse elliptic operator
that qualitatively resembles a three-dimensional inverse Laplacian when a
stretched vertical coordinate Nz/f is used; thus the vertical coupling for
flows of horizontal scale L is effective over a height scale of the order of the
corresponding Rossby deformation height fL/N .

For finite N and Ri there are tradeoffs between accuracy and simplic-
ity. The mathematically simplest though least accurate three-dimension-
al PV inversion operator is that arising in the standard Charney–Obukhov
quasigeostrophic theory, an asymptotic theory whose approximations are valid
away from the equator, for large Ri and small Rossby number Ro ∼ Ri−1/2,
where Ro can be defined as f−1

0 times a typical relative-vorticity value with
f0 a constant representative value of the Coriolis parameter f . The price
paid for the mathematical simplicity includes resorting to a strange double
subterfuge in which, first, we retain only the purely horizontal velocity field
u = ẑ × ∇Hψ even though vertical motion is now significant and, second,
abandon P , the exact, Rossby–Ertel PV, which is advected by vertical as
well as by horizontal velocities, in favour of a so-called quasigeostrophic po-

tential vorticity, q, advected by the horizontal velocity only. For background
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ρ = ρ0(z) and N = N0(z) we may define

q = f + ∇ 2
Hψ +

1

ρ0

∂

∂z

(

ρ0f
2
0

N2
0

∂ψ

∂z

)

, (15)

noting the agreement with (13) in the limit N0 → ∞, apart from the factor
σ−1. Omission of that factor is part of the subterfuge, making vertical advec-
tion implicit. The generalized ballerina effect is now hidden inside the last
term of (15). The isobaric anomalies in T and θ, measuring small displace-
ments and tilting of the isentropic surfaces S, are proportional to ∂ψ/∂z.
For instance if θ0(z) denotes the background potential temperature, so that
N2

0 (z) = g dln θ0/dz, then we have θ − θ0(z) = g−1θ0f0 ∂ψ/∂z to within the
approximations of the theory.

The most efficient way of describing the relation between q and P is to
say that ∇Hq, the local horizontal or isobaric (constant-z) gradient of q, is
proportional to (∇HP )θ, i.e. proportional to the corresponding isentropic gra-
dient of P . Isobaric eddy fluxes of q are correspondingly related to isentropic
eddy fluxes of P .

From (15) we see that the electrostatic analogy holds, qualitatively, in
three dimensions, with stretched vertical coordinate N0z/f0. The electric
charge distribution is q − f . This can include Bretherton delta functions. If
we impose ∂ψ/∂z = 0 at the lower boundary, for instance, when inverting
(15) to get ψ from q, then a delta-function contribution to the last term
of (15) can accommodate finite ∂ψ/∂z just above the boundary, hence a
nonvanishing θ anomaly there.

Three-dimensional inversions far more accurate than quasigeostrophic are
now being used in weather forecasting as well as in research and development.
The most accurate possible PV inversion operators are mathematically com-
plicated because accurate balance relations u = uB are mathematically com-
plicated, as discussed in the article on balanced flow. This difficulty can,
however, be sidestepped using the forecast-initialization components of to-
day’s numerical data-assimilation technology.

6 The quasi-westward ratchet

The single time derivative acting on the generalized PV field in (1) and (2) ex-
poses another fundamental point about the balanced dynamics. This point is
well hidden within the equations expressing Newton’s laws of motion in terms
of the p, ρ, T , and u fields. The single time derivative shows for instance why
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all the different types of Rossby waves, including internal and topographic
(surface-θ) Rossby waves, exhibit one-way phase propagation. The Earth’s
rotation imposes a handedness or chirality upon the wave dynamics as seen
in the rotating frame. In this regard the Rossby-wave mechanism is quite un-
like classical wave mechanisms, where the governing equations always contain
even numbers of time derivatives, making the propagation time-reversible.

On the global or planetary scale, P has an isentropic gradient whose
sign, in a coarse-grain view, is usually set by the sign of the planetary-
scale gradient in f . From the Antarctic to the Arctic, f and P go from
large negative to large positive values. Planetary-scale Rossby waves feel
this gradient. As a result, they exhibit westward, never eastward, phase
propagation relative to the mean flow. And in all cases of Rossby waves,
planetary-scale or smaller, the sense of the relative phase propagation is
quasi-westward — meaning as if westward — defined to be such that high or
predominantly high generalized PV values are on the right. Thus for instance
topographic Rossby waves, dependent on a surface gradient in the Bretherton
delta function, propagate with warm surface air on the right where ‘warm’
is measured by θ.

The same chirality accounts for the ratchet-like, one-way character of re-
lated processes such as the self-sharpening of jet streams and the irreversible
transport of angular momentum due to the dissipation of Rossby waves in
the stratosphere, producing a persistent westward or retrograde mean force
there, hence the gyroscopic pumping — always poleward and never equator-
ward — that drives the global-scale stratospheric circulations and chemical
transports usually discussed under the headings Brewer–Dobson circulation
and wave–driven circulation.

(If a zonally symmetric mean force keeps pushing air westward, then
Coriolis effects keep turning it poleward — a persistent mechanical pumping
action. The best-known example is Ekman pumping, the special case in which
the zonal force happens to be frictional, as in classic spindown.)

7 PV mixability and strong jets

One of the mechanisms involved in the dissipation of Rossby waves is wave

breaking, the irreversible deformation of otherwise-wavy PV contours. This
definition of breaking is motivated by fundamental results in wave–mean
interaction theory, namely the so-called nonacceleration theorems, which are
corollaries of Kelvin’s circulation theorem applied to initially-zonal material
contours.
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Rossby wave breaking gives rise to the irreversible mixing of PV along
the isentropic surfaces S. This can happen on a spectacularly large scale in
some cases, as in the wintertime stratospheric surf zone commonly observed.
Such mixing is a strongly nonlinear phenomenon and, because it tends to
be highly inhomogeneous spatially, with surf zones adjacent to wavy PV
contours, it often lies outside the scope of homogeneous turbulence (spectral
cascade) theory. The idea of PV mixing does, however, explain the ubiquity
of such quintessentially inhomogeneous phenomena as the strong jet streams
observed in the atmosphere and oceans. The jet that flows along the poleward
border of the stratospheric surf zone is just one example among many.

A strong jet, in the sense at hand, is nothing but a narrow core of con-
centrated isentropic gradients of P together with its induced velocity fields.
The properties of PV inversion operators ensure that these induced velocity
fields are always jet-like, flowing quasi-eastward, i.e. flowing with high PV
on the left. For instance, in the westernmost part of Fig. 2 a strong jet flows
southward over the Atlantic, with its core at the edge of the large colored
region corresponding to high-PV stratospheric air. The jet continues around
the periphery of that region past Spain toward the British Isles. Maximum
wind speeds reach values of the order of 50m s−1 in this case.

Once such a jet structure has formed it has a tendency to be self-sustaining,
or self-sharpening. The concentrated core gradients form a waveguide or duct
for Rossby waves whose dispersion properties make them liable to breaking
on one or both flanks of the jet, while leaving the core intact. PV mixing ad-
jacent to the core weakens the surrounding PV gradients and strengthens the
core’s PV gradients, automatically sharpening or re-sharpening the core and
the jet velocity profile. Mixing across the core is strongly inhibited, thanks to
the combined effects of the shear and the core’s Rossby-wave quasi-elasticity.

The inhibition applies to chemical tracers as well as to PV. Countless ob-
servations of chemical tracers verify this, going back to Edwin F. Danielsen’s
classic 1968 aircraft observations of nuclear bomb-test debris showing dis-
tinct isotopic signatures to either side of a strong tropopause jet core. So a
strong jet core can be identified with what is sometimes called a PV barrier
but more aptly an eddy-transport barrier, recognizing the complementary role
of the shear in the jet flanks first noted in the doctoral thesis work of M.
N. Juckes. These phenomena clearly have a role in keeping the stratosphere
and troposphere chemically distinct and the tropopause sharp.

The idea that the PV is mixable along the isentropic surfaces S merits
closer examination. In using it we are setting up an analogy with chemical
mixing. How far can we push that analogy? Despite its evident power to
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handle some kinds of strongly nonlinear phenomena, including strong-jet for-
mation, the analogy is not always apt because the PV is not a passive tracer.
Self-organizing, dynamically active phenomena like vortex rollup, and vortex
merging, illustrate that isentropic anomalies in P can, in some situations,
transport themselves against mean isentropic gradients of P , contrary to the
mixing idea. Furthermore, there are rotational force fields that can system-
atically widen the range of P values on a surface S. If we think of isentropic
anomalies in P as electric-charge anomalies, this is like pair production. Such
rotational force fields include those due to dissipating gravity waves.

Nevertheless, the mixing idea seems to work well in situations such as
Rossby wave breaking in which a large-scale flow advects smaller-scale PV
anomalies, in a manner that becomes increasingly passive-tracer-like as the
large-scale strain or deformation fields shrink the advected scales. Once this
advective scale-shrinkage takes hold, it goes exponentially fast on the time-
scale of the large-scale straining. The passive-tracer-like behavior is possible
because PV inversion is relatively insensitive to small-scale PV anomalies.

Scenarios of PV transport along, rather than across, the moving surfaces
S can remain valid even when Eqs. (1) and (2) are replaced by their dia-
batic and frictional generalizations. More precisely, P can be regarded as
the amount per unit mass of a notional chemical substance consisting of
charged particles that are permanently trapped on the moving surfaces S.
Net charge is conserved: one can have pair production and mutual annihila-
tion, but no net creation or destruction except where a surface S intersects a
boundary. In this picture the surfaces S are impermeable to the PV particles
even when they are permeable to air undergoing diabatic heating or cooling
— a behavior very different from that of a real chemical. The correspond-
ing mathematical statement is sometimes called the impermeability theorem
for PV.

The theorem is simple to prove, along with the conservation of net charge,
by repeating the derivation that led to the flux-form conservation equation (9)
but with arbitrary diabatic heating and external forces included. This reveals
first that the resulting equation is still of the form ∂(ρP )/∂t + ∇ · ( ) = 0,
i.e. that it is still a conservation equation in flux form — there are no source
and sink terms — and second that the flux itself, the vector field acted on
by the three-dimensional divergence operator, naturally takes a form such
that it always represents zero transport across moving surfaces S. Thus the
surfaces S behave as if they were impermeable to the charged particles of
PV-substance.

Of course one can always make the surfaces S look permeable by adding
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an identically nondivergent vector field to the flux. But that is arguably
a needless complication, for the reasons discussed in the paper by C. S.
Bretherton and C. Schär in the Further Reading list.

It is important to remember when using the analogy with chemicals that
P is the amount of PV substance or PV charge per unit mass. It is the
chemical mixing ratio, so called, not the amount per unit volume, to which
P is analogous. Clearly, an inert chemical lacking sources or sinks can be
diluted or concentrated. An extreme example is the formation of tropical
cyclones, in which, in terms of the foregoing picture, PV charge is advected
inwards along the surfaces S and greatly concentrated near the center of the
cyclone. Although such processes cannot create net PV charge, they can
and do create strong isentropic anomalies in P , whose inversion may yield
hurricane-force winds.

8 The inhomogeneity of PV mixing

Why does PV mixing have such a strong propensity to be inhomogeneous?
Part of the answer has already been indicated, namely the self-organizing
properties of strong jets as eddy-transport barriers. One can add that the
inhomogeneity reflects not only the dispersion properties of jet-guided Rossby
waves, but also, arguably, a generic positive-feedback mechanism sometimes
called the ‘PV Phillips effect’. It can operate at the earlier stages of self-
organization. Wherever large-scale isentropic gradients of P are weakened
by PV mixing, Rossby-wave quasi-elasticity is weakened, facilitating further
mixing. On the borders of such a region, the gradients are strengthened and
mixing is inhibited. If shear and Rossby-waveguide ducting become impor-
tant at the borders, then mixing is inhibited still further as eddy-transport
barriers form.

There is yet another reason to expect PV mixing to be inhomogeneous. It
is especially clear in the case of surfaces S that span the globe and are there-
fore topologically spherical, as in the stratosphere and upper troposphere
(and also in the solar interior). If we extend the surface integrals in Eqs. (8)
to the entire sphere, there is no enclosing contour Γ and we have

∫ ∫

S

P σ dA = 0 , (16)

stating that on each topologically spherical S there are equal numbers of
positively and negatively charged PV particles, regardless of whether the
flow is forced, dissipating, or dissipationless. This is consistent with the
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charge-conservation and impermeability theorems. The integral relation (16)
imposes a severe constraint on the possible evolution of the isentropic distri-
butions of PV on each such S, hence on the possible evolution of the flow.
That constraint is enough in itself to make uniform or homogeneous mixing
highly improbable, as the following argument shows.

Consider a hypothetical situation in which the mixing is uniform, as if
the distribution of P on a surface S were subject to a uniform horizontal
diffusivity. Under the constraint (16), in which σ is strictly positive, the
perfectly mixed state toward which the distribution of P would then relax
can only be a state in which P = 0 everywhere on S. But invertibility
says that the entire surface S would then have to be at rest relative to the
stars, apart from oscillations representing imbalance such as sound waves
and inertia–gravity waves. In a rapidly rotating system like the Earth’s
atmosphere, with strong Coriolis effects and Rossby numbers typically small,
such a state of rest would be overwhelmingly improbable. It would require a
redistribution of angular momentum that would not only have an implausibly
large magnitude but would also need to take a very special form.

9 The Taylor identity

The hypothetical situation just sketched is an implausible extreme case, but
it illustrates another fundamental fact. Almost any isentropic redistribution
of PV, or other modification to the PV field, will be accompanied by changes
in the distribution of angular momentum.

The PV mixing associated with breaking Rossby waves is just one piece
of what might be called a wave–turbulence jigsaw in which wave propagation
has just as crucial a role as wave breaking, through wave-induced transport
of angular momentum such as that giving rise, as already mentioned, to
the gyroscopic pumping of the Brewer–Dobson and other global-scale mean
circulations. A by-product is that eddy fluxes of momentum often look anti-
frictional, exhibiting the so-called ‘negative viscosity’ that was once regarded
as a great enigma of atmospheric science, but is now recognized as a natural
consequence of the interplay between wave generation, wave propagation,
and wave breaking.

The way in which the jigsaw fits together is reflected in a central result
from quasigeostrophic theory, which for historical reasons might be called
the Taylor–Charney–Stern–Bretherton–Eady–Green identity. It is traceable
back to a seminal 1915 paper by G. I. Taylor that applies to the limiting case
(14). For brevity it will here be called the Taylor identity. It interrelates the
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eddy fluxes of momentum and PV. The standard form of the identity is for
disturbances to a zonal-mean state. Using overbars and primes to denote the
zonal mean and fluctuations about it, which can have arbitrary amplitude,
we readily find from (15) that

v′q′ =
1

ρ0

(

∂F

∂y
+

∂G

∂z

)

(17)

where

(F, G) = ρ0

(

−u′v′,
f0g

N2
0 θ0

v′θ′
)

, (18)

the so-called Eliassen–Palm (EP) flux or effective stress (minus the effective
eddy momentum flux). This quantifies the Rossby-wave-induced momentum
transport. Here (u′, v′) = (−∂ψ′/∂y, ∂ψ′/∂x), the eastward and northward
components of ẑ × ∇Hψ′, and gθ′ = θ0f0 ∂ψ′/∂z. The vertical component of
the EP flux is the same as the pressure-fluctuation-induced form stress defined
in oceanography (sometimes less aptly called ‘form drag’), the mean zonal
force per unit area across an undulating stratification surface, whose vertical
displacement is −gθ′/N2

0 θ0. The Taylor identity has special importance not
least because of its validity for strongly nonlinear flows, such as breaking
Rossby waves. No small-amplitude assumption is needed.

For instance, in order to create the wintertime stratospheric surf zone,
through PV mixing producing downgradient, i.e. negative, v′q′, there needs
to be a convergence of Rossby-wave activity from outside the surf zone, mak-
ing the right-hand side of (17) negative as well, and reducing the angular
momentum of the surf zone. An exquisitely precise illustration of how ev-
erything fits together is provided by the Stewartson–Warn–Warn theory of
nonlinear Rossby-wave critical layers. These are narrow surf zones and well
illustrate the strong inhomogeneity of the wave–turbulence jigsaw and the
typical way in which (17) is satisfied.
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