
J. Fluid Mech. (1976), voE. 73 ,  part 3, pp. 401-426 

Printed in  Great Britain 
401 

A rational model for Langmuir circulations 
By A. D. D. CRAIK 

Department of Applied Mathematics, University of St Andrews, 
Fife, Scotland 

AND s. LEIBOVICH 
Sibley School of Mechanical and Aerospace Engineering, Cornell University, 

Ithaca, New York 14850 

(Received 19 May 1975) 

A realistic theoretical model of steady Langmuir circulations is constructed. 
Vorticity in the wind direction is generated by the Stokes drift of the gravity- 
wave field acting upon spanwise vorticity deriving from the wind-driven current. 
We believe that the steady Langmuir circulations represent a balance between 
this generating mechanism and turbulent dissipation. 

Nonlinear equations governing the motion are derived under fairly general 
conditions. Analytical and numerical solutions are sought for the case of a 
directional wave spectrum consisting of a single pair of gravity waves propagating 
at equal and opposite angles to the wind direction. Also, a statistical analysis, 
based on linearized equations, is developed for more general directional wave 
spectra. This yields an estimate of the average spacing of windrows associated 
with Langmuir circulations. The latter analysis is applied to a particular 
example with simple properties, and produces an expected windrow spacing 
of rather more than twice the length of the dominant gravity waves. 

The relevance of our model is assessed with reference to known observational 
features, and the evidence supporting its applicability is promising. 

1. Introduction 
Langmuir circulations (abbreviated herein as LC) is the name that has been 

applied to sets of vortices with axes parallel to the wind direction that occur in 
the upper layers of lakes and the oceans. Their most obvious manifestations are 
windrows on the surface that are made visible by the collection of flotsam or 
foam, or the compression of organic films that concentrate in lines of surface 
convergence. The cellular motion is frequently nearly regular, with an appearance 
of periodicity in the cross-wind direction, and is quite vigorous. Measurements 
summarized by Scott et al. ’( 1969) show that maximum downwelling speeds are 
0.85% of the wind velocity. Thus the strength of the downwelling motion is 
about one-quarter of that of the surface current induced by the wind, ahd one 
might conjecture that the vertical momentum transfer caused by LC’s may play 
a major role in the development of the surface wind drift. 

There is general agreement among those who have worked on the subject that, 
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as Langmuir first concluded in his pioneering paper of 1938, the circulations are 
driven by the wind. The driving mechanism has not, however, been satisfactorily 
explained to date. 

Clearly the strong mixing associated with the circulations suggests that they play 
an important role in the energy transfer from wind to water currents and perhaps 
in other physical processes a t  the air-sea interface. On the basis of his observations 
that the circulations apparently penetrated to the thermocline, Langmuir origin- 
ally suggested that the circulations may be the mechanism responsible for the 
formation of the mixed layer. One interesting and widely observed feature 
attributed to Langmuir circulations is the collection of oil slicks into parallel 
bands, a fact that has been successfully exploited in cleaning up oil spills at sea. 

The importance of the circulations has been increasingly recognized, and a 
substantial amount of work has recently appeared relating both to observations 
and to attempts a t  theoretical explanation. We shall not review these here, but 
refer the interested reader to summaries appearing in Craik (1970), Faller (1971) 
and Scott et al. (1969). Our study of the literature indicates that no satisfactory 
theories exist and that prior to Craik’s paper (1970) no ideas advanced showed 
promise of leading to a successful theory. 

The present paper stems from that of Craik (1970) but is not subject to the 
criticisms levelled at that paper by Leibovich & Ulrich (1972). It is based upon 
the hypothesis that the circulations are a motion forced by the interaction of 
the vorticity in the wind-induced current and the wind-generated gravity waves. 
So far as the theory is concerned, the wind enters only as the source of this 
parallel current and of the short-crested gravity waves. The problem of the mean 
motion existing after the wind has been blowing for a ‘long ’ time is specifically 
addressed, although it is recognized that the motion, being forced by random 
waves, is itself a random phenomenon. 

In  addition to removing the criticisms to which we have referred, the present 
work provides a more ‘realistic ’ description. Recognizing that the cellular motion 
is not small compared with the surface wind-drift current, a set of nonlinear 
equations is developed by an averaging method that yields a direct representa- 
tion of surface wave effects in terms of a Stokes drift. These equations are de- 
rived by consideration of vorticity and constitute an extension to viscous flows 
of the simple ideas of vortex-line stretching and rotation used by Leibovich & 
Ulrich (1972). Numerical solutions of these equations for the case of discrete 
wave pairs yields the correct behaviour for the downwind velocity component 
for sufficiently high wind speeds, and the asymmetry of the cells observed by 
Myer (1971) is reproduced. 

Another major step towards realism involves a statistical treatment of the 
circulations. The analysis is restricted to a linearized form of the LC equation 
referred to in the previous paragraph. This equation has already been used by 
Craik (1970) to discuss steady Langmuir circulations. The principal outcome of 
the line of attack contributed here is a statistical description of the spacing of the 
cells generated by a spectrum of random surface waves. Thus two complementary 
approaches, one linearized but statistical and employing wave spectra and the 
other treating only motions due to a single wave pair but nonlinear, are explored. 
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2. Preliminary considerations 
Detailed observational information concerning Langmuir circulations is not 

plentiful, and that which exists often raises as many equations as are answered. 
Nevertheless, there are some basic characteristics that seem always to be re- 
ported. We shall attempt here to summarize a minimum of features that a theory 
must be able to explain. 

LC (1) A parallel system of vortices aligned with the wind must be predicted. 
LC (2) A means must be given by which these vortices are driven by the 

wind. 
LC (3) The resulting cells must have the possibility of an asymmetric struc- 

ture with downwelling speeds larger than upwelling speeds. 
LC (4) Downwelling zones must be under lines where the wind-directed sur- 

face current is greatest. 
LC ( 5 )  The Langmuir circulations must have maximum downwelling speeds 

comparable to the mean wind-directed surface drift. 
It is frequently reported that the spacing of the largest cells is fixed by the 

depth of the thermocline. The role of density gradients is still unclear, but the 
fact that LC’s are observed under thermally stable conditions (Scott et al. 1969; 
Myer 1971; Langmuir 1938) suggests that density variations are a secondary 
feature and are not the motive force. Myer (1971), for example, clearly shows 
that thermal instability strengthens the LC action, while stable conditions 
weaken them. Langmuir’s view that the thermocline is a consequence of the 
circulations would thus seem to gain added weight from the more extensive 
modern measurements. 

Pre-existing sharp density gradients might nevertheless play an important 
role in establishing the spacing of the cells. Assaf, Gerard & Gordon (1971) 
reported on systems of LC’s in the ocean off Bermuda. The largest scales were 
comparable to the depth of the mixed layer, but a series of smaller scales co- 
existed with them. Langmuir (1938) reported the same thing: “...between well- 
defined streaks there are numerous smaller and less well-defined streaks. Just 
as large waves have smaller waves upon them, it appears that the surfaces of 
the larger vortices contain smaller and shallower vortices ”. 

In  our treatment the water is taken to have constant density. For regular 
wave fields (such as the oblique wave pairs considered by Craik 1970) a well- 
defined spacing necessarily occurs. On the other hand, the cell spacing engendered 
by a complex wave system is related to the statistical properties of the wave 
field. Both situations will be considered here. 

Diffusion (of momentum and vorticity) is an essential process for a steady- 
state solution, and is incorporated in the model. In  reality, diffusion will mostly 
be effected by turbulence. For simplicity, we represent these effects by a constant 
eddy viscosity model. The ‘eddy viscosity’ in the ocean is probably not constant, 
but there seems to be no model capable of relating turbulence in the water to 
wind speed (as we should like to do) with a more secure basis. 

Semi-empirical theories concerned with the mutual effects of waves and 
turbulence typically connect the eddy viscosity with a characteristic wave slope 

26-2 



404 A .  D .  D.  Craik and X. Leibovich 

(measured here by the parameter E ) .  (See, for example, Bowden 1950; Ichiye 
1967.) We shall assume here that there is a connexion that may be expressed as 

vc = a@, (1) 

where a is independent of E.? Indeed, the existence of a steady 0 ( e 2 )  secondary 
flow (driven by undamped waves) seems by our analysis to be possible only if 
this condition is met. 

3. Governing equations for weak currents in the presence of surface 
waves 

We assume that the dominant motion is that due to a number of discrete irro- 
tational gravity waves, each characterized by its amplitude a, wavenumber m 
and frequency cr. The water is assumed to be homogeneous and of infinite depth, 
so that for each wave 

where g is the gravitational acceleration. 
u2 = gm, (2) 

The velocity vector q is then assumed to be of the form 

q = EU, + EZV, (3) 

where u, represents the velocity attributable to the irrotational linearized solu- 
tion for small amplitude gravity waves and v represents a perturbation of higher 
order. The small parameter E may be regarded as characteristic of the wave slope; 
that is to say, it is O(am) when a and m are the amplitude and wavenumber of a 
typical wave component. Note that v accounts both for currents and for higher- 
order corrections to u, and therefore comprises both irrotational and rotational 
parts.$ 

I n  accordance with earlier remarks, we assume a constant eddy viscosity of 
the form (1). Thus the vorticity equation is 

wt = curl (q x w) + vCV2w, 

w = s2 curl v, 
where w = curlq. Since 
it follows that 

u, = V$, V2$ = 0, 

and we write v = V0+EV1+ ..., (6) 
curlv = w,+ewl+ ... . (7) 

t Ichiye (1967) has reported observations in the ocean consistent with the assumption 
of an eddy viscosity v, = O ( E ~ A ~ U ) ,  where A is the length of significant waves and u is an 
average wave frequency. The same result for the eddy viscosity may be inferred from 
Phillips’ (1 963) theoretical estimate of the mean-square turbulent vorticity generated by 
.wave motion. Phillips’ estimate seems to remain valid in a mean flow possessing vorticity, 
providing the mean rotational rate of strain does not exceed that of the irrotational wave 
motion. Wave breaking is, however, not accounted for and (1) may not be appropriate if 
there is a significant amount of wave breaking. 

$ That the rotational and wave drift are both of order €2 times the phase velocity of 
the dominant waves in a wind-generated sea is confirmed by comparing a range of tabulated 
wave data with known empirical relations for the total surface drift. Bye (1967) has also 
stressed this point. 
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Each of the vj and ai may be separated into their mean and fluctuating 
components, denoted by Vj and G,, and (vj) and (aj), respectively, the mean 
being taken with respect to time. Since we are concerned only with solutions 
which are steady or periodic in time, quantities with an overbar are indepen- 
dent of time, and those in angular brackets are comprised of time-periodic 
components. 

If one substitutes (6) and (7) into (4) and equates the coefficient of each power 
of e to zero, a sequence of equations each of which may be separated into its 
mean and fluctuating parts is generated. The O(e2) equation is 

( a 0 ) t  = 0, 

and, since (ao) consists of periodic components, it follows that 

(ao) = 0. 

Accordingly, the next few equations are 

( w ~ ) ~  = curl (u, x Go), 

0 = curl (To x Go) + curl (u, x al) + aVG,, 

( ~ 0 ~ ) ~  = curl ((vo) x Go) +curl (u, x q). 
From (8) and (9), 

(a1) = curl (st u,dt x G ~ ) ,  

- aV%, = curl (To x Go) + curl (u, x (a1)). 

Using the fact that, by continuity, 

vector identities yield 
v.u, = v2q5 = 0 

(a1) = (Go. V)Sp u,dt - (s" u,dt . v) Go, 

On changing to Cartesian tensor notation, with a comma denoting partial 
differentiation, the last two results may be combined to yield 

+ u r  (q 1' uzj at), - ug (q, J t  u p t )  , (1 1) 
.k 

where Z$ and uy denote the ith components of Go and u,, respectively. 

(Phillips 1966, p. 31) has ith component 
Now, the mean Lagrangian or Stokes drift Us due to the irrotational motion 

ui - e ui, j u p  = €2U& 
s -  .-st 
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and (1 1) may be rearranged as 
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The final term on the right-hand side may be shown to equal 

and since the mean of all time derivatives is zero, it  follows that 

curl (u, x (q)) = (Go. V) u, - (u,. V) Go, (13b) 
where e2u, = Us. 

Equation (10) for Gz, therefore becomes 

- aV%, = (Go. V) (V, +us) - (J, + us).  v5,. (14) 

Now, if the assemblage of gravity waves is such that the Stokes drift may be 
taken as unidirectional (and consequently uniform in that direction, since 
V . U, = O), we may choose co-ordinates (x, y, 2 )  such that 

1 

U, = [u,(Y, 2 ) 7  0,017 To = (U7 21, W), Go = V X To = ( t 7  ?I, 61, 
z being measured vertically upwards from the mean free surface. 

of x, the x component of (14) simplifies to 
If we further restrict attention to solutions such that Go and V, are independent 

v2 = a21ay2 + a2pz2. 

Notice that the contribution a,. Vv, vanishes identically because of the z inde- 
pendence. This equation expresses a balance between diffusion and convection 
of x vorticity and its renewal by vortex-line deformation through the action of 
the Stokes drift. I n  contrast;, the other two component equations are not affected 
by the Stokes drift. 

The averaged x momentum equation may be derived either directly from the 
Navier-Stokes equations or by integrating they and z vorticity equations. This 
equation is 

Equations (15) and (1 6) and the continuity equation 

govern the motion. 

aV2u = vu,, + wuz. 

avpy + a w p  = o 

(16) 

A stream function in the cross (y, z )  plane may be defined such that 

v = a$/az, w = -a$/ay, 
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in terms of which the equations reduce to 

aV2u = qu,  $)/a(y, 2 ) .  (18) 

The kinematic boundary condition at the free surface x = ezl(x, y, t )  yields 
the following boundary condition for the O(e2) mean flow: 

W(Y, 0) = - Z 1 4 z e + ( 4 z x l , r + 4 y Z 1 , , ) ,  (19) 

where 

the right-hand sides being evaluated at  x = 0 and the subscripts x,  y and x 
denoting partial differentiation. Hence 

(20) 

Now, for an aggregate of plane gravity waves, 4 is of the form 

(21) 4 = ReXe-iut mz e f ( x ,  Y, 4 (m = ~"d, 
U 

and substitution .of such a 4 reveals that the right-hand side of (20) is 

where * denotes the complex conjugate. Since f,, + f,, = -my, the appropriate 
boundary condition is simply 

w(y, 0) = 0 or $(y, 0) = 0. (22) 

u 3 0 ,  +--to ( z - 2 - a ) .  (23) 

The boundary conditions at  great depth are 

We shall assume that appropriate stress conditions for the mean flow are 
that the mean (wind) stress is constant on the plane z = 0 and that the component 
of mean shear stress transverse to the wind direction vanishes on z = 0. That is, 

(24a) 
( 2  = 0). 

(24 b)  
u,au/az = T, (constant) 

P,v - Pm = 0 
In view of (22), (24b) may be replaced by 

4 2 2  = 0. (244  
In fact, (24a, c) may only be approximately true, for the precise tangential 

stress conditions depend on the variable stresses exerted by the wind on the free 
surface and also on the possible presence of surface contamination. If such 
stresses are neglected and if the gravity waves are adequately described as 
irrotational near the free surface, the exact O(G) boundary condition for @ is 

@ 22 - @  YY = -2W$Js.a ( 2  = 0)  (25) 
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(2 = 0). 

For the cases considered later, the right-hand side of (26) is zero. Actually, (17), 
(20) and (22) may themselves be inappropriate very close to the free surface; 
for there the influence of viscosity on the gravity waves may be significant 
(particularly if surface contamination is present). To deal with this, it would be 
necessary to develop a suitably matched ‘inner solution’ valid near z = ezl. 
In  addition, the right-hand side of (26) would be correspondingly modified. It 
is possible that the effect of viscosity on the waves could contribute an additional 
O(e2) mean flow. This is known to occur (see Phillips 1966, p. 38) in the case of 
wave attenuation by viscosity in the absence of wind. However, the calculation 
of such a flow is not pursued here. 

We conclude this section by introducing dimensionless variables as follows: 

us = cas, u = ca, $ = em;l$, (27~-c)  

(y, z )  = m;l (Q,$), R = clam,. ( 2 7 4  4 
The quantity R ’s e2 times the wave Reynolds number based upon the eddy 
viscosity Y, and a! characteristic wave speed c and wavenumber m,. For definite- 
ness, we take E = amc, where a is a characteristic wave amplitude. In  terms of 
the dimensionless (hatted) variables, our problem is 

with boundary conditions 
aa u$ R - (990) = 3p 

and 

where u$ is the water’s friction velocity (such that the dimensional wind stress 
is rw = pu$, p being the water density). 

We shall now dispense with the carets, and henceforth assume unless other- 
wise stated that all quantities have been made dimensionless as indicated. 

4. Finite amplitude cells driven by monochromatic waves 
In  order to complete the statement of the mathematical problem, boundary 

conditions on two boundaries y = constant must be imposed. The Stokes drift, 
and therefore u,(y,z), is known since the irrotational wave field is assumed to 
be prescribed. If the Stokes drift is periodic in y, it is natural to impose the condi- 
tion that the flow be periodic in y with the same period as u,(y, z ) .  In  these cir- 
cumstances, (28) and (29) may be solved in principle, subject to the boundary 
conditions (30). The result produces the mean O(e2) currents associated with an 
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aggregate of plane waves yielding a periodic drift. I n  this section, a method of 
solution is formulated for a wave field consisting of a single pair of waves with 
equal amplitude a and dimensionless wavenumber vectors (k, 1) and (k, -1). 
Such waves are described by the dimensionless velocity potential 

~ @ c o s ~ Y c o s ( ~ x - ~ ) ,  k2+12 = 1. 

The angle between the intersecting wave pairs is 28, so k = cos8 and I = sine. 
For this wave field, the normalized Stokes drift is? 

and is periodic in y. 
us = 2ke%[l+ ka cos Zly] (31) 

It is natural to attempt to represent u and q9 by Fourier series in y: 
m 

q9 = C q4n(z)sin21ny, 

u = U,(z) + 
Iz= 1 

m 
un(z) cos 21ny, 

n= 1 

and it is also convenient to expand the x vorticity 5 in a similar fashion as 
m - 

= - &(z)sin21ny. 
n= 1 

(33) 

(34) 

The types of expansion are dictated by the fact that u is even in y while q+ is 
odd. The Fourier component in (33) that is independent of y has been denoted 
by U,(z) and is the horizontally averaged current. 

If one substitutes (32)-(34) into the governing equations (28) and (29) and 
invokes the orthogonality of the Fourier components, the result is an infinite 
set of coupled ordinary differential equations for the coefficients &(z),  f ( z )  and 
uIz(z) (n > 1) and the zeroth harmonic U,(z). The boundary conditions on these 
quantities are 

(35a-c) q4,(0) = f;,(O) = Uk(Z) = 0 (n 2 I), 

U i ( 0 )  = U: Rls4c2, (35d) 

where the primes denote dldz. Notice that the wind stress imposes a condition 
only on U,(z). 

A question exists as to whether the assumption of a constant eddy viscosity 
can lead to realistic profiles for U,(z). If nonlinear interactions are neglected, a 
constant eddy viscosity yields UL = constant, which is not realistic. It is pos- 
sible that the feedback of higher harmonics will produce realistic results for U,(z) 
with the assumptions underlying this paper, but our resources did not permit 
us to explore the possibility. Instead, we assume U, to result from an unspecified 
turbulent balance, and we do not require U, to satisfy the stress relation (35d), 
which employs a constant eddy viscosity. (It is important to note a t  this point 
that, in a fluid of infinite depth, the existence of an applied stress at the surface 
leads to a linearly increasing (in time) total mean x momentum, and is therefore 

t This was incorrectly given in Leibovich & Ulrich (1972), producing quantitative 
errors in that paper, but not affecting the conclusions drawn. 
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not consistent with a steady solution. Our procedure thus constructs a quasi- 
steady solution valid for a limited period of time.) 'Reasonable' forms for U, 
are therefore asigned for the computations. A few numerical calculations have 
been carried out for Ui(z )  = constant, but most of the work (and all that is 
reported here) has been carried out using an empirically observed current profile 
(to be introduced in 3 7). 

The equations for the quantities &(z),  $,(z) and un(z )  may be written as 

&(O) = $,(O) = U i ( 0 )  = $n( - 00) = Cn( - 00) = U,( - 00) = 0. 

Quantities with subscripts less than 1 are identically zero. 
The solution to the problem 

L,X =f, ~ ( 0 )  = X( -CO) = 0, (37) 

x = Mn(f ), (38) 

where f is a known function which tends to zero as x -+ - co, is 

where Nn f = - [ e 2 ~ z ~ ~ o f ( ~ ) s i n h 2 n l j d j + s i n h ~ n Z ~ ~ ~ ~ f e ~ ~ ~ ~ d ~ ] ,  1 (39) 
2nl 

and the solution to the problem 

L, a = g,  Q'(0) = a( - co) = 0, 

a = On(g), 

(40) 

where g is a known function tending to zero as z -+ - co, is 

where 

On(g) = -& [ cosh 2nZzI' g ( j )  e2nz5dc+ e2nzz g ( j )  cosh 2nljdj  . (41) 
- W  1 

We truncate the infinite set (36) by setting all En, 9, and u, with n 2 N equal 
to zero. In  our computations we have generally set N = 3, although we have 
taken N = 5 for some runs to check the accuracy of the procedure. After trun- 
cation, we are left with a set of 3N nonlinear equations. 



where M ; ( f )  = e2,1z f([) sinh ZnZ[d[+ cosh 2nlz (43) 

and n, i, j, I%, a, p, y = I, .. ., N .  These equations are solved by making the initial 
choice En = E; = 4n = 4; = u, = u; = 0 for n = 1, ..., N .  

New values of the 6N unknowns are found by carrying out the integration 
operations Mn, On, Mk and 0; in the sequence indicated in (42), always using 
the most recent data to evaluate the right-hand sides. More detail about the 
numerical treatment is provided in the appendix. 

Convergence of the method for a given functional form for UA(z) depends 
upon R and the parameter 1 ( = sin 8, where 28 is the angle between the crossed 
wave pair). We do not attempt to establish theoretical limits for the parametric 
domain of convergence of the procedure in this paper. Solutions obtained by this 
method will be described in 9 7. 

The next section describes a related solution procedure. 

5. A perturbation solution 
Wind waves are a random phenomenon, and the model of a wave field consist- 

ing of two crossed trains of regular waves obviously leaves many questions un- 
answered. One important matter is that of the spacing of LC cells. It seems likely 
that this can best be approached by statistical considerations. A statistical 
treatment incorporating the nonlinear equations (28) and (29) appears intract- 
able. There may be cases, however, where (28) and (29) can be linearized without 
losing meaning, and such a linearization will make a statistical analysis feasible. 
The purpose of this section is to discuss the linearization, or more generally, the 
solution of (28) and (29) by perturbation, and the properties of the solutions so 
obtained. 

We have formulated the problem such that all parts of the current system, 
including the averaged current u h ,  the wave drift us and the Langmuir circula- 
tions, represented by ?,b and u- uh, may be of comparable intensity. There are 
some indications, however, that at least in some circumstances the dimension- 
less shear U;(z) may be somewhat larger than us and the other components of 
the current (Masch 1963) and their gradients. If we take the parameter A as a 
measure of UL(x), then ( 3 5 d )  provides an estimate of its magnitude: 

where 0; is O(1). We shall introduce A according to (45) with the order symbol 
replaced by equality. 

A = O(u2, R/e4c2), U ~ ( Z )  = AOL(Z), (45) 
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An iterative procedure such as the one described in $ 4  produces a series 
solution of the form 

(46) 

(47) 

1 $ ( y ,  2) = AR ii (AR2)n$n(y, z),  
n=O 

u ( y ,  2) - uh(z) == ( ~ ~ 1 2  ii ( ~ ~ 2 ) n  un(Y,  z) ,  
n-0 

where the first terms satisfy the equations 

V49bO = 0; au,[ay, v2uo = - 0; a@Fo[ay. 
Convergence of the iteration scheme previously described is therefore expected 
to be linked to the convergence of the series (46). For RR2 small enough conver- 
gence is expected. 

It may be verified that if (47) is specialized to constant 0; and us, corresponding 
to a single wave pair, then (47) reduces to the equations used in Craik’s (1970) 
viscous analysis. The validity of Craik’s approximations may therefore be assessed 
by comparison. For the wave pair leading to the Stokes drift (31), the solutions 
for $, and U, are 

} (48) 
$o = 4k31 sin (21y + A )  xo ( z ) ,  
Uo = 8 k 3 1 2 ~ ~ ~ ( 2 Z y + A ) S ( ~ ) ,  

~ ~ ( 2 )  = -M,(M,( 0ie2z)), 
X(Z) = -O1(U;1x), 

where Ml and 0, are defined by (39) and (41) and A is a phase factor determined 
by that of the waves (and may be omitted without loss of generality, as in (31)’ 
when only a single wave pair is considered). 

For 0; = constant, the solution (48 )  is given by Craik (1970, 9 6), and figure 6 
of that paper illustrates the structure of the longitudinal vortices that emerge. 

The functions xo( z )  and S(z) corresponding to #;1 = 1 are recorded here for 
future reference (these results correct those found in $6 of Craik 1970): 

+ 514+ 813 - 612 + 1 
4k214 

and in particular x;(O;Z) = (1 -1)2/16k4Z. (51) 

It is apparent from the definition (39) of M, that f M l ( f )  < 0. Therefore the 
sign of Ml{Ml(f)) is the same as that off. Since 0; is assumed to be positive, 
x < 0 as well. In  a similar way, one sees from (41) that, with negative ~ ( z )  and 
oi(z), X(z) .= 0. Since the vertical velocity component is (to this approximation) 

(52) 

(53) 

- 8k3Z2ARx(z) cos ( 2 2 ~  + A )  

Vo = 8k3Z2(RR)2 S(Z) cos ( 2 1 ~  +A) 

and the x velocity component is 

positive vertical velocity (upwelling) is associated with negative U,, according 
to this linearized solution for arbitrary (but positive) O;(z). This means that 
downward motions occur midway between lines of maximum wave height, 
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while upwelling occurs under these lines. Corresponding to this, the contribution 
U, to the downwind current due to the Langmuir cells is positive over down- 
welling (convergence) sites. This is the behaviour known for the total downwind 
surface drift, which is observed to be greatest over convergence lines and least 
between them. Thus, in order for the model accurately to reflect this aspect 
of observation, the LC contribution U, must be greater in magnitude than the 
periodic portion of the wave drift, which has the opposite behaviour. This point 
was made earlier by Leibovich & Ulrich (1972). The total downwind (dimension- 
less) surface drift is 

U,(O) + 2k+ 2k3( 1 + 4Z2R2A2X(0)) cos (2Zy + A), 

Ya = 1 +412R2A2X(0) < 0. 

(54) 

(55) 

so that this condition requires that 

Our linearization procedure requires R2A to be small, but does not restrict the 
magnitude of AR. The former limitation does not apply for nonlinear (numerical) 
solutions to be discussed later. We note a t  this point, however, that there is 
fair agreement between the nonlinear computer results and solutions of (47) 
in parameter ranges for which 9, < 0. 

We may estimate A and R, and thus assess the circumstances in which Ya 
may be expected to be negative and also those conditions under which the 
solution procedures discussed in this paper may be valid. Prom its definition, 
R = c/am, and expressing a in terms of the eddy viscosity v,, 

R = cs2/v,m, (56) 

and from (45) 

so 

Estimates of (57) and (58) may be made by observing that U, w ?usurf, 
where commonly & < y < (cf. Bye 1965), and Ueurf, the surface water 
current, is known to be about 0.033W (see, for example, Keulegan (1951) or 
Hidy & Plate (1966) for results in laboratory channels and Bye (1965) for lakes), 
where W is the wind speed. Thus U, = O(10-3W), and we may estimate (57) 
and (58) to be 

For a 'fully developed sea' we may further estimate (Stewart 1967) c = W and 
m + g/ W2, so for this case AR = 0[10-6( W3/gve)2] andAR2 = 0[10-6( W3/ve g)3 e2]. 
If AR is to be O(1) (to establish the condition (55)) ,  then W3/gve = 0(103),  and 
so ARa = O(103e2), or B < 0.03. This condition on the wave slope is unrealistically 
severe; in fact, as indicated by Longuet-Higgins (1969, p. 157), for a 'fully 
developed sea' the wave amplitude may be estimated to be about +W2/g, so 
that, with m = g/W2, B = am + 3, independent of W. 
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Forafetch-limitedsituation,c/W < 1; thusRRwillbeO(1)for W/v,m = O(i03), 
yielding AR2 = O( l 03e2c/ W ) .  This situation is only slightly better than that for 
the fully developed sea (particularly since we expect E > Q for the fetch-limited 
case). Nevertheless, it  is possible that the first term of the AR2 series, which is a 
good approximation for sufficiently small E ,  may continue to describe the basic 
characteristics of solutions for larger B, although i t  is no longer a formally valid 
approximation. 

6. Motions driven by waves with a discrete symmetric spectrum: the 
predicted spacing 

Here we revert to dimensional variables. The solutions discussed so far relate 
only to a single pair of waves with periodicities of the form exp i ( h  _+ Zy - mct). 
These waves are of equal amplitude and propagate at equal and opposite angles 
to the wind direction. One may represent a complete directional gravity-wave 
field symmetric about the wind direction as the sum of a large number of such 
(discrete) wave pairs. Assume, then, that the wave field has the form eu, = VO, 
where CD is the (dimensional) wave velocity potential 

CD = C A ,  exp ( m j z )  (cos (kjz + Z j  y - crjt + Alj) + cos ( k j x  - Z, y - crjt + AZj)}, 
N 

i- 1 
m; = k;+Z;, a; = gmj, 

where A j  = crjaj/mj, with aj the amplitude of a plane wave, and Alj and A,, 
are random phases. 

For this collection of plane waves, the drift, defined as the time average 

will yield a Stokes drift that is unidirectional and independent of x provided 
that the set of frequencies (cj} are distinct. We shall assume that the spectrum 
satisfies this requirement (if it  does not Us is periodic in x, and has a vertical as 
well as a horizontal component). Then Us has only an x component V,  given by 

N 
(59) 

where 6, = Alj - A,,. The drift in this case is the sum of the drifts due to each 

For such a wave field, it is of particular interest to discover whether a domi- 
nant spanwise spacing of the circulations is likely to emerge. This will clearly be 
so if the wave field is dominated by a few very prominent wave pairs. It is probably 
only in this situation that extremely regular and parallel streaks will be observed 
(see, for example, the photographs of Stommel 1951). In  such cases, the spacing 
of windrows should be just half the spanwise wavelength of the dominant 
waves (i.e. equal to nil). 

More often, the windrow pattern is rather irregular but still displays a charac- 
teristic spanwise spacing. Here, individual wave pairs are unlikely to dominate 

wave pair. L~ 
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the wave field, but estimates of the characteristic spacing can still be made. A 
first attempt by Craik (1970, §8) ,  for a simple directional wave spectrum and a 
linear mean velocity profile, led to the prediction that the row spacing should 
normally be approximately equal to the cut-off wavelength A, of the (continuous) 
wave-energy spectrum. This prediction identified the preferred spacing with the 
wavelength of that Fourier component (in y) of the secondary current system 
which had greatest longitudinal vorticity. In  fact, correction of a numerical 
error yields a revised spacing of 1-67A0. 

However, the ad hoc nature of the spacing criterion used is unsatisfactory, and 
furthermore the basis of this estimate is suspect. Indeed, it is inappropriate to 
represent the wave field by a continuous wavenumber spectrum in our model 
because the random phase associated with each Fourier component of the periodic 
wave drift causes this current system to phase mix to zero. More precisely, for a 
continuous wave spectrum of Jinite total energy, a statistical formulation of the 
secondary current system has zero variance and hence no spanwise structure. 
In physical terms, if a fixed amount of wave energy is distributed between N 
discrete wave pairs, the Stokes drift becomes more nearly uniform as N is 
increased; in the limit N-too no distortion of spanwise-oriented vortex lines 
occurs and no longitudinal vorticity is created. Consequently, the existence of 
secondary flows of the kind in view requires concentration of a finite amount of 
wave energy in discrete wave pairs (which correspond to delta functions of a 
continuous spectrum). The number of such discrete waves may of course be large. 

We assume that RR2 is sufficiently small to allow description of the motion 
by the linearized analysis of the last section. On considering the N discrete 
wave pairs to have random phases uniformly distributed in [0,2n], the LC 
stream function is given approximately by 

N 

j=1 
$ = RRRe 3 rj(z)exp 

where each (real) xi is given by a result equivalent to that for xo in (48), approxi- 
mately, and c and m, are a characteristic wave speed and wavenumber. The 
statistical properties of such random functions, for N large, have been examined 
by Rice (1944) and Longuet-Higgins (1962) and yield an alternative estimate of 
the preferred spacing. 

The spanwise velocity component v(y, 0 )  = a$(y, O)/az at the free surface has 
two kinds of zero; one corresponding to a diverging surface flow and upwelling, 
the other to a converging surface flow and downwelling. Windrows are normally 
located a t  zeros of v(y, 0) of the latter kind, and are therefore associated with just 
half the zeros of v(y, 0) .  

The correlation function Y(y) for v(y, 0) is 
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where r; = dr,/dz and the bar denotes the average with respect to y'. Also (see 
Longuet-Higgins 1962, $2) the energy spectrum E(1) is 

E(Z) = y w  Y(y)cos2Zydy, 
n o  

the moments mr are defined as 

and, when T is even, 
mr = ( -  l ) ~ ~ ( d ~ Y / d y ~ ) g = o .  

Now we suppose that each component of v(y, 0) has finite energy (or dispersion), 
so that the total energy increases uniformly with N .  Formally, we shall consider 
the energy to increase without bound as N-too, though in practice we must 
restrict N to be large but finite. Also, in the limit N-too,  the energy of each 
component is a vanishingly small fraction of the total energy. In  such circum- 
stances, the central limit theorem holds for v(y, 0) (see Cram& 1937, p. 56) and 
the mean number of zeros of v(y, 0) per unit distance in they direction is (Longuet- 
Higgins 1962, equation 2.4.2) 

The expected number of windrows per unit distance in they direction is therefore 

To test this estimate, we now examine a particular set of wave pairs. For 
simplicity, the wavenumber m j  = (k; + l;)* of each pair is considered to lie within 
a narrow band centred on the value m, (but each mi is assumed to be different, 
ensuring that each pair has a different frequency). The amplitude aj and direc- 
tional wavenumbers (ki, k li) of each pair are chosen to satisfy 

a! = a ~ ~ o s 2 6 ~ ,  6,  = j n / N  (j = 1,2, ..., N ) ,  

where k Bi are the angles of propagation relative to the wind direction of each 
wave train so l j  = misin 6,, etc. Here a, is a characteristic amplitude, the wave- 
slope parameter B is defined as aOmO and the velocity scale c is taken as (g/m,)i 
to a good approximation. To avoid undue complications in evaluating the func- 
tions from (48), it  is further assumed that Ui is constant, so that Fj may be 
found from (51), or since mi M m, and gj M (q/m,)&, 

4Q. 

N r, cos2 6j sin2 ej( 1 - sin ei)4 

2 cos2 Sj( I - sin 6j)4 
Thus 

N+m 

i= 1 
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and we may replace the sums by integrals over 8 in the limit, so that 

~0~2esin48(1 

cos2 8 sin2 8( 1 - sin 8)4 d8 

The integrals J1 and J2 may be evaluated to yield 

The expected number of windrows per unit distance in the y direction is iQ,  
and the inverse of this is the expected distance between windrows. If we denote 
this distance by D,, then 

D, = 7r/(0.2108m0) = 2*372h, (62) 
where h = 27r/m0 is the characteristic wavelength of the wave field. This may 
be compared with the cruder (corrected) estimate D, = 1.67h given by Craik’s 
(1970) criterion. It is perhaps worth noting that the spacing (62) would occur 
for a single wave pair with a propagation angle of f 12.2’ to the wind direction. 
The directional spectrum a: = a: cod 8, yields D, = 2~29A; this suggests that 
the spacing may not be highly sensitive to the directional properties of the 
spectrum. 

7. Numerical results 
Our purpose in pursuing the numerical computations to be described here 

was to discover the extent to which the general features LC (1)-(5) are produced 
by our model. Since LC (1) and LC ( 2 )  are automatic consequences of the model, 
we focus upon LC (3)-(5). We have not undertaken a complete numericamudy 
of the model equations (28) and (29), but have restricted ourselves to the solution 
method described in $4, and to special choices of R and UA(z). 

The computation requires selection of the parameter R, which in turn requires 
the eddy viscosity to be chosen. To simplify the choice of parameters, and yet 
still strive for realism, we have tried where possible to relate the required em- 
pirical constants occurring in the model to the wind speed. 

The choice of a value for the eddy viscosity poses problems, since measured 
eddy viscosities include the effects of the Langmuir circulations themselves. 
We should like to separate out the contribution of turbulence scales smaller 
than the LC’s and assign an eddy viscosity representing only their effects. 
There is no recognized way to accomplish this, so for our numerical experiments, 
we have adopted the classical correlation due to Ekman (cf. Sverdrup, Johnson 
& Fleming 1942) for the vertical eddy viscosity: 
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where W is the wind speed (at a few metres above the water surface). This 
formula, proposed for wind speeds exceeding 6 m/s but used here for all W ,  is 
based upon observations of ocean currents and must include the mixing effect 
of LC’s. In  adopting (63), it is but small comfort to realize that the fact that LC 
contributions should be removed is partly balanced by the likelihood that wave 
breaking near the surface must be underestimated by (63). 

With (63), R = cs2/vem = (ce2 x lO4/4.3W2m) s-l. In  this expression, and 
those to follow, we put c = W and m = g/ W 2  in order to reduce the number of 
independent input parameters. (These choices correspond to a ‘fully developed 
sea’.) With this done, 

so that R is fixed by the specification of s and ( W/g) s-1. 

sional variables, Bye’s profile is 
The logarithmic profile observed by Bye (1965) is used for Ui(z) .  In  dimen- 

where Usurf. is the water surface speed, U, is the friction velocity, k = 0.4 is von 
K&rm&n’s constant and z,, is a roughness length. We take Usurf. = 0.033 W and 
U*/Usuri. = as indicated earlier. Only the shear U i  appears in our problem, and 
so the roughness length zo is not explicitly required. We have implicitly taken 
zo to be less than one mesh unit since our numerical computation uses the 
following form for the shear UA (now in dimensionless variables) : 

where h is the mesh length in the z direction. Since we have taken h = 0.05, 
z = - h corresponds to 7-96 x 10-3 times the wavelength of the surface waves. 
Using the empirical correlations already discussed, and standard empirical 
results for the length of fully developed wind waves, one can shogr that the 
roughness length calculated from Ellison’s (1956, p. 409) data is considerably 
smaller than h. 

Thus, with (64) and (65), the numerical problem is specified by the specification 
of 6, Wlg s (= WG, say) and the propagation angle 8 of the intersecting wave 
trains. (Note that WG = 0.1, for example, corresponds to a wind speed of 
0.98 m/s.) 

One (convergent) calculation was carried out for UA = constant = 1 and 
R = 2. Only selected results computed with (64) and (65) will be presented here. 
In most cases, (36) were truncated at N = 3 (so that only the first three harmonics 
were computed). A few runs allowing for five harmonics were carried out to check 
the convergence of the procedure (in N ) .  These calculations were done for 
19 = 24O, E = 0.05 and R = 0.29, 0.58, 0.87, 1.16 and 1-45, and the first three 
harmonics were compared with the corresponding results for N = 3. Agreement 
was within 4% in all cases and improved as R decreased. The case R = 1-74 
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FIGURE 1. Fourier coefficients 9,, 9, and 93 as functions of z for the case of a wave angle 
8 = 24O, wave-slope parameter E = 0.05 and wind-speed parameter W G  f (W/g) s = 
0.26. -, #,; - - -, 9, x 10,; - - -, q53 x i03. 
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FIGURE 2. Fourier coefficients u,, u, and us for the case shown in f i w e  1. 
-, u,; ---, u,; - - -, u l x  10. 
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FIUURE 3. Surface value of the f is t  harmonic ul of the Langmuir circulation's contribution 
to the wind-directed drift as function of 8, E and WG. Tick marks indicate conditions at 
which the sum of u,(O) and the surface value of the Stokes wave drift vanishes. -, 
E = 0.025; --- , 6 = 0.06; - - -, E = 0'075. 

was also computed, but the iterations failed to converge (see appendix for con- 
vergence criterion) for both N = 3 and N = 5. For N = 3, it  was found that, if 
the iterations diverged for a given R, E and 8, then they would also diverge if 
R, E and a = &r - 0 were increased, but might converge upon reduction of 
one or all of the parameters R, E and a. 

Typical results for the Fourier coefficients $n and u, (n = 1,2,3)  are given in 
figures 1 and 2. The case illustrated is 0 = 2 4 O ,  E = 0.05 and W/g  s = 0.25. A 
feature to note is that near the surface and $2 are both negative, which implies 
that the downwelling is enhanced and upwelling is retarded. Although this 
tendency is small (since q52 is small compared with , the consequent asymmetry 
between upwelling and downwelling corresponds to observed oirculation patterns 
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FIGURE 4. Surface values of $ i ( O ) ,  the peak surface value of the first harmonic of the span- 
wise ve1oc:ity component in the circulation cell, as a function of 8, E and WG. &, 
E = 0.025; - - -, 6 = 0.05; - - --, 6 = 0.075. 

(see, for example, Myer 1971). Another significant feature in figure 2 is that the 
surface value of u1 opposes the periodic portion of the wave drift, and the 
quantity 9, introduced in (55)  is negative. Therefore, for this case, downwelling 
takes place below lines where the wind-directed surface current is greatest. 
Thus the two LC features LC (3) and LC (4) of $2 are possible consequences of 
our model. 

Figure 3 presents u,(O), the first harmonic of the LC contribution to the wind- 
directed surface drift, as a function of WG, 8 and E. Each curve ends either at 
WG = 0.5 or the greatest value of WQ for which the iterations converged if this 
is less than 0.5. Tick marks, where they occur, represent 2 c0s38, which is the 
magnitude of the maximum periodic part of the wave drift. Therefore, on curves 
thus marked, the quantity Yd defined in (55) is negative for WG exceeding its 
value at the mark. 

Figure 4 presents # ; ( O ) ,  which is the maximum of the first harmonic's 
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0 0.1 0.2 0.3 0.4 0.5 0.6 
W B  

FIUURE 5. Maximum value of as a function of 0, E md-WB. This is the peak vertical 
velocity (considering only the &st harmonic) in the circulation cell, and is also a measure 
of the total volume flow rate of overturning in a single cell. 

contribution to the spanwise surface current, as a function of WG, 8 and B .  

Figure 5 is a similar plot of the maximum value of this is a measure of 
the total volume rate of overturning in a single Langmuir cell. 

Figures 3-5 all show a rapid increase in the intensity of Langmuir cell motions 
as the angle 0 is reduced (or as WG is increased). Although this is not indicated 
in the figures our calculations show that the disturbance reaches a maximum 
(for fixed WG and B )  at a small value of 8, and vanishes for 8 = 0. 

Figures 6 (a) and (b )  give the same information as figures 3-5 but for E: = 0.1 
and 0.2. Convergence difficulties for these larger values of B are evident in this 
figure. The iterations converged here only for small values of WG. 

Streamlines in the y,z plane are shown in figure 7 for E: = 0.025, WG = 0.4 
and 0 = 24". The wave-slope parameter B is too small for the asymmetries 
associated with higher harmonics to be evident. 
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FIGURE 6. u,(O), maximum value of and &(O)  as functions of 19, E and WB. 

(a) E = 0.1. ( b )  6 = 0.2. 
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FIGURE 7. Streamlines for 0 = 2 4 O ,  WG = 0.4 and E = 0.025. 
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8. Discussion 
The present model, despite its limitations, contains the qualitative features 

LC (1)-(5) listed in $2. LC (1) and (2) are of course implicit in the form of the 
model. That is, the model is restricted to vortices aligned with the wind [LC (l)]. 
Spanwise periodicity of the vortices and the connexion with the wind as the 
energy source [LC (2)] arise from the assumption that short-crested wind- 
generated waves (with a discrete directional frequency spectrum) cover the 
surface. 

LC ( 3 )  stems from a belief that the downwelling velocity beneath converging 
surface currents in Langmuir circulations exceeds the upwelling velocity below 
diverging surface currents (see Assaf et al. 1971, figure 23; Scott et al. 1969, 
figure 10). The evidence for this consists mainly of isotherm plots during the 
early stages of development of the circulation. This asymmetry in the cells is a 
feature of our numerical solutions, as may be seen in figure 1, which is typical. 
Near the surface the second harmonic has the same sign as the first harmonic. 
Thus, over downwelling zones near the surface the two harmonics reinforce each 
other, enhancing downwelling, while over upwelling zones they interfere and 
weaken upwelling. The second harmonic is unlikely to be particularly small for 
realistic wind speeds and wave slopes, and so considerable asymmetry might 
occur. Unfortunately, our solution procedure fails to converge for such cases. 
Accordingly, our results show the correct trend towards asymmetry, but do not 
provide definite confirmation of LC ( 3 ) .  

If y d  < 0 [see (55)], then the downwelling zones in our model are ‘situated 
below regions where the wind-directed surface current is greatest, while the 
upwelling zones are positioned below regions where the surface current is least. 
The tick marks on figure 3 indicate values of the wind speed parameter WG at 
which Yd = 0; for WG exceeding this value, .v?, < 0 and property LC (4) is 
obtained. Clearly, the model also allows yd > 0, in which case !property LC (4) 
is reversed. Whether this is the correct physical behaviour for low wind speeds 
is unknown, for well-organized LC’s occur only for WG greater than about 0.3 

Property LC (5) is indicated by the observations of Scott et aZ. (1969) that 
downwelling speeds are about 0-0085W for W > 3 m/s, for this is comparable 
with an expected mean surface current of 0-033W. To discover whether our 
model satisfies LC (5 )  we must compare 0.033 W with e2c$,,, (from figure 5) ,  
which represents the maximum downwelling speed due to the first harmonic. 
The case illustrated in figures 1 and 2 has c2$max = 1.75 x since c = O( W ) ,  
this is rather too small. However, increases with both e and W in our 
calculations, and it is fairly evident that LC ( 5 )  will hold for realistic values 
of e and W (for instance, W 2 3 m/s and 0-1 < E < 0.4). Unfortunately, our 
numerical procedure fails to converge when W and E simultaneously have 
such typical values. 

We attribute no physical significance to the divergence of our numerical 
method when this occurs. As indicatedin $ 5, convergence of the present numerical 
procedure is linked to the convergence of the series (46). We would expect to  

(wind speeds exceeding 3 m/s). Y 
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be able to continue our results beyond the radius of convergence (in ma) of 
(46)  by use of a finite-difference representation of (36). 

Quantitative comparisons of our results with observational data are inevitably 
tentative, partly on account of the incomplete nature of the observations, 
partly because of the limitations of the computational method, and also because 
of the simplifications assumed in arriving at our final equations. On the obser- 
vational side, for example, attempts at comparison are frustrated by the lack 
of reliable information concerning the gravity-wave spectrum when LC’s are 
observed. The main simplifications in the theory are the assumptions of constant 
eddy viscosity, the invocation of an empirical Ui(z) ,  and the statistical model of 
the directional spectrum of the waves (in which their random nature is assumed 
to be accounted for by a uniformly distributed random phase). Some of these 
simplifications may perhaps be removed and still yield a tractable model. 

In  fetch-limited situations, it  is possible that prominent wave pairs may 
determine the LC cell spacing. However, we are convinced that the dominant 
cell spacings in the open sea or large lakes must normally be the outcome of a 
stochastic process. We hope that the statistical model of $6 is relevant to this 
situation despite its simplifications. For the particular ‘spectrum ’ examined, 
the predicted average cell spacing is rather more than twice the wavelength of 
the dominant surface waves. The average cell spacing associated with less simple 
directional wave spectra may readily be calculated (although more labour is 
required), but it seems that our own crude estimate is not sensitive to slight 
changes in the directional properties of the spectrum. 

This work was supported in part by NOAA Office of Sea Grant, U.S. Depart- 
ment of Commerce, under Grant GK-15-8102A. One of us (A.C.) also received a 
travel grant from the Science Research Council. 

Appendix 
The basic numerical scheme is described in $4. More informatkm is supplied 

here. 
Equations (42), truncated at n = AT, were integrated using Simpson’s rule, 

Newton’s # rule or a combination of these rules. The truncation error was of 
fifth order. Two-hundred grid points were used with a step size H in the x direc- 
tion of 0.05. Convergence of the iterations was measured by the quantity 

(here iterates are indicated by a superprefix). The iterations were terminated 
when E < 0.01 (in which case convergence was declared), or if E increased for 
successive pairs of iterates (in which case divergence was declared). 
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