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On the transport of mass by time-varying ocean currents* 

M. S. LONGUET-HIGGINS'~ 

(Received 6 January 1969) 

Abstract--In order to calculate the mean mass flux past a given recording station it is necessary to 
know more than the mean velocity in a fixed, vertical section. One must add an additional term--the 
' Stokes velocity ' which depends also oil the time and distance scales of the fluctuating currents. 
In typical circumstances, where the fluctuations are larger than the mean current, the Stokes velocity 
may dominate the mass transport, and lead to the mass transport being opposite in direction to the 
mean current. 

Some general expressions are given for the Stokes velocity, and these are studied in detail for the 
particular case of waves propagated along a sloping sea bed (double Kelvin waves). Such waves are 
always propagated with the shallower water to their right in the northern hemisphere. It is shown 
that in regions of small bottom gradient the Stokes velocity is in the same direction as the phase 
velocity, but in the region of large bottom gradient the sign of the Stokes velocity is reversed. The 
mean Stokes velocity is in the direction of wave propagation. However, the total transport (integrated 
with respect to the depth and width) is in the opposite direction. 

I.  INTRODUCTION 

IN MOST par ts  o f  the ocean the f luctuat ions in the  veloci ty at  a fixed po in t  are com-  
pa rab le  with,  or  many  times greater  than,  the mean  veloci ty at  tha t  point .  N o w  tha t  
such observat ions  o f  cur rent  velocities are becoming  increasingly avai lable  i t  m a y  be 
oppo r tune  to  d raw a t ten t ion  to  a pa radox ica l  result  of ten ove r looked  when inter-  
pre t ing such records,  namely ,  tha t  the mass  t r anspor t  pas t  any  fixed po in t  does not  
depend  solely on the mean  velocity measured  at  tha t  point ,  but  depends  besides on 
other  proper t ies  o f  the field o f  mot ion .  

To many  people  this appears  at  first unreasonable .  But in the  theory  o f  surface 
waves the difference between the mean  velocity at  a given po in t  and  the mass-transport 
veloc i ty - - i . e ,  the mean  veloci ty o f  a marked  p a r t i c l e - - h a s  long been recognized.  
Essential ly this difference is the same as the  difference between the Euler ian  mean  
and the Lagrang ian  mean  velocity.  I f  the  mean  great ly exceeds the  f luctuat ions,  
the two are  near ly  equal .  But in surface waves and  also,  as is now po in ted  out,  in 
most  oceanic  currents ,  the  two averages are quite different. They may  easily be in 
oppos i te  direct ions,  perhaps  leading  to false conclusions  as to the origins o f  water  
masses. 

In  the  present  pape r  we shall  first discuss quite general ly  the re la t ion between the 
Euler ian  and the Lagrang ian  mean  velocit ies,  and  show how the difference may  be 
calculated.  The  results will then be appl ied  in par t i cu la r  to  b a r o t r o p i c  mot ions  in 
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the neighbourhood of a steep slope (double Kelvin waves). However, the analysis 
is applicable also to other kinds of oscillatory motion, particularly to tidal and inertial 
motions. A general discussion with recommendations will be found in Section 7. 

2. THE STOKES RELATIONS 
Suppose that the velocity field u is fluctuating with time in some way which, for 

the sake of argument, we may take at first to be periodic. We define u by the Eulerian 
system of coordinates x = (x, y, z) fixed in space. The time-average fi we take to be 
small compared to u but not in general zero. Now when a marked particle with posi- 

(Xo+ 
u(x,t) 

X 

u(xo, t) 
Fig. 1. The trajectory of a marked particle with initial position xo. 

tion x0 (Fig. 1) at time to moves to a new position x0 + Ax at time t its velocity at 
the new position is not equal to the velocity u (x0, t) at x0 but to a slightly different 
velocity 

u (x, t) = u (x0, t) + Ax.Vu (x0, t) (1) 

depending on the space-gradient Vu of the velocity field. Equation (1) is of course 
correct only to order Ax, quantities of higher order being neglected. Now if the 
particle oscillates in the neighbourhood of its initial position (Fig. 1), in such a way 
that Ax is still small compared to the local length-scale of the velocity field, we 
may write, to the same approximation, 

t 
Ax : J" u (x0, t) dt. (2) 

to 

Substituting into (1) and taking mean values over one or more wave cycles we obtain 
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u (x, t) = u (xo, t) + f u (X0, t) dt" Vu (xo, t). (3) 

The left-hand side, which gives the mean velocity of a marked particle, is sometimes 
called the mass-transport velocity and may be denoted by the capital letter U. Thus 
we have, 

U = u + ~ u d t .  Vu. (4) 

This is Stokes's formula for the mass-transport velocity in a water wave (STOKES, 
1847) but it is clearly applicable in more general circumstances. I t  shows that even 
if the mean velocity at a fixed point (the Eulerian mean) is zero, the mass-transport 
velocity (the Lagrangian mean) is generally not zero. I t  will be convenient to refer 
to the difference between U and u as the Stokes velocity Us. Thus 

Us ----- .ru d t .  Vu. (5) 

The explicit application of equation (4) to progressive gravity waves in water of  
finite depth was given by STOKES (1847), and is partly reproduced by LAMB (1932) 
and others. It is found that the horizontal component  of the mass-transport velocity 
is always forwards relative to the mean (that is, in the same direction as the phase 
velocity). The vertical component  of the mass-transport velocity vanishes, as one 
would expect. 

The paradoxical forward motion in a progressive gravity wave may also be ex- 
plained as related to the mass carried forward by the wave crests plus the mass 

z--O 

Z = Z 0 . . . . .  
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Fig. 2. Derivation of the total mass flux below a given level as being due to the positive mass 
carried by the wave crests minus the mass defect carried by the troughs; and a similar argument 

applied at a lower level within the fluid. 

deficiency carried backward by the troughs---in fact to the mean value ofu~ (see Fig. 2). 
This gives in fact the total mass flux below the surface: 

0 

u ~ = u j ' w d t  - I U s d z = M ( 0 ) ,  (6) 
- -  h 

say. But it should be emphasized that this mass flux is not all concentrated between 
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the crests and the troughs of the waves. At any mean level z0 within the fluid a similar 
surface ~ (x, y; z0; t) may be drawn which moves, like the free surface, with the fluid. 
Applying the same argument to this surface as was applied to the free surface we see 
that the mass flux below the surface z = z0 + ~ (x, y; z0; t) is given by 

z o  

(u~)zo = .f Us dz  = M (zo). (7) 
- h  

The distribution of momentum with depth can now be found by differentiating 
each element of (7): 

g~ - d M  _ ~ ( -¢)~,, __ ~z (h ~% ciO. (8) 
dz0 bz 

In other words the forward momentum is distributed throughout the fluid, and is 
not simply located at the free surface. It is simple to show, by means of the equation 
of continuity, that the formulae (5) and (8) are equivalent. Thus we have 

- -  u wdt  = u  dt-F- w d t  

: uf (_ + fw 
( u d t ~ U  ]'wdt~U 

~x + 2 J ~z (9) 

The last step follows from the fact that if A and B are any two periodic quantities 
with zero mean, 

f f , ,o, A B d t  q- A dt B = ~ 

3. A P P L I C A T I O N  TO OCEAN C U R R E N T S  

From equation (5) it can be seen that the Stokes velocity is generally of order 
U2 ( T / L ) ,  where L and Tdenote  typical scales of length and time & t h e  current velocity 
u. For  example, if u is of order 20 cm/sec, while T and L are of order 1 day 005 sec) 
and 100 km 007 cm) respectively, then U8 is of order 4 cm/sec, which may be com- 
parable with u. 

Normally it will be necessary to take into account vertical gradients of velocity 
as well as horizontal gradients. For  simplicity, however, we shall consider barotropic 
motions in which the velocity may be assumed uniform in any given vertical line. 
The currents will further be considered to be small perturbations on a state of rest, 
or at least of a state in which the mean velocity is small compared to the fluctuating 
component. 

Then as basic equations, if we make the hydrostatic assumption, we have the 
equations of motion and continuity 

Du 
Dt  ~ f A u == -- gV~ (11) 

and 

v • (hu) - ~ (12) 
bt 
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where f ,  g, h and ~ denote twice the vertical component of the Earth's rotation vector, 
the acceleration of gravity, the mean depth of the fluid and the surface elevation, 
respectively. In evaluating the Stokes velocity Us it is sufficient to use the linearized 
form of equation (11), since the right-hand side of equation (5) is bi-linear in u. We 
shall be concerned with the two horizontal components of the Stokes velocity, namely 

u,= f u dt f ~x + v dt -- (13) ~y 
and 

~-x + v dt _ . (14) ?y 

It is well known that, for various given forms of the depth h (x, y), equations 
(11) and (12) admit solutions in the form of waves, both of the first class (dominated 
by gravity) and of the second class (dominated by Coriolis forces). We shall therefore 
first derive some alternative forms of equations (13) and (14) appropriate to pro- 
gressive wave motion. 

Let C denote the phase velocity and let the x-axis be chosen in the direction of 
wave propagation. Then, using (10) we have 

f u dt ~U f ~u - -  = - u - - d t =  u ~ / c  (15) 
3x ~x 

since u is a function of (x --  ct). Similarly 

fvd, .f( v) ..... f - -  = v d t  - .  o~ = v 2 / c  - vdtco (16) 
~y ~x 

where 
by bu co-- (17) 
3x 3y 

denotes the vorticity. Therefore altogether 

Us = (u ~ + v2)/c --  .~ v dt oJ. (18) 

It will be noted that the first term is always positive, that is to say in the direction 
of wave propagation. Incidentally we deduce that for irrotational waves, in which 
oJ = 0 and u also vanishes, the total mass transport M is given by 

o 2 
M = I Us dz = - (K.E . )  (19) 

--h C 

where K.E. denotes the density of the kinetic energy per unit horizontal area (cf. 
SThRR, 1959). 

An alternative form of equation (18) is 

Us = u /c + f o dt (20) 

On the other hand for the )'-component of the Stokes velocity we have 

f udtbv3-x - --  u fbv (21) 
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and 

where 
fvd v I f -- = v dt 8--  = v dt S -- uv/c (22) 

= bu_ -t- ~v 
?x by (23) 

denotes the divergence. Adding equations (20) and (21) we find 

Vs = f v dt 3. (24) 

When 3 vanishes, or is small, Vs is necessarily small also. 
An alternative but useful expression for the Stokes velocity can be derived as 

follows. We have 

bx + v by 

= udt + + u b-ydt + vdt 

(uf d 0 
Now from the equation of continuity (12) we have 

-- + (bh ) 
~t \~-x u + by v_ (26) 

and so on multiplying the above equation by h to get the vertically integrated mass 
flux in the x-direction we obtain 

: f ;z  . . . . .  ( - ; )  hUs=uS+~.+z  -t-~-yu vdt ~-h~y u vdt . (27) 

But u J" u dt is identically zero. by setting A = B = u in equation (10). Hence 

;f -) hU, == u~-+ ~; (h vat (28, 

and similarly 

hVs== v-~- by~ (hu f ~;dt) " (29) 

4. LINEAR BOTTOM T O P O G R A P H Y  

Of particular interest is the situation when the bottom topography is two-dimen- 
sional, and when the depth h is a function of one coordinate only; say the y-co- 
ordinate (see Fig. 3). We shall consider wave motions which propagate in the x- 
direction, i.e. such that 

u, v, ~ oz e i(kx-~t). (30) 

On substituting ik and -- icr for b/bx and 3/bt respectively in the linearized form of 
equation (I 1) we obtain two simultaneous equations for u and v with solutions 
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"t 

u - - f 2  ~ a 2 ( f ~ ' + a k ~ )  / 

ig  
v - . f2 - -  ,~2 ( ~  4 - - f k O  

(31) 

where ' denotes 3 / 3 y .  Substitution in the equation of continuity (12) then gives for 
the second-order equation 

(h~')' = q- k ~ h -- h' ~. (32) 

If h (y) is monotonically increasing with y, and tends to uniform values hi and h2 as 
y -+ -- ov and + oo respectively then it can be shown that there exist waves, trapped 
in the transition region between h -- hi and h = h2, such that ~ -+ 0 as y -~ ± ~ .  
Such waves have been called double Kelvin waves (LoNGUET-HIGGINS, 1968a, b). 

These waves can only be propagated with the shallow water on their right, in the 
northern hemisphere. Thus if hi < hz the waves propagate in the positive x-direction: 
a / k  = ¢ ~ O. 

A physical explanation of this type of wave motion can be given as follows, in 
the simplest case. Imagine a line of particles whose mean position is parallel to a 
contour of constant depth, as in Fig. 3. During the motion this line of  particles has 
the form of a sine-wave. Now those vertical filaments of fluid that are displaced into 
deeper water become stretched, and so acquire additional vorticity. Hence, relative 
to the Earth, they have an anticlockwise spin, in the northern hemisphere. Likewise 
those filaments that are displaced into shallower water are contracted, and so relative 
to the Earth they develop a clockwise spin. The instantaneous velocity vectors are as 
shown in Fig. 3, the circulation being in cells of alternating sign. Clearly this results 
in a displacement of the original sine-wave such that the phase is always propagated 
towards the right. 

The vertical displacement of the surface tends to counteract the stretching or 
contraction of the vertical filaments, but is never able to overcome it, in this type of 
motion. The energy of the motion is concentrated near the sloping region, where the 
restoring action of the vorticity is greatest. The amplitude of the particle motion 
falls off to each side of the sloping zone. In fact it decays exponentially at large 
distances, if the depth on each side tends to a uniform value. 

It will be noted that the longitudinal component u of the particle velocity changes 
sign on the two sides of the sloping zone, whereas the transverse component v has 
always the same sign, at least in the lowest mode. Hence the orbital motion in the 
shallower water is in the opposite sense to that in the deeper water. On the shallower 
side the particle orbits are, to first order, circles or ellipses described in the clockwise 
sense, as in a Stokes wave lying on its side. On the deeper side the particle orbits 
are described in the anticlockwise sense, like a Stokes wave lying on its other side. 
Because the horizontal restoring mechanism only operates in the zone where the bottom 
gradient is appreciable, the wave energy tends to be greatest there. At large distances 
on either side of the sloping zone the orbital motion diminishes exponentially with ]y[. 

Consider now the mass-transport velocity in such a wave motion. On the shallow- 
water side, the orbits being clockwise, the particle motion is forward on the side of 
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the orbit where the amplitude is greater, and backward where it is less. The contri- 
bution from the x-component of the velocity gradient is also positive. Hence the 
Stokes velocity is positive, i.e. in the direction of wave propagation. Exactly similar 
considerations show that the Stokes velocity is positive also on the deep-water side, 
at large distances from the sloping zone. 

On the other hand it is easy to show that the total Stokes transport, integrated 
with respect to both depth and width, must be negative. For the total mass-flux M 
in the direction of wave propagation is given by 

cO oo 

M =  f hU~dy =- ruddy  (33) 

from (28) since u and v vanish at the two limits.* Substituting for u from (31) and 
noting that 

~' ~ dy = [½ ~]  ----- 0 (34) 
- - o O  - - o o  

we obtain 

o ' k  
- g ~ ~ dy. (35) M = - - f - _ _  ere 

i /  
- - 0 9  

The integral is positive, in general. Then since </k > 0 and ~ < f z  (LoN6UET- 
HIGGINS, 1968b) it follows that 

M < 0 (36) 

in other words, the total Stokes flux is opposite to the direction of wave propagation. 
It follows that there must be a region, between the two extremes ofdeepand shallow 

water, where the Stokes flow is negative. This is indicated in Fig. 3 by the schematic 
profile of Us shown on the right. 

An explanation of the negative flow for points near the centre can also be given 
as follows. We have seen that the longitudinal component of the orbital velocity 
changes sign on some line y = constant in the sloping zone. In the neighbourhood 
of this line, the orbital motion, to first order, is purely transverse. But when a particle 
is on the shallow water side of its orbit, u is actually negative as can be seen from Fig. 3. 
Similarly when a particle is on the deep-water side, u is negative also. Hence on 
both sides of the orbit the particle receives a small negative displacement. Thus the 
Stokes velocity must be negative, at least at this point. 

In the next Section we shall show how the profile of the mass-transport velocity 
may be calculated in detail. 

5. THE MASS-TRANSPORT PROFILE 

To calculate the mass-transport velocity as a function of position along the depth 
profile it is convenient first to choose units in which 

m-~ I, f =  1 (37) 
and to write 

cr == 1/% (38) 

so that ~- is the wave period in pendulum days. Equations (31) and (32) then become 

*Equation (33) may be compared with (6). 
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and 

u : r ~ _  l ( rE'4-  ~) 

igr 
v = ~2 2_ 1 (~' -! T~) 

(39) 

-2 1 ) 
(h,~')'--- g~2 + h - ~Iz' Z (40) 

respectively. 
F rom equation (20) we now have for the Stokes velocity 

g2 ~-3 _ 
Us = (,r2 1) 2 [(~.~' + ~)2 + (~' + ~-~) (r~" -t-- ~ ')] .  (41) 

Since .~ ~ e " ~  -or) the mean values on the right-hand side may be replaced by the 
factor {, provided the exponential  factors are removed. Thus we have simply 

Us 2 (~-2 _ 1)2 [(r~' ~ ~)'~ + (~' -,1 ~-~) (r~" --t- ~')] (42) 

g2 ra 
= 2-( r2 ._ 1) z [re (~2 ~_ ~ " )  _]. r ( 3 ~ '  + ~'~") ~ (~z _, ~'2)] 

g2 .r a 
= 4 ( ~  2 i)') [r2 (~2),, + r (3~ 2 -~- ~'z)' . -  2 (~'~ + ~"~)]. (43) 

On integrating over --  oo < y < oe we find 

Us dy == 2 (~-2 2 1)z (~2 t ~,2) dy (44) 

so that the Stokes velocity at the surface, integrated across the wat, e region, is in the 
same direction as the phase velocity. 

For  large wave periods r the expression on the right of  (43) is dominated by the 
terms containing the highest power of  ~-. Hence we have approximately 

Us - ¼ ~- g2 (~2),,. (45) 

Now the double Kelvin wave of  lowest order,  which is also the mode most likely 
to occur (LoNGUET-HIGGINS, 1968b) has the form of  an exponential  function in the 
regions far from the steep slope (lyl >> 1), joined by a rounded curve in the sloping 
region (see Fig. 5). The curve of  ~'~ is of  course similar. Since Us cc (/;2),, very nearly 
it follows that in this mode Us is positive in the two outer regions, far from the steep 
slope, but has a rather strong negative jet in the neighbourhood of the transition 
region as in Fig. 3. The integrated value, as was seen earlier, is positive but relatively 
small in magnitude since it is proport ional  to a lower power of  r. 

Higher modes also exist, in which the surface profile ~ 0')  has one or more zeros 
in - -  oo < y < oe. In such waves the profile of  Us will reverse more often tlaan in 
Fig. 3. However,  it has been pointed out (1968b) that since the higher modes are 
more sensitive to the form of  the depth profile they are more easily scattered and less 
likely to be observed in practice. 
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To take the exact calculation of Us a step further we may substitute for ~" in 
equation (42) using the differential equation (32). This gives 

Us 2 (7  2 - 1 )  h(7~' -~- ~)2_~_ (h - -  7 h ' ) (~ '  ~-, ~-h) 2 -~  g7 

= ½7 [u 2 q- (1 -- -rh'/h) (iv) 2 -- (~/h) (iv)] (46) 

where u and v are given by equations (39). In dimensional form equation (46) may 
be written 

6. A PARTICULAR DEPTH PROFILE 

The above analysis is well illustrated by a particular form of the depth profile: 

h = ~ (1 + fi tanh y / W )  (48) 

in which h represents the mean depth and fl the proportional change in depth at large 
distances. Thus, as y -+ :7 ~ ,  so h ~ hi, h2, where 

hi = ~ (1 -- fi), h2 = ~ (1 ÷ fi), fl = h•u h i .  (49) 
h2 -~- hi 

A method of solving equation (32) numerically was given in a previous paper (LONGUET- 
HIGGINS, 1968b), which contains also a general discussion of the eigenfunctions and 
the corresponding periods 7. For any given values of the depth change/3, the wave- 
number k and the nondimensional parameter 

W 2 f  2 
= Bg~ ~ o, (so) 

it appears that there are an infinite number of possible modes, with corresponding 
periods 7, such that the nth mode has exactly n zeros in the interval (--  ~ < y < ~) .  
Of these modes the lowest (n ----- 0) is the most insensitive to changes in the bottom 
profile. When w > 0, the frequency ~ ( =  1/7) tends to zero both as k W-+ 0 and 
as k W  -+ c¢, for all the modes, so that at some intermediate value of k W the group- 
velocity d~/dk vanishes (see Fig. 10 of the paper just quoted). This may have some 
interesting dynamical consequences. However in most parts of the ocean we have 

< 1. It is found that when m -+ 0 the value of k W  corresponding to zero group- 
velocity tends to zero for the lowest mode (but not the higher modes); and as k W -+ 0 
the frequency ~ and period 7 tend to finite, positive values. In what follows we shall 
consider only the lowest mode, in this limiting, nondivergent case. 

The period 7 for the lowest mode is shown as a function of k W in Fig. 4, for 
various values of ft. Clearly ~- is an increasing function of k W, so that the group- 
velocity d,~/dk is always negative. Shown by broken lines are the asymptotes 

7 - - ~ A + B ( k W )  as kW--~0 ~ (51 
) 

7,'~ C ( k W )  "Jr" D as k W  -+ J 
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Fig. 4. The wave period ~- as a function of kW for the depth profile h = h (1 + fl tanhy/W), 
when the horizontal divergence is negligible. The broken lines denote the asymptotes as k W ~ 0 

and k W --> Go (see equations 51). 

where A, B, C and D are constants given by 

A--=- 1 B - -  1 - - f l 2 1 o g ( 1  +/3"~ 

3 '  - 2)', \ V - 3 ] '  (52) 

c -  D = / [  _] 
. . . . . . . .  2 ~  - ' ~ /  [2  ( l  - ~ / ( 1  - fl2))j ' 

which expressions may be derived f rom Section 9 o f  the paper just referred to. For  
small values of  3 both the asymptotes (52) have the same equation. 

1 ( ]  + kW) (53)  

and indeed it can be seen f rom Fig. 4 that  for fl < 0.5 the calculated wave period 
r can hardly be distinguished f rom either asymptote.  When  fl lies between 0.5 and 
1.0 the difference is more  palpable. When  fi = 1.0 no solution with finite energy 
exists, and the limit fl ~ 1.0 is therefore singular. 

The solution in a typical case when fl = 0.5 and k W  = 1.0 is shown in Fig. 5. 
Figure 5a shows the depth profile; the depth varies f rom 0.5 ~ at y = -- oo to 1-5 
at y = -k oo. In  Fig. 5b, the surface elevation ~ (or equivalently the pressure variation 
pg~) is indicated by a broken line and the two components  u and (iv) of  the velocity 
by solid lines, v is o f  course in quadrature  with u and ~. I t  can be seen that  whereas 
the transverse componen t  of  velocity v has always the same sign independently of  y, 
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the longitudinal component u has one zero in (--  0% oo). The surface elevation, 
like (it), also has always the same sign. Since ~- is somewhat greater than 1, the 
longitudinal component u behaves more nearly like ~' than g [see equation (31)]. 
In other words, the currents are roughly geostrophic. It will be noted that the maximum 
values of Iv[ and ]ul, and hence the maximum energy density, is displaced from the 
position of mean depth (y = 0) somewhat towards shallow water. Essentially this 
is because the horizontal restoring forces depend on the relative change in depth, 
that is (h'/h) more nearly than on h', and (h'/h) is greater on the shallower side. 

The Stokes velocity Us is shown in Fig. 5c. The quantity 0 in Figs. 5b and 5c 
denotes a small parameter, proportional to the amplitude of the motion. Thus in 
Fig. 5b the abscissa is proportional to 0, and in 5c it is proportional to 02. 

The lull curve in Fig. 5c indicates the Stokes velocity as calculated from equation 
(47). The positive velocity on the two flanks of the profile stand out clearly, and also 
the negative jet in the sloping zone. The broken curve represents the vertically inte- 
.grated Stokes transport, which is proportional to hUs. On the shallow side this curve 
lies inside the full curve; on the deep side it lies outside. The total transport M 
integrated with respect to both width and depth is proportional to the area under 
the broken curve. Generally, as we saw in Section 4, this total transport is negative. 
But in the present case when the divergence is zero (m -= 0) the total transport is 
identically zero also. 

Figure 6 shows the effect of narrowing the shelf relative to the wavelength. The 
negative jet is concentrated into an ever narrower zone and increases in intensity 
relative to the positive motion on the flanks of the escarpment. 

Figure 7 shows the effect of increasing the contrast in depth between hi and h2. 
The motion tends to become more asymmetrical, and the energy of the wave motion, 
hence also the negative jet, is concentrated more towards the upper part of the slope. 

For the higher modes (n = 1, 2 . . . .  ) which were mentioned earlier, the results 
are qualitatively similar, except that the Stokes velocity changes sign (17 + 2) times 
in ( -  oo < y < oo) instead of only twice. 

7. CONCLUSIONS 

The general conclusions of this paper in relation to mean velocities may be stated 
concisely in the form 

Lagrange = Euler 4- Stokes. (54) 

Moreover, Stokes may be of comparable magnitude to Lagrange, eclipsing Euler. 
It is quite important, therefore, in recording a mean velocity to state the method of 
measurement and the type of mean referred to. In determining the origin of water 
masses it is the Lagrangian mean which is most relevant. On the other hand for some 
dynamical studies Eulerian means are more useful. 

The analysis of this paper has been carried through for motions that are assumed 
periodic in the first place. However the analysis is equally valid for quasi-periodic 
motions having a more or less broad spectrum, provided that meaningful time averages 
can be taken while a particle moves through a distance lax  I which is small compared 
to a typical length scale of the field of motion. In those formulae which are frequency- 
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dependent, mean values may be expressed in terms of the autospectra and cospectra 
of  u, v, ~ and ~'. 

The correlations involved in estimating the Stokes velocity may of course be small. 
The greatest and the least values of the correlation will be obtained when the motion 
is coherent, as in the presence of progressive waves. 

The Stokes velocity has been worked out in detail for a particular type of wave 
motion--namely double Kelvin waves--but it should be emphasized that there is no 
restriction to this type of motion. At many deep sea stations tidal motions, for 
example, predominate. The great wavelength of  the barotropic tides will in most 
cases result in only a small Stokes velocity (though in shallow seas it may be appreci- 
able). Nevertheless if an appreciable fraction of the energy is related to baroclinic 
tides, as is apparently true near the continental slopes and elsewhere, the relatively 
short wavelength of the baroclinic tides may result in a quite strong Stokes velocity. 

In order to estimate the Stokes velocity without assumption as to the type of 
motion present it appears desirable to establish tripartite stations of recording current- 
meters. From these not only the velocity field but its spacial gradient can be estimated. 
Equivalently one can often determine from a tripartite station the direction and speed 
of propagation of any predominant wave motion. 
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Erratum 

On page 440, in the first sentence between equations (41) and (42) : 

should read ~'. 


