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The effect of  the earth's rotation on the propagation of ocean 
waves over long distances 

G. E. BACKUS* 

(Received 5 April 1962) 

A~tract--The theory of group velocity is generalized to waves on curved surfaces, and applied to 
calculating the effect of the earth's rotation on the trajectory and wave vector of a wave packet 
whose waves have lengths much less than the radius of the earth and periods much less than one day. 
A geometrical description of the perturbed trajectory is given. If /2 is the angular velocity of the 
earth, g gravity, h the ocean depth, and k and oJ the wave number and frequency, the effects are of 
the order of t2 (h/g)~ and independent of co for shallow water waves; they are of the order of t2/o~ 
for deep water waves; and they are largest for waves with kh ~ 1"878973. 

1. I N T R O D U C T I O N  

IT IS the  pu rpose  of  the  p resen t  pape r  to discuss the effect of  the ea r th ' s  r o t a t i on  
on the p r o p a g a t i o n  o f  s m a l l - a m p l i t u d e  ocean waves over  long dis tances .  The  
p r o b l e m  is to discuss a d e q u a t e l y  the  j o in t  effect of  the sphe r i c i ty  o f  the  ocean 
surface and  r o t a t i o n  when the ver t ical  acce le ra t ion  o f  the fluid canno t  be .neglected. 

2. THE L O C A L  D I S P E R S I O N  R E L A T I O N  

Since we are  in te res ted  only  in waves much  shor t e r  than  a, the  radius  o f  the 
ear th ,  we can t r ea t  the  waves '  local b e h a v i o u r  as if  the ea r th  were plane.  Tl-,ere- 
fore, let  ~, y ,  $ be un i t  vectors  in a Car t e s i an  coo rd ina t e  sys tem,  :i po in t ing  up. 
Le t  x, y, z be the  co r r e spond ing  Car tes ian  coord ina tes ,  z vanishing a t  the  surface 
o f  the  u n d i s t u r b e d  ocean.  Le t  u& -~ vy -~- w$ be the ve loc i ty  of  the water ,  p i ts 
pressure ,  and  p its dens i ty .  Le t  Pl  be pp-1  _~ gz.  Let  f l  be the angu la r  ve loc i ty  
o f  the  ea r t h ' s  r o t a t i on ,  and  f ~ 21l. Then,  ignor ing  the ea r th ' s  spher ic i ty ,  the  
local  equa t ions  o f  m o t i o n  are  these : 

5 u ÷  5v_~ 5 W _ _ o ,  

5 U ~P 1 
- -  - - f ~ v + f y W - -  
bt b x  

bt" bpl L u  + ~ - A w -  ~y, 

- f ~  u + f x  v + ~w -_  _ ~_p_~. 
5t 5z  
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In equat ions  (1) terms o f  second order  in the veloci ty have  been neglected. The  
linearized b o u n d a r y  condi t ions  are 

bpl 
- -  g w  at z = 0 ,  (2) 

bt 

and w = 0 a t  z = --  h, the ocean b o t t o m  
We seek solutions whose t ime and space dependence  is F ( z ) e  - i '° t~ i/x; that  

is, we consider  plane waves, and or ient  our  coordinate  sys tem so tha t  
b ~ y  = 0. Then equat ions  (1) become 

i lu + D w  = O, " ]  

- -  icou - -  f~  v q- f y  ~ . . . .  i lpl ,  

f z  u - -  icov - - f x  w = 0, (3) 

- -  f y  u + f~, v - -  icow = - -  Dp l .  

Here D is d / d z .  From the first three of  equat ions (3), 

i 
u = -i O w ,  

v = - -  ~ v/' + "f-f~ Dw, (4) 
CO C o l  

col ~-2 (w2 - - L 2 )  Dw. 

Then f rom the four th  of  equat ions (3), 

(,o~ - ] ; ~ )  D~ w - -  2i / fxf~ Dw - -  l * (co~ - - f f l )  w ----- 0. (5) 

Thus,  since w ( - -  h) = 0, 

w = A [e '+  (~+ h) _ e " -  (~ + h~] eUX - i,o, 

where A is an undetermined  cons tan t  and 

n:L I f x L  ~ co (~ - Z  2 - L ~ )  ~' 

- I  = co~ __ f~  • (6) 

Then the bounda ry  condi t ion at  z ~- 0 implies 

co (co2 _ f ~  _ f f l ) ~  t anh  [hlco (co~ _ f 2  _ f 2 ) i ]  
g l -  o f y  = [ ~o ~ -_---f~- j • (7) 

Equat ion (7) is the dispersion relation lbr surface waves travelling in the 
direct ion on the plane surface of  a s teadi ly  ro ta t ing  ocean of  dep th  h. For  any  
fixed l, there are infinitely m a n y  real values of  co which sat isfy equa t ion  (7) and 
the inequal i ty  co~ < f x  2 + f , z .  These values of  co have a poin t  o f  accumula t ion  a t  

= f , .  For  each o f  them, n+ and n_  are pure  imaginary ,  so the ampl i tude  of  
the d is turbance  does not  die out  with depth,  no m a t t e r  how small l is. As f l  
approaches  zero, these waves app roach  s teady  flows, so they are not  the analogues  
in a rotat ing fluid of  the o rd inary  water  waves. They  deserve more  a t ten t ion ,  
but  are not  re levant  to the subject  o f  the present  paper .  
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For any f ixed/ ,  there is precisely one positive oJ which satisfies equation (7) 
and the inequality o~ 2 > f~2 + f z. This gives the analogue of ordinary water 
waves in a rotating fluid. Henceforth, we shall consider only waves whose fre- 
quencies are much larger than (f~z + f  y2 +.f2),,. 

When (f;2+fyZ + f 2 ) <  ~2, equation (7) can be solved explicitly for oJ. 
The result is 

co = (gl tanh hi)" - - ~  tanh (lh) + 0 (fz). 

If the wave has propagation vector (wave vector) l& + my, with m # O, this 
equation is 

~o = gt (l s + m2)~ tanh~ h (l 3 + m2) ~ + 

[ml2~ --ll2y~ 
+ \ (ffSqSm~ ] t anhh  (12 + mZ) ~ + 0 (03) .  (8) 

3. THE GROUP VELOCITY ON A CURVED SURFACE 

The extension of  the ideas of group velocity to short waves on a curved surface 
is closely connected with HAMILTON'S ideas about the ray approximation in optics. 
Concerning the extent  to which the question has been settled by previous workers, 
for  example ECKART (1948, 1960), LANDAU and LIFsCmrz (1951, 1959), LIGHTHILL 
(1955, 1960), URSELL (1960), and WHITHAM (1955, 1961a, b), the author  feels it 
appropriate to quote WmTHAM (1961a) : ' I t  is not always clear how much is 
implicit in the above references.' 

The central problem in a discussion of group velocity is to define it. Should 
the statement that  energy propagates with the group velocity be regarded as a 
theorem or as the definition of group velocity ? The latter point of view is the 
more physical one, but  it leads to the complication that group velocity must be 
derived anew for each kind of wave, and the fact that group velocity is doJ/dk 
for sound waves, Rayleigh waves, and ocean waves seems almost a coincidence. 
JEFFREYS (1956, p. 512) and WHrrHAM (1961a) suggest that the group velocity 
of waves with wave vector k in a dispersed wave train be defined kinematicaily 
as the velocity at which an observer must move if he is always to find around 
him waves of the given wave vector k. From this definition, the general validity 
of the expression d~o/dk for the group velocity in a homogeneous medium follows 
immediately. The fact that  energy propagates with the group velocity becomes a 
theorem, proofs of which are given by JEFFREYS (1956, p. 514) and WHITHAM 
(1961a). If  this kinematic definition of group velocity is adopted, the group velocity 
is used to find the location of  the waves x~ith wave vector k at each instance, 
while the fact that  energy propagates with the group velocity is used to find the 
amplitude of the waves with wave vector k at each instant. In the present paper, 
we discuss only the location, not the amplitude, of waves propagating on a rotating 
earth, so we shall have no further concern with the energy theorem. 

The difficulty with Jeffreys' definition of group velocity is that it cannot be used 
to discuss wave packets which change their wave vector as they move; in fact, by 
JEFFREYS' definition such a situation can never arise. Consequently, JEFFREYS' 

discussion of wave packets cannot be extended to inhomogeneous media. LANDAU 
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and LIFSCHITZ (1951) and WHITHAM (1961a) have overcome this difficulty by 
showing that  for a dispersed wave train in an inhomogeneous dispersive medium, 
if waves of  wave vector k are known to be in a given small region a t  time to, then 
at  any later time there is a small region in which the wave vector of  the waves is 
determined, al though it may  not be k. The position of this pa tch  as a function 
of  time is determined by its initial position and the initial value of k, and is indepen- 
dent of  ampli tude (in the linear approximation)  and of the initial character of  the 
wave field outside the initial patch. The velocity of  this patch of wave vector 
information is defined to be the group velocity. With this definition of group 
velocity, the distribution of wave vectors with position in a dispersed wave train 
at  any instant  can be calculated from the group velocity and the initial distribu- 
tion of wave vectors, even in an inhomogeneous, flat medium. 

We propose to generalize LANDAU and LIFSCHITZ'S and WHITHAM'S idea 
slightly, so as to be able to use it on curved surfaces. Specifically, we need a tech- 
nique applicable to surface ocean waves on a rotat ing earth. The need for dealing 
with curved surfaces is obvious if we want to discuss transoceanic propagation.  
The need for dealing with inhomogeneities arises because the vertical component  
of  the earth 's  angular velocity varies with position. I f  we could assume that  the 
trajectories of  wave groups ( that  is, patches of  wave-vector  information) were 
great circles, the results of  the preceding section would suffice. As we shall see, 
the trajectories of  wave groups on a rotat ing earth deviate from great circles to 
first order in the angular velocity of  the earth. Thus the wave vector produced 
at any instant at a receiving station by a distant source will differ from that  on a 
non-rotat ing earth by two terms of first order in the earth 's  angular velocity; 
one term arises directly from the theory of waves on a flat ocean, discussed in 
section 2, and the other arises from the failure of  wave-group trajectories to be 
great circles. 

Consider a two-dimensional surface whose points are described by (not 
necessarily orthogonal) coordinates ql, q2. (The remarks which follow can be 
extended immediately to n-dimensional manifolds). Let x 1, x 2 be local Cartesian 
coordinates in the plane tangent to the surface at a point  P. Let xl, xz be unit 
vectors in the directions of  increase of  x 1 and x 2. We assume that  the surface is 
able to support  waves which are short compared to its radii of  curvature and which 
near P have the form A exp ( - -  iwt -~ ikl x I _4_ ik2 x2). Here A is a slowly varying 
amplitude ([VA[ < [kA[, [bA/bt[ < ~o IAI). The frequency ~o is a known function 
of the wave vector k =- k~ ~¢1 + k2 x2, which function may  also vary slowly with 
position and time : 

oJ --  F (qX, q2, t, k~, ks) (9) 

and [VF[ < [kr[ and [bF/bt[ < ~o IF[. 

A wave train whose spatial extent is of  the order of  the radii of  curvature of 
the surface, or whose history carries it over a region of such extent,  must  consist 
of  local sinusoidal pieces which fit properly together over the large region. Thus 
we assume that  the wave can be represented in the form 

A (qX, q2, t) e i 'S(qt 'ql ' t )  

where A is again a slowly varying ampli tude factor, and S is the phase of  the 
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wave train as a function of position and time. Then near position ql, qZ the wave 
has angular frequency 

bS 
O )  - -  

3t 
and the wave vector's components are 

" ~S  ~S~qJ 
k i : ~ = b q--i 3-x-i" 

Here we use the summation convention. The numbers Pl ---: ~S/~q 1, P2 = 3S/3q 2 
may be regarded as the covariant components of the local wave vector in the 
coordinate system q l  qZ since the relations connecting the k's and p's are 

= ~ x J k .  ki bq~J Pj, Pi = 

The frequency ~o can be expressed as a function of Pl, P2 instead of kx, k~ : 

oJ == H (q', qe, t, Pa, P2) (10) 

where H (ql. q~, t, Pl, P2) --- F (q~, q~, t, kl, k2). 

Equation (10) can be regarded as a first-order partial differential equation for the 
phase S 

3S _,_ H(q~,q2 ,  t, bS ~ S )  
3--/ ~-~i'~-~2 = 0. (11) 

The theory of the solution of (11) leads to the idea of group velocity quite 
independently of any energy or amplitude considerations. The relevant theorem 
is Pfaff's uniqueness theorem (COURANT and HILBERX, 1937)" suppose that S 
satisfies equation (11). Suppose that at time zero at position q0 ~, q0 * the values 
of S and ~S/'~q 1 and ~S//~q 2 are knox~n to be S o and p 0  p.O. Solve the following 
ordinary differential equations (the characteristic equations of (l l)) subject to the 
initial conditions qi (0) = qi, Pi (0) = pi °, S (0) = SO: 

dpi _ bH(q ,  t, p) 
dt 3q~ 

dq i = b H_ (q, t, p) 
- ( 1 2 )  

dt ~p~ 

dS bH (q, t, p) H (q, t, p). 
dt - -  Pi ~p 

Then at time t at position q~ (t), qZ (t) the values of S and ~S/bq 1, 3S/bq 2 are S (t) 
and p~ (t), P2 (t). 

The physical content of this theorem can be pictured as follows : if the phase 
is known everywhere at time zero, it can be found everywhere at time t. But 
to find the phase and its gradient, S and bS/bq ~, at time t at the position qX (t), 
qZ (t) it is not necessary to know S (ql  q2, 0) for all qX, q~. All that is required is 
S (q01, q0 2, 0) and S 3(q01,  qo ~, O)/bq ~ and bS (q0 a, qo ~, 0)/"bq 2. The wave vector 
(bS/bq 1, 3S/3q 2) and the phase S propagate their values along the track qX (t), 
q2 (t) as if they were the momentum and action of a particle whose position and 
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momentum at time zero were (qlo, q20), (p°l, pO) and whose Hamiltonian was the 
H ( q ,  t, p) of equation (10). This ' particle ' is a wave group or wave packet in the 
sense that it represents a local train of waves whose behaviour can be calculated 
without reference to the other waves which may be present. For such a wave 
packet, as is well known from Hamiltonian mechanics (GoLDSTEIN, 1951), 
do~/dt --- dH/d t  = bH/bt ,  so if H does not depend explicitly on the time, the 
frequency of the waves in the packet does not change as the packet propagates. 
If  bH/bq  ~ = bH/bq 2 --- O, then dp~/'dt == 0; the covariant components of the wave 
vector do not  change as the wave propagates. Then in case the surface is flat 
the other two equations of motion are dM/dt = bo~/bk~. The usual theory of group 
velocity in a flat space appears as a special case of  the Hamiltonian theory. 

WH1THAM'S (1961b) discussion of  group velocity in flat spaces can be read 
verbatim as a proof of PFAFF'S uniqueness theorem in curved spaces. The argu- 
ment is th is :  suppose S ( q  x,q~, t) satisfies equation (l l). Then the function 
Pl (ql, q2, t ) - - - -bS(ql ,  q 2, t) /bq i satisfy equations obtained by differentiating (l l) 
with respect to q~" 

bp i _ b [H (ql, q2, t, p~, (ql, q2, t), p~ (q~, q2, t))]. 
bt 3q i 

Carrying out the differentiation on the right, 

bt bq  i bpj  bq  i 

But bpj/ bq i = bpi/bqJ so 

+ = _ 

3t bp j bqi bq  i 

Now consider a point q~ (t), q2 (t) which at time t moves with velocity 

dqidt - -  bbHpi. (q~ (t), q2 (t), t, Pl (ql (t), q2 (t), t), P2 (q~ (t), q2 (t), t)). 

The motion of this point can be computed, since the functions S (ql, q2, t) and 
Pi (q~, q2, t) are known. The rate at which Pi (ql (t), q2 (/), t) changes with time is 

dPi _ bPi + ~Pi dqJ bpi + ~H bpi ~H 
dt ~t ~qJ dt bt bpi bq j ~q~ 

Then the time rate of change of S (q~ (t), q2 (t), t) is 

dS ~S + ~ S dq i ~ H 
- -  - - P i - - -  - -  H .  

dt bt bq ~ dt ~p~ 

These remarks prove Pfaff's uniqueness theorem. 

4.  CLASSICAL PERTURBATION THEORY 

Suppose that a particle has Hamiltonian H = Ho (qi, pi) + HI (q~, Pi), where 
H~ represents a small perturbation on the motion. Given the initial values 
qi (to), p~ (to), what x~ill be qi (t) and Pi (t) ? Let qo i (t), pi ° (t) be the solutions of 
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d q d _  ~Ho dP~ ° -- 3Ho 
dt 3p~' dt 3q ~ 

which satisfy qoi (to) ---- qt (to), p i ° ( t )=  pi(to). Let the actual motion be 
qi (t) = qo i (t) + q i (t), Pi (t) = pi ° (t) ÷ p~ (t) ~ here q i and pi  1 are small pertur- 
bations. Then the initial conditions on p;~ and ql ~ are that they must vanish at 
t - -  to. The exact equations of motion are 

dqo i + dql i --  3 • 
dt dt 3pi Ho (qo i -}- q l ' ,  Pi 0 ~- Pi 1) + ~ i  H1 (qo i Jr- ql t, pi 0 -[- pil), 

dpi ° dPiX b Ho (qoi + qli, Pi o + pil) _ 3 H1 (qo i + ql ~, pi ° + pil). 
dt + d---t-: -- ~q--~ 3q --q 

If  we neglect second order terms in the small perturbations q~, p~, the equations 
for these perturbations are 

dqli--dt ( qli 3 
3'1o 

VlCt / (13) 
( .3 13)~/-to 3 dP'ldt -- ql '-~j + Pj -~j -~-f (qo', p o) _ ~-q' H1 (%,, piO). 

Thus the perturbations ql i, pi 1 can be found by solving an inhomogeneous linear 
system of ordinary differential equations subject to the initial condition that 
ql I and p l vanish at  t = to. The coefficients in the equations for q i and p X are 
determined by the unperturbed solutions qo i (t) a n d  p0 (t). 

The technique described above has been studied in great detail in celestial 
mechanics, and it is known that if Ho generates a periodic motion, the perturbation 
theory will often generate secular terms which grow linearly with time. Eventually 
these secular terms will become large enough to invalidate the perturbation theory, 
and then more sophisticated techniques, such as the use of action-angle variables, 
are required. In the present problem, it will turn out that before the secular terms 
become large enough to invalidate the perturbation theory the x~ave packet will 
have run into a continent. 

5. A W A V E  P A C K E T  ON T H E  S U R F A C E  OF T H E  E A R T H  

Let i ,  Y, z be unit vectors of a Cartesian coordinate system fixed in space. 
Let  O and 6 be coaltitude and longitude on a non-rotating sphere with radius a, 
with surface gravity g, and covered by an ocean of uniform depth h. Let  ~ and 
be unit vectors in the directions of  increasing O and ~, on the surface of  the sphere. 
A wave packet with wave vector ko 0 + k ,  ~ has covariant wave numbers 

P o : a k o ,  p , = a s i n O k  s, for V -  ~ ~ 4- ~ 
a ~ 0  a s in  0 ~ff 

The wave packet moves like a particle with the Hamiitonian 

Ho(O, Ob, po, p,) --- ( g ) t ( p o  2 + p,~cosec20)t tanht [h (po2 + p~2cosec20)t ] . (14) 
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In this case we know the solution of the Hamiltonian equations of motion : the 
packet moves around a great circle with the group velocity 

G(k) (gk tanhhk) '  ~1 + 2 kh I .  (15) 
2k \ sinh 2kh] 

During the motion, the magnitude, k, of the wave vector k remains constant, 
while the direction of k is always tangent to the path of motion. We introduce a 
coordinate system appropriate to this particular wave packet. The z axis is chosen 
normal to the plane of the great circle traversed by the packet, and the origin of 
time is the instant when the packet has zero longitude. Then the motion of the 
packet is described by the following equations - 

G 
0 = 0 ,  4 , = - t ,  po=O, p , ~ a k .  (16) 

a 

Now suppose the earth rotates with angular velocity 12, much less than the 
angular frequency, ~o, of the waves in the packet. Then, to first order in O/'~o, 
the Hamiltonian describing the packet's motion is Ha ÷ H1, where H1 is the second 
term in equation (8) : 

H~- O°P*c°secO--g2~P°tanh[ha(PO~+p,2cosec'O)' ] 
(po 2 + p2 cosec ~ 0),~ 

Without loss of generality, ~e can take fl --- ~9 sin O + ?:-Q cos 6~. 
Then 

g2 [P-° s_in @ sin 4, _+ P~ (sin ~_c°t Oc°s_~ - cos_~)] Ha [ (p0~ +p2cosec~0), J 
tanh [h (po2 + p~2cosec~O)l] . (17) 

Suppose that the packet starts at time to at colatitude 0o = ,r/2, longitude 
4,o = Gto/a, with Po = O, p~ --- ak. If 1 / =  0, the packet will travel around the 
equator of the coordinate system introduced to describe its motion, in the manner 
exhibited by equations (16). What effect will the earth's rotation have on the 
motion and wave vector of the packet ? 

To apply the perturbation theory to this problem, we must evaluate the 
second partial derivatives of Ho and the first partial derivatives of/-/1 with respect 
to t?, 4', Po, P~ on the unperturbed path (16), and then use these coefficients in 
equations (13). The calculations are omitted. The results are these : 

__~H~ ~ 12 sin @ tanh kh cos 
30 

bH~ [2 sin O tanh kh . 
. . . . . . .  s i n  

~Po ak 

~, H1 ~ O, 

b H 1 h~Q cos @ sech 2 kh. 
3p~ a 

,) 
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All second derivatives o f  Ho vanish on the pa th  (16), except  tha t  

a ~ k ~ b 2 H °  - -  b 2 H °  - -  k G  (k)  
~po 2 ~02 

and 

aS k2 b2Ho = k~ dG (k) 
~p 2 dk  

Then equat ions  (13) become 

and 

dp~l - -  0, 
dt 

d4,1 G' (k)  G 
dt a S p l _ a ~ ; " 

( 1 8 )  

and 
po x (4,) = a k ,  (4, --  ~o) cos 4,, 

01 (4 , )  = " (4'  - -  $ 0 )  s i n  4,. 
(22) 

These equat ions  do contain  secular terms, so they are no t  valid for all time. 

--dp°l-l-kGOldt = " k G c ° s (  G t  ) ' 

(19) 

= - • sin t . 
dt ask  pel  a 

Here the small dimensionless cons tan ts  E and -q are 

-(2 sin 0 tanh k h  

k G  
(20) 

h 12 cos O sech a kh.  

"q-- G 

T h e  initial condit ions are tha t  81, po 1, 4,1, p l should vanish at  time to. The solu- 
tions o f  equat ions  (18) and (19) sat isfying these initial condit ions are 

p,X (t) ----- 0, 

G 
4,1(t) = - -  n - (t - -  to), a 

I t  is convenient  to give p , 1  4,1, Po ~, 01 as funct ions no t  o f  t bu t  o f  the longi tude 4' 
o f  the unper turbed  wave packet .  Since 4, = Gt, a, we have 

p,1 (4,) = 0, 
(21) 

4,1 ( 4 , )  = - '7 (4 ,  - 4 ,o ) ,  
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They are valid as long as the magnitudes of  4'1, 01, poX/ak are all much less than rr. 
Therefore they are certainly valid as long as 

14, - 4,ol < and 

To estimate E and ~ we write 

14, - -  4,ol :< ,r/~. (23)  

(sin O) E (kh), 

= 2£2 ( h ) ' ( c o s  O) N (kh) 

2x ]-x 
= ( t a ? ' )  ' (, + s,nh , 

and N ( x ) =  ta--nffxx I + s inh2x!  sech2x" 

single maximum at x ----- ~:, with 

~ : -  1.878973, 

E(~) = 0.606316. 

Therefore ~ (- 1.213 £2 (h/g)l sin O for waves of any wavelength. 

The function N (x) decreases monotonically from its value at x = o, which is 
We conclude that for all kh, '1 <~ £2 (h/g)i cos O. The function E (x) has a 

(24) 

Thus the growth of the secular terms does not invalidate our solution as long as 

[ 4 , -  4,01 < 1-213~ 

For the earth, with £2 -- 7.25 × 10 -5 sec -1, g =: 980 cm/sec 2, and h = 4 km, the 
solution is valid as long as [4, -- 4,o[ < (277) (2zr); that is, it is valid as long as the 
number of  times the packet has circled the earth is much less than 277. This 
upper limit is larger for a shallower ocean. 

6. DISCUSSION OF THE RESULTS 

The geometrical interpretation of equations (21) and (22) is as follows: 
rotation slightly changes the group velocity of the packet from G to G (1 -- ~7). 
Furthermore,  the path traversed by the packet is no longer a great circle. The 
packet travels with speed G (1 -- 7) around the circle in which the earth's surface 
intersects a plane rotating about  the axis of II at angular velocity -- ~Ga -1 cosec O 
radians/sec. This plane is the plane z ---- o at time t 0, and rotates through the angle 
-- 2rrc cosec 0 radians for each circuit of the packet around the earth. Define 
the instantaneous orbital plane of  the packet as the plane through the centre of 
the earth which is tangent to the trajectory of the particle at the position of the 
particle. Then the instantaneous orbital plane rotates with angular velocity 

- -  EGa -1 cosec 0 about  the axis of II. 
The wave vector k is not tangent to the path of the packet. The angle it makes 

with the direction of motion of the packet (positive if counterclockwise when viewed 
from above) is 
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P°1 d~l --  -- ~ sin 4,. (25) 
ak d~ 

Thus as the packet travels, the wave vector k oscillates across the direction of 
travel with amplitude E, making one oscillation for each circuit of  the packet 
around the earth. The magnitude of k is constant during the motion to first 
order in 12/o,. 

The deviation of the trajectory from the expected great circle and the deviation 
of the wave vector's direction from that of the trajectory are proportional to ~, 
while the deviation of the speed of the packet from G is proportional to ~7. In 
the short wave limit, kh ~ ~ ,  

2D sin O 20  . 
- - s m  O 

(gk)~ o~ 
and 

Thus the magnitude of  the group velocity of  deep water waves is unaffected by 
rotation, but  these waves do deviate from the expected great circle trajectory by 
amounts proportional to their periods. In the long wave limit, E : ~2 (h/g)J sin O, 

= 12 (h/g)t cos O, so rotation produces deviations in both directions and group 
speed which are independent of  the period of  the waves. The waves for which 
is the largest are those which have kh : 1.878973 (see equation (24)). In an ocean 
4 km deep these waves would have a length of 13.6 km and a period of 94 seconds. 

Taking h = 4 k m  on the earth, we have Id < 1-81 x 10-3[sin O I and 
171 1.49 X 10-8[cos O1. For ocean waves with a period of 12 seconds, 
E----2.77 x 10 -4 s inO and ~7= 1.19 x 10 - l°2cosO.  The effect of the earth's 
rotation on ocean waves is very small. 

It  should be noted that so far the discussion applies only to oceans whose depths 
are independent of  position or much greater than the wave-length of the waves 
(kh ~ 1). I f k h  is of the order of 1 or less and h varies with position, the waves will 
' feel the bottom ' and refraction will occur. The trajectories of  refracted wave 
packets on a non-rotating earth are computed by solving Hamilton's equations 
of motion with the Hamiltonian (14), h being now an explicit function of 8 and ~. 
The discussion then proceeds as in section 5, except that  these refracted trajec- 
tories must be used in place of the trajectories (16). If the variation of h with 
position is a small perturbation, then the small additional perturbation due to 
rotation is correctly given by equations (21) and (22), at least to first order in the 
two perturbations. 

ECKART (1950) has suggested computing wave refraction in flat spaces by 
analogy ~i th  particle mechanics, but  has not used the Hamiltonian formulation, 
in which the wave vector is computed directly as the canonical momentum. 

7. LOCATION OF WAVE SOURCES 

Suppose that at time to + T an observer measures the wave vector of  a wave 
passing him. Suppose he knows the time to at which this packet originated. Then 
he can calculate the position at  which the packet originated. How large will be 
his error if he neglects the earth's rotation in this calculation ? 
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In the coordinate system appropriate to the wave packet, as defined in section 
5, let the position of  the observer be ~M, 0M, while the wave vector of the packet 
has covariant components P~M, PoM. 10MI 1, ak, and ]poM/ak I < 1. The 
great circle trajectory which the observer, neglecting rotation, attributes to the 
packet is 

PoM sin (~ -- ~M), L 0M cos  (~, - ~M) + 

- -  ~o + C_ (t - to); 
a 

here terms of  second order in 0 M and P~M have been neglected. The observer gives 
the position of  the packet at time to as 

¢0' ----- CM -- G__ 7".• 
a 

POM sin O0' = ~ + aM cos (~o' - ~'M) + ~ (~o' - ~ ) .  

The correct trajectory of the packet is given by equations (21) and (22). Therefore 
the differences between the true coordinates of  the packet at time to and those 
calculated by the observer who neglects rotation are 

¢o' - ¢ o  = - ~ ( ~ M  - ¢ 0 ) ,  
and (26) 

0o' -- tg0 = E (¢M -- ¢0) sin ~0, 

with 0o----7r/2. An observer facing the arriving packet will calculate for it a 
position of  origin which is too distant by the amount  a~7 ( f f M -  fro)km, and too 
far left by the amount  E (ffM -- ~'o) sin fro radians. 

MUNK, SNODGRASS, MILLER and BARBER (1962) have kindly communicated 
to the author  that some of  their observations of the arrival at La Jolla of waves 
generated by distant storms appear to put  the source as much as 0-1 radians 
left of  the storm, as seen by an observer facing the storm. They think this effect 
may be produced by local refraction. The results of  the present paper establish 
that it is not produced by the rotation of the earth. Rotation would produce an 
error in the observed direction, but  smaller by one or two orders of magnitude, 
depending on the periods of the waves. 
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