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ABSTRACT

Recent studies indicate that altimetric observations of the ocean’smesoscale eddy field reflect the combined

influence of surface buoyancy and interior potential vorticity anomalies. The former have a surface-trapped

structure, while the latter are oftenwell represented by the barotropic and first baroclinicmodes. To assess the

relative importance of each contribution to the signal, it is useful to project the observed field onto a set of

modes that separates their influence in a natural way. However, the surface-trapped dynamics are not well

represented by standard baroclinic modes; moreover, they are dependent on horizontal scale.

Here the authors derive a modal decomposition that results from the simultaneous diagonalization of the

energy and a generalization of potential enstrophy that includes contributions from the surface buoyancy

fields. This approach yields a family of orthonormal bases that depend on two parameters; the standard

baroclinic modes are recovered in a limiting case, while other choices provide modes that represent surface

and interior dynamics in an efficient way.

For constant stratification, these modes consist of symmetric and antisymmetric exponential modes that

capture the surface dynamics and a series of oscillatingmodes that represent the interior dynamics.Motivated

by the ocean, where shears are concentrated near the upper surface, the authors consider the special case

of a quiescent lower surface. In this case, the interior modes are independent of wavenumber, and there is

a single exponential surface mode that replaces the barotropic mode. The use and effectiveness of these

modes is demonstrated by projecting the energy in a set of simulations of baroclinic turbulence.

1. Introduction

Because direct observations of the ocean’s interior are

sparse, satellite altimetry plays a crucial role in deter-

mining its time-dependent, three-dimensional velocity

structure. This indirect measurement process assumes

that sea surface height variations are dominated by cur-

rents with low-mode vertical structure, a result of the

stiffening action of rotation and ensuing barotropiza-

tion. Observations provide some support for this as-

sumption, at least on lateral scales of order the first

internal deformation scale and above. For example, us-

ing current meter records in conjunction with satellite

obervations, Wunsch (1997) argues that the bulk of the

ocean’s eddy kinetic energy resides in the barotropic

and first baroclinic modes. In addition, a number of

studies show a strong correlation between the lateral

size of eddies and the first internal deformation scale

(e.g., Stammer 1997; Chelton et al. 2011).

However, recent theoretical developments, supported

by simulation and improved analysis of satellite altimetry,

suggest that surface signals are not well-correlated with

low-mode vertical structure, especially for submesoscale

motions. In particular, Lapeyre and Klein (2006) argue

that surface buoyancy and upper-ocean potential vortic-

ity are anticorrelated for eddying flow, and that the three-

dimensional velocity field may be obtained, assuming

quasigeostrophy, from knowledge of the surface buoy-

ancy field alone. The dynamics at the upper surface in this

view are closely related to the surface quasigeostrophic

(SQG) model (Blumen 1982; Held et al. 1995), and imply

a vertical structure with a surface-trapped component

that is not well represented by standard baroclinic modes.

Corresponding author address: K. Shafer Smith, Courant Insti-

tute of Mathematical Sciences, New York University, 251 Mercer St.,

New York, NY 10012.

E-mail: shafer@cims.nyu.edu

548 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 43

DOI: 10.1175/JPO-D-12-0107.1

� 2013 American Meteorological Society



This view is supported by results from idealized sim-

ulations (LaCasce and Mahadevan 2006; Klein et al.

2008), realistic simulations (Isern-Fontanet et al. 2008),

and recent analyses of satellite altimetry (e.g., Isern-

Fontanet et al. 2006; Le Traon et al. 2008). Finally, in

an atmospheric context, Tulloch and Smith (2009) have

shown that lateral surface buoyancy gradients may in-

teract with interior mean potential vorticity gradients

to excite baroclinically unstable modes that generate

SQG-like dynamics near the upper surface. In simula-

tions, the resulting kinetic energy spectrum near the

surface exhibits a steep 23 slope just below the defor-

mation scale, and a flatter25/3 slope at smaller scales —

translated to the oceanic context, this implies an energetic

submesoscale dominated by the surface mode.

One of the most widely used tools in oceanography

is the projection of the vertical structure of observed

or simulated currents on simple bases of functions. The

above observations and modeling results lead one to

seek projection bases that faithfully represent both the

low-mode interior structure and the surface dynamics.

The standard basis of baroclinic modes, consisting of

the eigenfunctions Fn(z) of the eigenvalue problem

d

dz

�
f 2

N2(z)

dFn

dz

�
52l2nFn, with

dFn

dz

����
z50

5
dFn

dz

����
z52H

5 0, (1)

where f is the Coriolis frequency, N(z) is the buoyancy

frequency, and ln are the eigenvalues, fails in this re-

spect. By construction, the functions Fn(z) are a com-

plete basis in which to expand the streamfunction c

of flows, provided they satisfy the same homogeneous

boundary conditions, which imply zero surface and bot-

tom buoyancy. But for realistic flows with nonzero sur-

face buoyancy b 5 f›zcjz50, expansion in baroclinic

modes leads to a nonuniform convergence near z 5 0,

and a very large set of modes is required to capture the

near-surface behavior.

As noted by Lapeyre and Klein (2006), in quasigeo-

strophic theory, the dynamical contribution of the sur-

face buoyancy can be separated from that of the interior

potential vorticity: taking advantage of the linearity of

the inversion of the quasigeostrophic potential vortic-

ity (PV)

q5=2c1 ›z

�
f 2

N2
›zc

�
(2)

the streamfunction may be decomposed into interior and

surface parts, c5 cint 1 csurf (assuming zero buoyancy

at the bottom), where cint satisfies (2) with boundary

condition ›zc
intjz505 0 while csurf satisfies the zero-PV

condition =2csurf1 ›z(f
2/N2›zc

surf)5 0 with ›zc
surfjz505

b/f. The vertical structure of the interior contribution

can be expanded in the standard baroclinic modes. By

contrast, the surface contribution—the only one retained

in SQG theory—has a vertical structure determined by

the zero PV condition, which couples horizontal and

vertical dependence, reducing to exp(kNz/f ), in the case

of N constant and bottom depth H � f/(kN), where k is

the horizontal wavenumber modulus.

It is intuitively clear that an effective projection basis

should somehow combine modes similar to the baro-

clinic modes with modes that, like the exponential modes

of SQG theory, capture the dynamical contribution of

the surface buoyancy. A systematic method to obtain

such a basis has remained elusive, however. Tulloch and

Smith (2009) proposed a heuristic model based on a

barotropic and first baroclinic mode, appended by ex-

ponential modes for each surface. Similarly, Lapeyre

(2009) attempted to represent the full dynamics of the

upper ocean with a truncated set of standard baroclinic

modes appended by an exponential surface mode. How-

ever, these hybrid modes do not diagonalize the energy,

since the surface and interior modes are not orthogonal.

Moreover, because the surface modes depend on wave-

number while the interior modes do not, the energetic

overlap increases with increasing horizontal scale. These

difficulties stem from the fact that the addition of the

exponential mode makes the set of functions linearly

dependent, thus the appended set of modes fails to be

a basis. A consequence is that themodal decomposition

is nonunique. Lapeyre (2009) defined a decomposition

by requiring that it minimizes a certain functional, but

the results remained inconclusive. An alternative ba-

sis, involving modes satisfying the Dirichlet condition

cjz505 0 togetherwith the barotropicmode, has recently

been proposed by Scott and Furnival (2012), but this

approach also suffers from a lack of orthogonality.

In this paper we derive a new family of bases that

diagonalize the energy and effectively capture surface-

intensified motion driven by buoyancy. There are in-

finitely many possible complete projection bases that

diagonalize the energy, thus an additional constraint is

needed to both retain this property and build in the

efficient representation of surface dynamics. Our ap-

proach is to demand that the basis simultaneously

diagonalizes both the energy and another quadratic

invariant, a generalized potential enstrophy that includes

the variances of the surface and bottom buoyancy fields.

The relative weight of the potential enstrophy and upper

and lower buoyancy variances in this invariant provide

two new nondimensional parameters that determine the

basis uniquely.
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The interior problem that arises is similar to the stan-

dard vertical mode problem, but retains a dependence

on horizontal wavenumber, and the eigenvalue appears

in both the eigenvalue equation and its boundary con-

ditions. In a limiting case, the standard baroclinic modes

are recovered: for constant N and2H# z# 0, these are

cn } cos(npz/H), n 5 0, 1, . . . . Another limiting case,

motivated by the ocean where shears are concentrated

near the upper surface but are weak at depth, leads to the

simple basis

c0 } cosh

�
Nk(z1H)

f

�
and cn } sin

�
(2n2 1)pz

2H

�

for n5 1, 2, . . . , (3)

which includes the exponential mode of SQG theory.

The paper is organized as follows. In section 2 we

describe the construction of a generalized eigenvalue

problem that defines the new basis. In section 3, we

derive analytical solutions and general results for two

special cases: constant N, for expository purposes, and

an ocean-like case, in which the lower boundary is

assumed quiescent, leading to (3). Various bases are

tested in section 4 on fields generated from a set of

high-resolution quasigeostrophic simulations of baro-

clinic turbulence. Finally, we discuss and conclude in

section 5. Mathematical details of the generalized ei-

genvalue problem are relegated to appendix A; the

derivation of a discrete version of the modes is included

in appendix B.

2. Surface-aware basis

Throughout the paper, we assume a horizontally pe-

riodic domain bounded vertically by rigid surfaces at

z 5 z2 and z 5 z1, with total depth H 5 z1 2 z2. The

assumption of horizontal periodicity allows us to Fourier

transform the equations in the horizontal plane, resulting

in separable dynamics and ordinary differential equations

for the vertical structure. (In more general domains, the

Fourier series can be replaced by an expansion in ei-

genfunctions of the horizontal Laplacian, and the results

obtained here should hold essentially unchanged.) The

complex amplitudes of the quasigeostrophic potential

vorticity (PV) q5 qkl(z), surface buoyancies (SBs) b
6
kl,

and streamfunction c 5 ckl(z) are then related by

�
f 2

N2
c0
�0
2 k2c5 q, z2, z, z1, and (4a)

f 2

N2H
c0 5b6, z5 z6 , (4b)

where k 5 (k2 1 l2)1/2 is the wavenumber magnitude,

a prime indicates a z-derivative, f is the Coriolis fre-

quency, and N 5 N(z) is the buoyancy frequency. We

include the nonstandard factor f 2/(N2H) in (4b) so that

the SBs and PV have the same dimension (inverse time),

and because it ultimately yields a more natural eigen-

value problem. We have omitted the wavenumber sub-

script on q, b6, and c and continue to do so here onward.

The quasigeostrophic equation set has four quadratic

invariants: energy, potential enstrophy, and the buoy-

ancy variance at each surface. At each wavenumber k,

these are

Ek5
1

2H

ðz1
z2

�
f 2

N2
jc0j2 1k2jcj2

�
dz , (5)

Zk 5
1

2H

ðz1
z2
jqj2 dz, and (6)

B6
k 5

1

2
jb6j2 . (7)

Summing each quantity over (k, l) gives the total in-

variant.

We seek to define a complete basis that diagonalizes

the energy. This can be done in infinitely many ways.

Our strategy is based on the following principles: (i) we

regard the energy as a functional, not of the stream-

function, but of the PV and of the SBs; and (ii) we exploit

standard results on the simultaneous diagonalization of

quadratic forms. Principle (i) is grounded in the quasi-

geostrophic model, which makes it explicit that PV and

SBs, taken together, make up the set of dynamical var-

iables. Thus, the contribution of the SBs to the dynamics

is recognized; as a result, the bases we obtain naturally

represent data with nonzero surface buoyancies. Re-

garding (ii), we recall a classical result from linear alge-

bra: whereas there are infinitelymany bases diagonalizing

a quadratic form xTAx, where A is a symmetric positive

definite matrix, only one of these bases also diagonalizes

another quadratic form xTBx (e.g., Horn and Johnson

1990). This is simply found by solving the generalized

eigenvalue problem Bx 5 lAx. An analogous result

applies to linear operators (see, e.g., Goldstein 1980).

Similarly, here we can define a unique basis by insisting

that it diagonalizes another quadratic form in addition

to the energy Ek. A natural choice for this is a ‘‘gener-

alized potential enstrophy’’ that combines the remaining

invariants into a single quantity,

Pk [Zk1a1B
1 1a2B

2 , (8)

where a6 . 0 are (nondimensional) undetermined

weights, the choice of which will be discussed later. This

approach yields a unique basis for fixed a6.
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To proceed, we require four objects: a vector structure

that combines the SBs and interior PV, an inner product

that operates on this vector, and two operators (analo-

gous to the matricesA andB above) that give the energy

and generalized potential enstrophy in terms of the in-

ner product. The construction of these objects, and the

derivation of the generalized eigenvalue problem that

simultaneously diagonalizes Ek and Pk, is relegated to

appendix A. The outcome is the eigenvalue problem�
f 2

N2
f0
n

�0
2 k2fn 52m2

nfn

with
f 2

N2H
f0
n 5 6

m2
n

a6

fn at z5 z6 , (9)

where the eigenvalues mn and eigenfunctions fn(z) are

purely real. The eigenfunctions describe the vertical

structure of the streamfunction of each mode; they are

orthonormal in the sense that (cf. 5)

1

H

ðz1
z2

�
f 2

N2
f0
mf

0
n 1k2fmfn

�
dz5 dmn . (10)

The choice of normalization, and two additional orthog-

onality conditions, is discussed in appendix A; the above

relation has the advantage that the weights a6 do not

appear.

The eigenvalue problem (9) is a key result of the pa-

per, and its eigenfunctions fn(z) can be used as a pro-

jection basis. Given a streamfunction c, one can write

c5 �
n
anfn , (11)

where an are amplitude coefficients. Using the orthog-

onality relation (10), the amplitudes are given by

an5
1

H

ðz
1

z2

�
f 2

N2
f0
nc

01 k2fnc

�
dz (12)

(alternate forms of an are also possible, using the other

orthogonality conditions presented in appendix A). The

energy and generalized potential enstrophy are then

Ek 5
1

2
�
n
janj2 and Pk 5

1

2
�
n
m2
njanj2 , (13)

respectively.

Note that, even though the eigenvalue problem (9)

is not of the standard Sturm–Liouville form, because

of the presence of the eigenvalue m2
n in the boundary

conditions (a condition that also arises in the free-

boundary baroclinic instability problem considered by

Ripa 2001), the basis of eigenvectors can be shown to

be complete; this is discussed further in appendix A.

Lastly, note that our choice of orthogonality conditions

implies slightly unfamiliar dimensions for the eigen-

functions. Because [q], [b6] ; [T21] and [m] ; [L21]

(where T is time, L is length, and braces mean ‘‘di-

mensions of’’), the orthogonality condition (10) de-

mands [f]; [L].1 In the next section, the problem will

be analyzed in an appropriate nondimensional form.

3. Structure of the surface-aware modes
and special cases

The approach described above provides a family of

bases parameterized by the values of a1 and a2. In

principle, different values can be chosen for different

wavenumbers k; here, however, we restrict attention to

choices of a6 that are independent of k. To clarify some

general properties of the new modes, we first recast the

eigenvalue problem in nondimensional form with the

substitutions z1Hz, k1 f/(N0H)k andm1 f/(N0H)m,

where N0 is a typical value of N; thus the wavenumber

and eigenvalue are scaled by the approximate de-

formation length, N0H/f. The nondimensional eigen-

value problem (9) then becomes

(sf0
n)

052l2nfn

with sf0
n5 6

l2n 1 k2

a6

fn at z5 0,21,

where s5
N2

0

N2(z)
(14)

and we have defined an alternative eigenvalue ln such

that

m2
n5 k2 1l2n . (15)

Written in terms of ln, the eigenvalue equation takes the

form of the standard vertical mode equation, but with

more complicated boundary conditions.

Analysis of the new eigenvalue problem (14) is com-

plicated by its dependence on three independent pa-

rameters: k, a1, and a2. For each choice of parameters,

there is an infinite set of eigenvalues. Since the problem

depends on the two weights a6 in a nearly equivalent

way, we proceed first by setting the weights equal and

defining a[ a1 5 a2 (a case in which the weights differ

1 One indirect consequence of this choice is that the expan-

sion coefficients an are identical for both the streamfunction

c(z) and the potential vorticity q(z). This is in contrast to the

typical method of expansion in the standard vertical modes

Fn(z) from (1): if c(z)5�nCnFn(z) and q(z)5�nQnFn(z), then

Qn 52(k2 1 l2n)Cn (e.g., Hua and Haidvogel 1986).
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will be considered in a later subsection). The nature of

the eigenproblem is then largely determined by the size

of the boundary condition coefficient m2
n/a: when

m2
n/a/0, the boundary conditions revert to the standard

case f0
n 5 0 at the top and bottom, while when m2

n/a/‘,
the boundary conditions become fn 5 0 at the top and

bottom. However, more subtle possibilities arise as well

because, unlike in the standard vertical mode problem,

ln may be imaginary (although mn is always real). When

ln is real, the modes are oscillatory, but when it is

imaginary, the modes are evanescent—these can be in-

terpreted either as surface modes or as extensions of the

barotropic mode.

This interpretation is suggested by examining the ei-

genvalue problem in two limiting regimes:

k2 � a: modes with real l satisfy the simplified

boundary condition (sf0
n)56l2nfn/a at z 5 0, 21

which further reduces to f0
n 5 0 for a � 1, corre-

sponding to the standard baroclinic modes.2 These

are complemented by a barotropic mode for which

the first approximation l 5 0 can be refined to the

purely imaginary l5 ik
ffiffiffiffiffiffiffi
2/a

p
.

k2 � a: In this case, almost all modes have m2
n 5

k2 1 l2n � a and hence satisfy the simplified bound-

ary conditions fn 5 0 at z 5 0, 21. There are two

additional modes, however, for which m2
n 5O(a)

and hence l ; ik. These solve

(sf0
n)

02 k2fn ’ 0

with sf0
n 5 6

m2
n

a6

fn at z5 0, 21, (16)

and can be recognized as surface modes, with

zero interior PV.

a. Analytical solutions for constant N

In the special case of constant stratification, or s 5 1,

the eigenvalue problem (14) can be solved in closed

form. Writing the solutions as

fn 5A cos(lnz)1B sin(lnz) ,

where A and B are integration constants, and imposing

the boundary conditions leads to an algebraic equa-

tion for ln, which may be either real or imaginary. For

l2n . 0, the characteristic equation (dropping the sub-

script n) is

tanl5
(a1 1a2)l(l

21 k2)

(l21 k2)22a1a2l
2
. (17)

For l2 , 0 we define ~l5 il and obtain

tanh~l5
(a1 1a2)

~l(k22 ~l
2
)

(k2 2 ~l
2
)21a1a2

~l
2
. (18)

Equations (17) and (18) are suitable for a graphical

analysis. Figure 1 shows that there are infinitely many

solutions to (17) (top panel) and one or two solutions

to (18) depending on a6 (bottom panel; in both cases we

set a [ a1 5 a2). An important parameter is the ratio

of the slopes of the right- and left-hand sides of (17) and

(18) at l 5 0, which in both cases is

a1 1a2

k2
[ ~k22 .

When ~k, 1 there is only one solution to (18), and there

is a solution of (17) with l , p/2. On the other hand, if

FIG. 1. Graphical solutions for eigenvalues with constant N for

k 5 1. (left) The left- and right-hand sides of Eq. (17) and (right)

Eq. (18) are shown.

2 This approximation is not uniform in n but breaks down for

highly oscillatorymodes, with ln5O(a), which satisfyf0 5O(a) 6¼
0 at z 5 0, 21 and thus differ from the standard high-n baroclinic

modes.
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~k. 1, there are two solutions to (18) (note that the

maximum of the right-hand side of (18) is 1), and there

may or may not be a solution of (17) for l , p/2.3

The solution to (18) gives either a generalization of

the barotropic mode, in the case of a single solution, or

two modes that capture the vertical structure of the

surface modes. Setting a[ a1 5 a2, these solutions are

plotted as functions of ~k in Fig. 2: there are two solutions

when ~k. 1, but only one otherwise. The limiting solu-

tions discussed in the previous section can be derived

explicitly. In the limit ~k2 5 k2/(2a) � 1, the single so-

lution of (18) is given by ~l; k
ffiffiffiffiffiffiffi
2/a

p
, with eigenfunction

f } 1, which can be interpreted as the barotropic mode.

For ~k2 � 1, the two solutions can be identified as sur-

face intensified modes, one symmetric and the other an-

tisymmetric about the center of the domain, explicitly

given by

f0 } cosh

�
k

�
z1

1

2

��
and f1 } sinh

�
k

�
z1

1

2

��
,

with eigenvaluesm0/a5 k tanhk andm1/a5 k cothk. For

k� 1, the eigenvalues are nearly identical, so that linear

combinations of the eigenfunctions will also satisfy the

eigenvalue problem—in particular, one can construct

separate upper-surface and lower-surface modes. For

real l, the right-hand side of (17) tends to zero for both

large and small k, leading to eigenvalues ln 5 np, n5 1,

2, . . . . The eigenfunctions, however, differ in the two

cases: for ~k � 1, they have the standard form fn } cos

(npz), but for ~k � 1, they are fn } sin(npz). The first

four modes, for a 5 1 and a range of k are plotted in

Fig. 3.

b. An oceanic special case

Here we consider a case that is potentially the most

relevant to the ocean, where shears near the surface may

lead to surface-intensified modes, while the quiescent

abyss may be more naturally represented by the stan-

dard boundary condition, f0 5 0 at the bottom. The rel-

evant limits for this case are a1 � 1 and a2 / ‘, in
which case the eigenvalue problem reduces to

(sf0
n)

052l2nfn, with fnjz505 0, f0
njz5215 0,

and (19a)

(sf0
0)

02 k2f05 0,

with sf0
0jz505

m2
0

a1

f0, f0
0jz521 5 0. (19b)

to leading order in a1. The solutions fn, n 5 1, 2, . . . to

(19a) describe interior modes, while f0 is the solution

to (19b) with m2
0/a1 5O(1) and represents a zero PV,

surface-intensified mode.

Note that the structure of the interior modes, like that

of the standard baroclinic modes, is independent of k;

the normalization of the mode energy that we have

chosen however leads to k-dependent normalization

factors. Since we concentrate on the leading-order ap-

proximation to the eigenvalue problem as a1 / 0, all

the modes, including the surface-intensified one, are

independent of a1 and so are the normalization factors

(because the energy does not involve a1). Only the ei-

genvalue m2
0 depends (linearly) on a1, although the

approximation m2
0 5 0 can be made to conclude, in par-

ticular, that the surface-intensified mode has a general-

ized enstrophy which vanishes to leading order.

Recently, Scott and Furnival (2012) proposed to use

the eigenfunctions of (19a), forming what they term a

Dirichet basis, in conjunction with the barotropic mode.

While this set of functions, like that obtained by adding

a surface mode to the standard baroclinic basis (Lapeyre

2009), does not diagonalize the energy, it is remarkable

that this is achieved by the complete set of solutions of

(19a) and (19b), that is, by the Dirichlet basis plus a

surface mode.

FIG. 2. Solutions to (18), with k scaled by
ffiffiffiffiffiffi
2a

p
, the cutoff separating

cases with one or two solutions for imaginary l.

3 Note also that, if a1a2 . 4k2, the denominator of the right-

hand side of (17) goes to 0, but stays finite otherwise: the existence

of a 0 in the denominator determines whether there is a solution to

(17) with l , p/2 in the case ~k22 . 1.
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For constantN (or s5 1), the solutions to (19) may be

computed explicitly; they are

f05A cosh[k(z1 1)], A[

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

k sinh(2k)

s
, and (20a)

fn5B sin

��
n2

1

2

�
pz

�
, B[

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p2(n2 1/2)21 k2

s
,

(20b)

with eigenvalues m2
0 5a1k tanhk (corresponding to

~l ’ k2 (a1/2) tanhk) and ln 5 (n 2 1/2)p with n 5
1, 2, . . . . Their dimensional form is given by (3) in the

introduction. Again, note that the dependence on k of the

coefficient for the interior modes is due to the normali-

zation choice but is irrelevant for the projection of data.

4. Application to the projection of simulated data

As a demonstration, we use the new basis to project

the energy in three simulated turbulent flows, each

generated by baroclinic instability of a fixed mean state

in a horizontally periodic quasigeostrophic model. The

numerical model is spectral in the horizontal, and

finite-difference in the vertical—it is the same as used

in, for example, Smith and Ferrari (2009). Energy is dis-

sipated by linear bottom drag, and enstrophy is re-

moved by a highly scale-selective exponential cutoff

filter (Smith et al. 2002). In all cases, the model reso-

lution is 512 3 512 3 100.

We analyze results from three simulations. These

first two are based on highly idealized flows, and will be

used to demonstrate the fundamental structure of the

basis, and how the partition of energy depends on both

the nature of the flow, and on the choice of the non-

dimensional weights a6. The third simulation is based

on a more realistic, ocean-like mean state, and is de-

signed to explore the oceanic special case considered at

the end of the last section. To project the simulated

data onto the new basis, one must consider the gener-

alized matrix eigenvalue problem that results from the

particular vertical discretization used in the model. The

details of the construction of the basis in this dis-

cretization are given explicitly in appendix B.

a. Idealized ‘‘interior’’ and ‘‘surface’’ baroclinic
instability simulations

Both idealized flows have constant stratification s5 1,

a ratio of domain scale to deformation scale equal to 4

FIG. 3. The first four eigenfunctions fn for the constant-N case, with a1 5 a2 5 100 and k 5 1, 30, 100.
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FIG. 4. Energy spectra for the (left) BC, (middle) Eady, and (right) Ocean simulations. (top) Spectra for selected vertical levels (see

legend). (middle) Spectra from fields projected onto standard vertical modes (modes 1, 2 and 3–10 are shown). (bottom) Spectra from

fields projected onto new modes, with a1 5 a2 5 106 for the BC1 case, a1 5 a2 5 1024 for the Eady case, and a1 5 2, a2 5 106 for the

Ocean case.
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and b5 0, but mean states that generate different types

of baroclinic instability. The first simulation, is forced by

an ‘‘interior instability,’’ with a mean flow that projects

onto the first (standard) baroclinic mode,U(z)5 cospz.

Flows of this type are unstable owing to a sign change of

the mean interior PV gradient, but have no mean SB

gradients, since B6
y }Uzjz50,21 5 0—we refer to this

simulation as BC1. The second flow is forced by an Eady

mean state, with a linear mean shear U(z) 5 z, so the

instability is driven by mean SB gradients B6
y 5 1, re-

sulting in energy generation near the two surfaces.

The simulations are run to statistically steady state,

and snapshots of the steady-state prognostic fields of

each are used to compute horizontal (total) energy

spectra. The upper panels of Fig. 4 display the horizontal

spectra for the BC1 (left) and Eady (middle) simulations

for a few vertical levels z (the right-hand column plots

will be discussed in the next subsection). It is immedi-

ately apparent that the energy in the BC1 simulation is

spread rather evenly over depth; by contrast, the energy

in the Eady simulation is largely concentrated at the

two surfaces. The panels in themiddle row of Fig. 4 show

the first few modes of the energy projected onto the

standard basis, fn(z) } cos(npz), n 5 1, 2, . . . (the baro-

clinic modes) and f0 } 1 (the barotropic mode). Con-

sistent with the z-dependence of the energy in the upper

panel, the energy in BC1 is largely captured by the

barotropic and first baroclinic modes. By contrast, the

energy in the Eady case seems to be distributed evenly

across the barotropic and a large number of baroclinic

modes, effectively demonstrating the failure of the stan-

dard modes to provide any insight into the energy parti-

tion in a case with large energy near the surfaces.

The bottom panels of Fig. 4 display the energy spectra

for the first few modes in the projection onto the new

basis (BC1, left panel; Eady,middle panel). Anticipating

that the BC1 simulation is best represented by the

standard baroclinic basis (recovered from the general-

ized basis in the limit a6 � 1), while the Eady simula-

tion is best represented on the generalized basis in the

limit a6� 1, we chose a65 106 for the former anda65
1024 for the latter. As is apparent, the generalized basis

with the appropriate weights more efficiently captures

the surface energy in the Eady simulation much better

than the standard basis.

To quantify the choice of a6, we consider the pro-

jection of energy in both the BC1 and Eady simulations

with the generalized basis using weights ranging from

a65 1023 to 103 (always holding a5 a15 a2) and ask,

for what weights is the energy captured by the least

number of modes? A simple diagnostic for this, the ratio

of the energy contained in the first two modes to the

total energy as a function of a, is shown in Fig. 5. The

results indicate that extreme values of a are best suited

for theBC1 (a/‘) and Eady (a/ 0) simulations, thus

confirming our choice for Fig. 4. In the next section

we examine a third simulation where the interior and

surface contributions are more balanced, so that in-

termediate values of a6may be expected to be relevant.

b. A semirealistic oceanic simulation

The third simulation is driven by a mean state typical

of the midlatitude ocean. It uses an exponential mean

stratification N2 5N2
0 exp(z/h), so that s 5 exp(2z/h),

with h 5 0.2, intended to represent the pycnocline. The

mean shear isU(z)5 h(z1 12 h) exp(z/h)1 g(z)1 C,

where g(z) is the first standard baroclinic eigenfunction

of the operator (sg0)0 52l2g, with g0 5 0 at z5 0,21, so

thatU is surface-intensified withU0(0)5 1 andU0(21)5
0. The constant C is set to ensure

Ð 0
21 U(z) dz5 0. Both

U(z) andN(z) are plotted in the top panel of Fig. 6. Note

that U is baroclinically unstable because of both an in-

ternal sign change of the mean PV gradient, and to the

interaction of the mean interior PV gradientQywith the

mean upper SB gradient B1
y . Consistent with the as-

sumptions of the ocean modes, the lower SB gradient

B2
y 5 0. The ratio of the domain scale to the first baro-

clinic deformation radius (as determined by l21) is 5.

The nondimensional Coriolis gradient bU0L
22
D 5 1:2,

and energy is dissipated by a linear drag rLdU
21
0 5 0:4.

The steady-state turbulent flow has a complicated ver-

tical structure, as evidenced by the vertical slice of the

PV shown in Fig. 7.

The energy spectra for the flow are shown in the right

panels of Fig. 4, just as for the BC1 and Eady cases. The

FIG. 5. Ratio of the energy content of the first two modes to the

total energy as a function of a 5 a1 5 a2 for the BC1 and Eady

simulations, and as a function of a 5 a1 (with a2 / ‘) for the
Ocean simulation.
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energy spectra by vertical level again indicates a very

surface-intensified flow, but this time, the flow falls off

from a 25/3 spectral slope to a more energetic interior

than was the case for the Eady simulation. Projection

onto the standard vertical modes (middle right panel)

indicates a peak in the barotropic mode, but otherwise

energy is spread evenly over a large number of baro-

clinic modes. Projection onto a generalized basis is shown

in the bottom right panel. For this simulation with no

buoyancy activity at the bottom, it is natural to use a

basis with a2 / ‘. The maximum in the ratio of the

energy in modes 1 and 2 to total energy shown in Fig. 5

suggests that the value a 5 a1 5 2 is appropriate. The

first few modes of the corresponding basis are shown in

the bottom panels of Fig. 6. This is the basis chosen for

Fig. 4, and indicates that the projection is very effective,

with most of the energy captured by the surface and

modified first baroclinic modes. An alternative basis is

the ‘oceanic’ basis of section b which takes a1 � 1. The

spectra obtained with this basis (not shown) are essentially

identical to those obtained for a15 2. This suggests that

the results are insensitive to the precise value of a1 and

that ‘‘oceanic’’ basis may be a good default choice to

analyze typical ocean data.

FIG. 6. (left) N2(z) and U(z) for the Ocean simulation. (middle) The surface mode f0(z) with a2 / ‘ and a1 � 1 (solid) and a1 5 2

(dashed), for a range of wavenumbers k (see legend). The k5 0.1 lines are on top of each other. (right) The first three interior modes with

a1 � 1 and a2 / ‘.

FIG. 7. Vertical slice of PV snapshot from the Ocean simulation. The flow has a complicated structure in the upper

ocean, masking a more uniform flow at depth.
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5. Conclusions

This paper presents a family of basis functions

designed for the projection of three-dimensional ocean

velocity data. The bases diagonalize both the quasigeo-

strophic energy and a generalization of the quasigeo-

strophic potential enstrophy that includes contributions

from the buoyancy variances at the upper and lower

surfaces. The family of bases is parameterized by the

weights a6 assigned to the surface buoyancy variances—

the standard baroclinic modes are recovered in the limit

a6 / ‘, but the modes obtained in the opposite limit

allow for efficient representation of the surface buoy-

ancy variances. The bases should prove advantageous

in a number of applications, from projection of obser-

vations to the derivation of highly truncated theoretical

models. Their main drawback compared to the stan-

dard basis of baroclinic modes is the dependence of the

modes on the wavenumber k, which implies a lack of

separation between the horizontal vertical structure in

physical space. This drawback is unavoidable if some of

the modes are to reflect the SQG contribution; it is

minimized for the ‘‘oceanic’’ basis obtained for a1 / 0,

a2 / ‘ since all but one modes have a k-independent

structure.

The limit a2 / ‘ would seem a natural choice of

generalized basis for typical ocean conditions takes be-

cause of the relative lack of buoyancy activity at the

bottom. Regarding a1, an optimal value can in principle

be chosen by inspecting the spectra for a range of values

or by using a diagnostic such as that of Fig. 5. However,

some simpler rules of thumb would be desirable. In-

tuitively, one might expect that the optimal values of

a6 are those that balance the contributions of the ens-

trophyZk and of the surface-buoyancy varianceB
1
k in the

generalized enstrophy Pk 5Zk 1a1B
1
k . Some support

for this intuition is provided by Fig. 8 which showsZk, Bk

and their ratio as a function of k for the ocean simu-

lation. The figure shows a ratio Zk/B
1
k that is around 5

for a broad range of k, roughly consistent with the value

a1 5 2 indicated by Fig. 5. There is, however, a peak

around k 5 4 and a substantial increase for k * 20,

which suggest that better results could be obtained by

allowing a1 to depend on k. We have not explored this

intriguing possibility here.

As an alternative to the ratio Zk/B
6
k , it would be

useful to relate more directly the value of the weights

a6 most appropriate to project a flow on the large-scale

characteristics of the flow. Since for flows driven by in-

stabilities, Zk and B6
k are related to the large-scale PV

and surface-buoyancy gradientsQy andB
6
y , it is plausible

that the ratioQy/B
6
y can be used as a guide for the choice

of the weights.

The advent of higher-resolution satellite observations,

expected when the Surface Water Ocean Topography

satellite becomes operational (Fu and Ferrari 2008), will

improve our understanding of upper-ocean submesoscale

dynamics only to the extent that we can connect surface

observations with the three-dimensional structure of the

flow below the surface. The basis derived and demon-

strated here may prove a useful tool in this goal.
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APPENDIX A

Derivation and Properties of the Modes

a. Definitions

To construct the generalized eigenvalue problem, we

define a vector, an inner product, and two operators, as

follows.

1) GENERALIZED POTENTIAL VORTICITY VECTOR

Q[

2
64 b1

q(z)

b2

3
75. (A1)

FIG. 8. Enstrophy Zk and surface buoyancy variance B1
k as

functions of wavenumber k for the Ocean simulation (lines with

slopes 21 and 25/3 are included for reference). The ratio Zk/B
1
k ,

also shown, can be used to guide the choice of the weight a1 for an

effective projection basis.
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2) INNER PRODUCT

hQ1,Q2i5
1

H

ðz1
z2

q1q2 dz1 b
1
1 b

1
2 1 b

2
1 b

2
2 , (A2)

where an overbar denotes a complex conjugate. The

specific choice of inner product is unimportant for the

final results; this seemed the simplest choice.

3) ENERGY AND GENERALIZED POTENTIAL

ENSTROPHY OPERATORS

EQ5

2
64 c(z1)

2c(z)

2c(z2)

3
75 and PQ5

2
64a1b

1

q(z)

a2b
2

3
75, (A3)

where the streamfunction c is the solution of (4), given q

and b6, and the operators E and P are positive definite

and self-adjoint (see below).

With the four definitions above, the energy and gen-

eralized potential enstrophy are

Ek 5
1

2
hQ, EQi and Pk 5

1

2
hQ,PQi , (A4)

respectively. The first of these expressions is obtained

after an integration by parts, while the second is imme-

diate.

Notice that our vector Q bears a resemblance to the

generalized potential vorticity of Bretherton (1966),

QB5

�
f 2

N2
c0
�0
2 k2c2

f 2

N2
c0d(z2 z1)1

f 2

N2
c0d(z2 z2) .

The formalism presented in this paper treats the PV and

SBs as independent functions, however.

The generalized eigenvalue problem

The basis we seek is now given by the eigenfunctions

jn of the generalized eigenvalue problem

Pjn 5m2
nEjn , (A5)

where the eigenvalues m2
n are positive for all n. To ob-

tain an explicit form for (A5), we define the components

of jn 5 [j1
n , jn(z), j

2
n ]

T analogous to those of Q, and

scalar functions fn(z) analogous to the streamfunction

c, such that Ejn 5 [fn(z
1 ),2fn(z),2fn(z

2)]T. In terms

of these, the eigenvalue problem reads

2
64a1j

1
n

jn(z)

a2j
2
n

3
755m2

n

2
64 fn(z

1)

2fn(z)

2fn(z
2)

3
75. (A6)

Using (4) to substitute fn for the components of jn, the

problem can be written as in (9), whose eigenfunctions

fn are purely real. The three components of jn may be

derived from fn using (A6), although in practice this is

not necessary; data can be projected using the scalar

eigenfunctions fn.

b. Orthogonality relations

By construction, the eigenfunctions are orthogonal

for the products h�, E�i and h�, P�i. The choice of nor-

malization for the eigenvectors jn is inconsequential,

but it is convenient to fix the energy of each mode to be

unity, that is, to take

hjm, Ejni5
1

H

ðz1
z2

�
f 2

N2
f0
mf

0
n 1 k2fmfn

�
dz5 dmn .

(A7)

The expression in terms of fm and fn is found by using

(A6) and (9) to eliminate jm, jn and the eigenvalues,

then integrating by parts, which removes boundary terms.

Correspondingly,

hjm,Pjni5
m2
n

H

ðz1
z2

�
f 2

N2
f0
mf

0
n 1 k2fmfn

�
dz5m2

ndmn

(A8)

and

hP21Ejm, Ejni5
1

H

ðz1
z2

fmfn dz

1
fm(z

1)fn(z
1)

a1

1
fm(z

2)fn(z
2)

a2

5m22
n dmn . (A9)

The latter relation (A9) has the advantage of involving

only the undifferentiated streamfunctions, while the first

relation (A7) is independent of the eigenvalues and a6.

The basis of eigenfunctions can be used to project

data: given Q or c, we can write

Q5 �
n
anjn (A10)

and expand c as in (11). The amplitude coefficients an
can be found using one of the orthogonality relations

(A7) or (A8); the expression (12), for example, follows

from (A7), since an 5 hjn, EQi.
As mentioned at the end of section 2, our choice of

orthogonality conditions implies unfamiliar dimensions

for the eigenfunctions. Expanding on those comments,

note that because [q], [b6]; [T21] and [m]; [L21], (A5)

implies that [j] ; [L22][f]. The orthogonality condition

(10) demands [f] ; [L] and therefore [j] ; [L21].
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c. Properties of the operators and eigenfunctions

Here we prove a few relevant facts about the eigen-

vectors and eigenvalues of (A5). First, we show that

the operator E is self-adjoint, for example, hjm, Ejni 5
hEjm, jni. Expanding the left-hand side and integrating

by parts, we find

hjm, Ejni5
1

H

ðz1
z2

2jmfn dz1 j
1
mfn(z

1)2 j
2
mfn(z

2),

5
1

H

ðz1
z2

2fn

�
f 2

N2
f
0
m

�0
1 k2fmfn dz1

f 2

HN2(z1)
f
0
m(z

1)fn(z
1)2

f 2

HN2(z2)
f
0
m(z

2)fn(z
2),

5
1

H

ðz1
z2

f 2

N2
f0
nf

0
m 1k2fmfn dz,

5 hEjm, jni

since the expression on the penultimate line is clearly

symmetric. The self-adjointness of P as well as the posi-

tive definiteness is obvious.

To establish the completeness of the basis of the ei-

genvector jn, we rewrite the eigenvalue problem in the

standard formAjn 5m22
n jn, whereA5 P21E is positive

definite and self-adjoint. This operator is compact when

acting on the Hilbert space of vectors Q with bounded

norm hQ, Qi. This is because it is essentially an integral

operator with continuous kernel—the Green’s function

of the operator (sf0)02k2f (e.g., Debnath and Mikusi�nski

1998, section 4.8). TheHilbert–Schmidt theorem (Debnath

and Mikusi�nski 1998, section 4.10) then applies to guar-

antee that every vector Q has a unique convergent ex-

pansion in terms of the jn.

APPENDIX B

Discrete Eigenvalue Problem and Numerical
Computation of Modes

Here we construct the discrete version of the eigen-

value problem. Assuming a constant discrete coordinate

zj on J grid points, with z1 5 0 at the top, zJ 52H at the

bottom, and a constant finite difference Dz 5 zj 2 zj11,

the mean stratification is N2
0 5 (g/r0)Dr/Dz, where

Dr5 rJ 2 r1 is the average background density jump

between levels, rj5 r(zj) is the background density, and

r0 is the average density. The parameter s5N2
0 /N

2 is

discretized as sj 5 s(zj11/2)[Dr/(rj11 2 rj), thus sj is off-

set by a half space from rj. In this discretization, the SBs

and PV are

b1 5
f 2

N2
0H

sc0jz50/L22
D

s1
d
(c12c2) ,

b2 5
f 2

N2
0H

sc0jz521/L22
D

sJ21

d
(cJ21 2cJ), and

q5

 
f 2

N2
0

sc0
!0

2 k2c/L22
D

1

d2
[sj21cj21 2 (sj21 1 sj)cj

1 sjcj11]2 k2cj ,

where d[ Dz/H and LD [ N0H/f. Nondimensionalizing

k1[L21
D ]k, c 1[L2

DT
21]c and (q, b6) 1 [T21](q, b6)

(for some time scale T), the discrete PV/SBs and stream-

function are related as

Q5Ac ,

where

A5
1

d2

2
66666666664

ds1 2ds1 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

s1 2(s1 1 s21 d2k2) s2 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . . . . . . . . . . . . 0 sJ22 2(sJ221 sJ21 1 d2k2) sJ21

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 dsJ21 2dsJ21

3
77777777775
. (B1)
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Defining the operators

B5

0
BBBBBBB@

1 0 . . . 0

0 d . . . 0

0 . . . d 0

0 . . . 0 1

1
CCCCCCCA

and

F5

0
BBBBBBB@

1 0 . . . 0

0 21 . . . 0

0 . . . 0 21

1
CCCCCCCA
, (B2)

one sees that B plays the part of the inner product, for

example, hj1, j2i/jT1Bj2 and F accomplishes the awk-

ward sign changes in the definition of the operator E.
The energy in wavenumber k is

Ek5
d

2

"
�
J21

j51

sj

����cj2cj21

d

����
2

1 k2 �
J21

j52

jcjj2
#
5

1

2
c*FBAc .

For consistency with the theoretical development in

section 2, we may also write the energy in terms of the

vector Q 5 Ac,

Ek5
1

2
Q*BFA21Q5

1

2
Q*BEQ

where the symmetry of F andBwere used, and E[ FA21

is defined to make the discrete version of the energy

operator defined in (A3) perfectly clear.

Similarly, the generalized enstrophy in wavenumber

k is

Pk 5
1

2
Q*BPQ

where we define

P5

0
BBBBB@

a1 0 . . . 0

0 1 . . . 0

0 . . . 1 0

0 . . . 0 a2

1
CCCCCA

to make clear the analogy with the generalized enstrophy

operator defined in (A3).

Now note that BE and BP are both symmetric (the

former can be verified by checking that FBA is sym-

metric), so we can simultaneously diagonalize the two

quadratic forms Ek and Pk by solving the generalized

eigenvalue problem BPjj 5m2
jBEjj or, in matrix form

(BP)X5 (BE)XM2 ,

where X is the matrix with columns jj and M2 has m2
j

along is its diagonal and zeros elsewhere. Solutions to

this generalized eigenvalue problem obey the orthogo-

nality relations

XTBEX5 I and XTBPX5M2 , (B3)

which are analogous to (10) and (A8), respectively.

In practice, it is more convenient to define a stream-

function eigenfunction f such that Af 5 j, so that the

generalized eigenvalue problem can be rewritten as

FPAfj 5m2
j fj, or in matrix form

FPAF5FM2 , (B4)

where F has fj as its columns. In this case, the orthog-

onality relations become

FTFBAF5 I and FTPBA2F5M2 , (B5)

where we have used the fact that F2 5 I. Finally, writing

(B4) as F21(A21P21F)F 5 M2 and using the first re-

lation in (B5), we have the equivalent of (A9),

F21BP21F5M22 . (B6)

The expansion in the basis of eigenvectors fn of dis-

crete data is readily expressed in terms of the matrix F.

Denoting by c the column vector of the streamfunction

data (Fourier transformed in the horizontal) c(zj), the

expansion reads

c5Fa , (B7)

where a5 (a1, . . . , aJ)
T is the column vector of the mode

amplitudes. These amplitudes are obtained from the

data using the relation

a5FTFBAc ,

which is deduced from (B5) and (B7). The total energy

at a given wavenumber k,

Ek 5
1

2
c*FBAc5

1

2
jaj2 ,

where * denotes the complex (conjugate) transpose, is

clearly the sum of the individual contributions janj2/2 of

each mode. Similarly, the generalized enstrophy,

Pk 5
1

2
Q*BPQ5

1

2
c*PBA2c5

1

2
a*M2a ,

is the sum of the contributions m2
njanj2/2.
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