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ABSTRACT

Oceanic surface gravity waves have a mean Lagrangian motion, the Stokes drift. The dynamics of wind-
driven, basin-scale oceanic currents in the presence of Stokes drift are modified by the addition of so-called
vortex forces and wave-induced material advection, as well by wave-averaged effects in the surface boundary
conditions for the dynamic pressure, sea level, and vertical velocity. Some theoretical analyses previously have
been made for the gravity wave influences on boundary-layer motions, including the Ekman currents. The present
paper extends this theory to the basin-scale, depth-integrated circulation in a bounded domain. It is shown that
the Sverdrup circulation relation, with the meridional transport proportional to the curl of the surface wind stress,
applies to Lagrangian transport, while the associated Eulerian transport is shown to have a component opposite
to the Stokes-drift transport. A wave-induced correction to the relation between sea level and surface dynamic
pressure is also derived. Preliminary assessments are made of the relative importance of these influences using
a global wind climatology and an empirical relationship between the wind and wave fields. Recommendations
are made for further development and testing of this theory and for its inclusion in general circulation models.

1. Introduction

The theory and simulation of persistent basin-scale
oceanic currents, especially those near the surface where
mariners travel and plankton grow, is a central problem
in oceanography. It has long been understood that the
prevailing surface winds are the primary driving mech-
anism for these currents, and in the first half of this
century some simple models were developed to dem-
onstrate this (e.g., Ekman 1905; Sverdrup 1947; Stom-
mel 1948; Munk 1950). Subsequently, oceanic general
circulation models (GCMs) have become much more
sophisticated and geographically realistic [see the re-
view in McWilliams (1996)]. Nevertheless, the quasi-
steady, basin-scale patterns of both surface currents and
depth-averaged (i.e., barotropic) horizontal mass trans-
ports given by GCMs have remained qualitatively sim-
ilar to those predicted by the early simple models, in
locations away from strong lateral boundary currents
and their separation zones. The dynamical complica-
tions arising from other real-world influences—density
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stratification, advective nonlinearity and turbulence,
surface buoyancy fluxes, transient adjustment, bottom
turbulent and form stresses, and basin geometrical com-
plexity—all appear to be either quantitatively modest
or dominant only on sub-basin scales or at great depths
[for further discussion see Pedlosky (1996)]. There have
been several empirical tests of the predicted relation
between the wind stress and the depth-integrated trans-
port on the basin scale in the equatorward flanks of the
Northern Hemisphere subtropical gyres (e.g., Leetmaa
et al. 1977; Hautala et al. 1994), and they showed an
approximate consistency with the predictions of the sim-
ple theory [but note the caution expressed in Roemmich
and Wunsch (1985) about the confidence we should
place in such tests].

In the standard theory of ocean circulation, the tur-
bulent boundary layer near the surface (i.e., the Ekman
layer) responds to the surface wind stress with bound-
ary-layer horizontal currents whose convergence causes
a vertical divergence (i.e., Ekman pumping), which
drives the interior, geostrophically balanced, horizontal
circulation in extratropical oceanic gyres. The vertical
integral of the total horizontal circulation is the Sverdrup
transport. In this simple theory the sea state is ignored.
However, surface gravity waves are capable of gener-
ating a mean Lagrangian current called the Stokes drift
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(Stokes 1847). The Stokes drift can affect the large-
scale sea state in a sometimes dramatic way (e.g., Lon-
guet-Higgins and Stewart 1960, 1961; Hasselmann
1971). It also influences the ocean currents. Hasselmann
(1970) shows that the Stokes drift is capable of inducing,
through the Coriolis force, both an opposing mean Eu-
lerian current as well as inertial oscillations. Craik and
Leibovich (1976, hereafter referred to as CL) show that
the interaction of the Stokes drift with the mean flow
could give rise to Langmuir circulation cells. Huang
(1979) extends the CL model to include a spatially uni-
form Coriolis frequency. Webber (1983) and Webber
and Melsom (1993) analyze the transfer of momentum
to the Ekman layer due to wind and waves, including
the effects of wave breaking in a simplified way; their
solutions suggest that the wave-induced current and the
Ekman current at the surface could be of the same mag-
nitude. McWilliams et al. (1997) show how the results
of CL and Huang have counterparts in the presence of
turbulent boundary-layer dynamics. All of these studies
suggest that, on the large horizontal scale of wind and
wave variations and boundary-layer convergences, there
may also exist surface gravity wave influences on the
Sverdrup transport and on other properties of the basin-
scale circulation. This possibility is the subject of this
paper.

How can this possibility be investigated? With current
technology direct numerical simulation is an impractical
approach, since the range of time and space scales is
extremely large, ranging from temporal Dt ; 10 s and
horizontal Dx ; 10–100 m, for the dominant gravity
waves, to Dt ; 108 s and Dx ; 107 m for the basin-
scale circulations. To make the problem feasible, we
pose it, at least conceptually, as a multiple-scale as-
ymptotic expansion, where successive averages are
made over ‘‘fast’’ motions to obtain appropriately fil-
tered dynamic equations for the residual, or ‘‘slow,’’
motions. In the present instance there are three stages
of averaging. The fastest component is the surface grav-
ity waves, with scale content Dt ; 10 s, Dx ; 10–102

m, and vertical Dz ; 10–102 m. A first average is taken
in time or wave phase, yielding a residual Stokes-drift
circulation. The next fastest component is the boundary-
layer turbulence, with scale content Dt ; 103 s, Dx ;
10–102 m, and Dz ; 10–102 m. A second average is
made in time or horizontal coordinate over the turbulent
eddies, yielding a residual Ekman boundary-layer cur-
rent. Finally, a third average is made in time and hor-
izontal (and perhaps vertical) coordinates, over meso-
scale currents, with scale content Dt ; 106–107 s, Dx
; 105–106 m, and Dz ; 103 m. This yields the slowest
component, the general circulation with a Sverdrup
transport driven by basin-scale variations in the winds
and waves on seasonal timescales and longer.

To make progress, therefore, it is necessary to develop
at least some parts of a multiple-scale theory, averaging
over the surface gravity waves and relying on their dy-
namical simplicity at leading order in an expansion in

the wave slope. The template for this theory is the pro-
cedure outlined in CL, where the original interest was
to explain near-surface, steady Langmuir cells by the
interaction of surface waves with a wind-driven mean
current, through the action of a ‘‘vortex force’’ propor-
tional to the Stokes drift. Leibovich (1977a,b) extends
the theory to allow a vertical density stratification and
a slow-time variation [see Leibovich (1983) for a review
of the dynamics of Langmuir circulation cells], and
Huang (1979) derives a ‘‘Coriolis vortex force’’ in the
wave-averaged Ekman-layer dynamics when the Cor-
iolis vector can be taken as constant. We go several
steps farther along this path with a CL-type theory for
basin-scale circulation as our goal.

Specifically, we formulate a more complete theory
for the wave-averaged dynamical effects of surface
gravity waves. The modified Boussinesq equations we
obtain are similar to those of Holm (1996), who uses a
generalized Lagrangian mean (GLM) approach [An-
drews and McIntyre (1978); also, Leibovich (1980), and
Craik (1982) make GLM derivations of the original CL
equations] within the formalism of Hamilton’s Principle
to obtain hybrid Eulerian/Lagrangian equations for the
slow-time dynamics of the Euler equations with rotation
and stratification. As an application of the equations
derived, we then present a new solution for the tradi-
tional simple models of the basin-scale circulation, in-
cluding the effects of surface gravity waves through
their Stokes-drift influences and the wave-averaged sur-
face boundary conditions. The solution has the form of
an ansatz based on the averaging hierarchy described
above and empirical estimates for the wave field, rather
than a more fundamental, explicit model for the slow
part of the wave dynamics (which establishes the wave
spectrum in response to wind forcing and dissipation).
Obviously this is less than a complete theory, but it does
indicate that the wave-driving may have some signifi-
cant effects, ones that have previously been overlooked
even in modern oceanic GCMs.

The perturbation theory is presented in section 2 for
currents in the presence of surface gravity waves, where
the latter are approximated to leading order by linear
dynamics. In section 3 this theory is applied to the sim-
ple model for the large-scale oceanic circulation. In sec-
tion 4 an empirical fit of the equilibrium gravity wave
spectrum to the mean wind stress is used to estimate
the climatological distributions of the relevant wave in-
fluences from wind data. Finally, section 5 presents our
conclusions.

2. Wave-averaged dynamics

We analyze the dynamics in an oceanic region on the
rotating earth containing a stratified, incompressible flu-
id, whose upper free surface is at z 5 h(x, y, t) and
whose rigid lower boundary is at z 5 2D(x, y). The
vertical coordinate is aligned antiparallel to the local
gravitational force and is denoted by z; z 5 0 corre-
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sponds to a quiescent ocean surface. On the free surface
the pressure is equal to the atmospheric surface pressure.
The position vector is denoted by x [ (xh, z), where
the transverse or horizontal component is xh 5 (x, y).
Time is denoted by t. The Eulerian velocity is denoted
by q [ (qh, w). The transverse component of differential
operators and vector variables has a subscript h; for
example, = [ (=h, ]/]z) and D/Dt 5 ]/]t 1 qh · =h 1
w]/]z. The oceanic dynamics are represented, as in CL
and Leibovich (1977a,b), by the Boussinesq momentum
and continuity equations,

]q 1
21 (q · =)q 1 V 3 q 2 b̃ẑ 1 =p̃ 5 n¹ q,

]t r0

= · q 5 0, (1)

where n is the viscosity, g is the gravitational acceler-
ation, and r is the density, with r0 its mean value. The
unit vector ẑ is antiparallel to the gravitational force.
The buoyancy field is defined by b̃ 5 g(1 2 r/r0), where
the dynamic pressure, p̃, does not include the hydrostatic
contribution pam 2 gr0z due to the mean atmospheric
surface pressure, pam, and the mean density of the resting
ocean. The projection of the Coriolis vector, directed
along the earth’s axis of rotation, onto the local Cartesian
coordinate system is 2V 5 [0, f ( y)(y), f (z)(y)]. Its spatial
dependence is a consequence of variations of the local
vertical direction with latitude. Since energetic, extra-
tropical atmospheric and oceanic motions typically have
large horizontal scales in comparison to the thickness
of the fluid layer itself, it is usually possible to neglect
the y component of the Coriolis vector.

We shall assume, for simplicity, that the buoyancy
depends linearly on one or more passive tracers

, such as temperature or salinity, instead of theũ(x , z, t)h

true nonlinear equation of state for seawater. The equa-
tion of state may thus be written as

b̃ 5 gS mũ,u (2)

where m is the expansion coefficient for and Su de-ũ
notes the sum over all the tracers that contribute to the
buoyancy. In turn, the tracer dynamics are given by

Dũ
25 k¹ ũ, (3)

Dt

where k is the tracer diffusivity. We further assume that
the tracer and buoyancy fields have a mean vertical
stratification in the absence of any motion. Thus, we
write the total buoyancy field as

z

2b̃ 5 N (z9) dz9 1 b*(x, t), (4)E
where N(z) is the Brunt–Väisälä frequency of the mean
buoyancy stratification and b* is the buoyancy deviation
associated with fluid motions. Accompanying the mean
stratification are each of the mean vertical tracer profiles
Q(z), so that

5 Q(z) 1 u*(x, t).ũ (5)

The pressure, p̃, is also assumed to have a mean P(z)
and deviation p*. The mean pressure is in hydrostatic
balance with the mean stratification.

The surface boundary conditions at z 5 h(xh, t) are
the following:

Dh
w 5 , p̃ 5 gr h 1 p̃ ,0 aDt

]q 1 ]ũ
n 5 t , k 5 T. (6)

]z r ]z0

Here t and T are the wind stress and surface tracer flux,
respectively.

We are concerned with the situation whereby currents
are influenced by surface gravity waves, characterized
by an amplitude a and horizontal wavenumber with
magnitude k 5 |kh|. We assume that the wave slope e
5 ka is a small number and that k|D| k 1, so that these
waves, to leading order, are approximately linear and
uninfluenced by the ocean bottom. These assumptions
lead to the deep-water dispersion relation s 5 gk,Ï
where s is the frequency. The leading-order wave ve-
locity field, uw [ ( , ww), is irrotational (i.e., = 3 uwwuh

5 0), and it is assumed to be composed of a linear
superposition of individual components with different
horizontal wavenumbers, each of which has the solution
form

w wu 5 2=w , withk k

kz we ]h (x , t)k hww 5 2 , andk k ]t
wh 5 a cos[k · x 2 s t], (7)k k h h k

where , , and are the k th component of thew w wu w hk k k

velocity, velocity potential, and the free surface ele-
vation, respectively. These gravity waves arise primarily
through the interaction of the wind with the ocean sur-
face. We will take their spectrum as given (see section
4) and ignore in this study the dynamics of their gen-
eration and dissipation. The dynamics of these waves,
to leading order, are not influenced by the stratification;
however, there is a wave-correlated component of the
buoyancy and tracer fields, bw and uw, due to the strat-
ification. The leading-order, nondiffusive buoyancy bal-
ance and its resulting wave solution are

w]b
2 w5 2N (z)w

]t
w 2 kz⇒ b 5 2a N (z)e cos[k · x 2 s t], (8)k k h h k

with analogous relations for uw.
We nondimensionalize (1)–(6) by characteristic

wave-propagation scales, that is, by the timescale 1/s0

and the space scale 1/k0. The corresponding velocity
scale is s0/k0, the pressure scale is r0(s0/k0)2, the buoy-
ancy scale is ( /k0)B0, and the tracer scale is2s 0
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2[s /(k gm)]B .0 0 0

The surface elevation h is scaled by 1/k0. In addition,
we designate the Coriolis scale by s0V0, the Brunt–
Väisälä scale by s0N0, the viscosity and tracer diffu-
sivity scale by (s0/ )n0, the wind stress scale by r0(s0/2k0

k0)2t 0, and the tracer-flux scale by [ /( gm)] T0. The3 2s k0 0

nondimensional values of the B0, V0, N0, n0, t 0, and
T0 will be chosen to preserve certain balances in the
asymptotic theory.

The theory to be presented shows that surface gravity
waves, with a much faster timescale than most ocean
currents, influence the dynamics of these currents. How-
ever, the form of the theory is potentially much more
general than the particular situation we shall develop it
for. Its essential basis is the presence of a rapidly varying
irrotational flow, with zero time mean on this rapid time-
scale, which then can influence the dynamics of a weak-
er solenoidal component of the flow. Thus, variants of
the theory may also apply to other types of fast oscil-
lations, such as shallow water and internal waves. The
separation between the solenoidal and irrotational com-
ponents of the velocity field is in principle easily ac-
complished, formally or numerically, using the well-
known Hodge (or Helmholtz) decomposition. Hence,
the starting point for the theory is the following general
form of the nondimensional velocity:

q 5 e[uw(x, t) 1 dv(x, ts, t)], (9)

where t is the fast time coordinate and ts 5 gt is the
slow time coordinate with g [ ed. Here uw is assumed
to be strictly irrotational, and v contains the solenoidal
component, with both fast- and slow-time dependencies.
The parameter d in (9), assumed small, will be specified
later. To accompany (9), we write the nondimensional
buoyancy and tracer fields as

wB0 wb* 5 b (x, t) 1 b(x, t , t),sB0

where 5 from (8), andw 2B eN0 0

wB0 wu* 5 u (x, t) 1 u(x, t , t). (10)sB0

The nondimensional vorticity equation comes from
the curl of the momentum equation in (1):

]v ]v V0 w 21 g 5 = 3 [e(u 1 dv) 3 2V] 1 n n¹ v0]t ]t eds

w1 = 3 [e(u 1 dv) 3 v]

wB B0 0 w1 = 3 ẑ b 1 b ,1 2 1 2[ ]ed B0

(11)

where

v 5 = 3 v.

Furthermore, after subtracting out the wave balance (8),
the nondimensional buoyancy equation becomes

w 2]b ]b B N ed0 0w w 21 g 1 [e(u 1 dv)] ·= b 1 b 1 N w1 2 1 2[ ]]t ]t B Bs 0 0

wB02 w5 n k¹ b 1 b .0 1 2[ ]B0

(12)

The nondimensional form of (2) is b 5 Suu. Thus, there
are nondimensional tracer equations analogous to (12)
for each of the component tracers.

We seek a general form for the asymptotic theory,
which means that we formally choose values of the
expansion parameters, which allow the various terms to
all enter together at the leading nontrivial order in the
governing equations for the evolution of v and b, on
the slow timescale. The relations among the nondimen-
sional parameters that allow this are the following:

V0, n0, N0 5 O(g); B0, t 0, T0 5 O(g2). (13)

Later we shall be more specific about the size of these
parameters in the physical setting. Note that (13) implies
that /B0 5 e, and as a consequence, the wave-forcedwB0

buoyancy fluctuations are of secondary importance in
(11) and (12).

The vector and scalar field variables will be decom-
posed into mean and fluctuating components. The av-
erage of a quantity r, say, is defined by

t1T /21
^r(· , t )& 5 r(· , t , t9) dt9,s E sT t2T /2

where T is the period of the gravity wave field. Hence,
the t-average yields a quantity that varies in timescales
typical of the longer wind and current variability. Ap-
plication of these averages to the Eulerian velocity
yields

v 5 ^v(x, ts)& 1 v9(x, ts, t).

The model to be developed depends crucially on the
assumptions that uw is periodic and that ^uw& 5 0, as is
true for the sinusoidal wave field described by (7).

The velocity and vorticity are expanded in e,

v 5 v0 1 ev1 1 e2v2 1 · · · ,

and

v 5 v0 1 ev1 1 e2v2 1 · · · ,

with analogous expressions for b and u. When these
are substituted in (11), we obtain a set of equations
that are ordered by powers of e. The lowest-order
balance leads to

v0 5 v0(x, ts).

After integration in t, the next-order balance gives a
vorticity,

v1 5 = 3 (U 3 v0) 1 = 3 (U 3 2V), (14)

where U [ uw(xh, s) ds. Thus, ^v& 5 v0 1 O(e) andt#
v9 5 ev1 1 O(e2).
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The t-average of (11) yields

]v0 2 w 2g 5 e = 3 ^u 3 v & 1 g= 3 (v 3 v ) 1 gn¹ v1 0 0 0]ts

1 g= 3 (v 3 2V) 1 g= 3 (b ẑ),0 0 (15)

where we have used the relations in (13).
As shown in appendix A, the procedure described in

CL enables us to derive the ‘‘vortex force,’’

= 3 ^uw 3 v1& 5 (v0 1 2V) · =us 2 us · =(v0 1 2V)

5 = 3 [us 3 (v0 1 2V)], (16)

where the quantity
t

s w wu 5 u (x, s) ds · =u (17)E7 8
is the rescaled Stokes-drift velocity (i.e., with a dimen-
sionalizing scale of e2s0/k0). Incorporating (16) into
(15) and dividing by g yields the equation for the lead-
ing-order, slow-time vorticity balance:

]v0 22 = 3 [V 3 Z] 2 = 3 b ẑ 5 n¹ v , (18)0 0]ts

where j 5 e2/g 5 e/d is a measure of the wave-added
terms in these dynamics, V 5 v0 1 jus, and Z 5 2V
1 v0. Equation (18) is similar to one derived in Holm
(1996).

The curl operator can be made to operate explicitly
on each term of the vorticity equation, which allows us
to identify the compatible momentum equation. Since
the divergence of the Stokes drift is zero and

2|v |02= 3 (v 3 v ) 5 2= 3 = 2 v · =v ,0 0 0 01 2[ ]2

we can express the momentum equation as

]v0 22 V 3 Z 1 =F 2 b ẑ 5 n¹ v , (19)0 0]ts

where we define

1
2F 5 p 1 V (20)0 2

as the nondimensional, generalized geopotential func-
tion. Since v0 is incompressible, the divergence of the
momentum equation yields an elliptical problem for de-
termining F:

¹2F 5 = · (V 3 Z 1 b0 ẑ 1 n¹2v0). (21)

To obtain the boundary conditions for the slow-time
vorticity and momentum balances, the boundary con-
ditions (6) at the free surface z 5 h* are made nondi-
mensional, analytically continued to the mean sea level
z 5 0 [i.e., r(h*) 5 r(0) 1 h*]r/]z(0) 1 · · · ], expanded
in wave and current components as above, and finally
time averaged. The nondimensional surface elevation
and pressure are assumed to have the forms

wh* 5 e[h 1 d(h 1 eh · · ·)],0 1

wp* 5 e[p 1 d(p 1 ep · · ·)]. (22)0 1

First we consider the kinematic condition in (6). Its
leading-order, fast-time balance is the familiar wave
condition, ww 5 . The time-averaged balance iswht

w0 5 j= · M at z 5 0, (23)

where

M [ ^uw(xh, 0, t)hw(xh, t)&. (24)

In (23) we have used the fact that the term ^Dh0/Dt& is
smaller by O(g). On the other hand, if we were to as-
sume that the horizontal variation of both the currents
and wave statistics were on a slow scale Xh 5 gxh, then
the amplitude of w0 would be smaller by g (for 3D
continuity balance), and the boundary condition (23)
would be generalized by the addition of ]h0/]ts on the
right-hand side. This addition would formally permit
very long (i.e., shallow water) surface gravity waves in
the current dynamics.

The nondimensional quantity M represents the net
mass flux per unit width associated with the waves. It
is numerically equal to the mean wave momentum per
unit area, ^f w=hw&, to second order in e, since the mean
of the quantity =(hwf w) is zero when the flow is pe-
riodic both in space and time. The wave momentum
term in the kinematic condition also appears in Has-
selmann’s (1971) study of the interaction of long and
short gravity waves. The pressure condition in (6) has
the fast-time balance pw 5 hw and the slow-time balance,

p0 5 h0 1 pa0 2 jP at z 5 0, (25)

where we have assumed that the slow atmospheric pres-
sure variations pa0 scale in a similar way to p0, and the
wave-added pressure adjustment term is

P [ ^ (xh, 0, t)hw(xh, t)& 5 ^( )2& 5 ^(ww)2&,w wp hz t

(26)

with the second and third expressions obtained from the
first one by using the linear balances that underlie the
wave solution in (7). The stress condition in (6) is ir-
relevant to the leading-order wave dynamics because n0

is small in (13). The slow-time stress condition is

]v0n 1 jS 5 t at z 5 0, (27)1 2]z

where
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2 w] u (x , 0, t)h wS [ h (x , t) (28)h27 8]z

is the wave-added correction.1

Next we derive the slow-time tracer equation and
thereby an equation for the evolution of the buoyancy.
Leibovich (1977b) derives such an equation, albeit with
an error later declared in Leibovich (1983). The tracer
equation (3) is

]u ]u
w 21 g 5 2e(u 1 dv) · =u 1 gk¹ u, (29)

]t ]ts

as a consequence of (10), (12), and (13). Expanding

u 5 u0 1 eu1 1 · · ·

and substituting into (29), the balance of terms leads to
u0 5 u0(xh, z, ts), to lowest order. Integration in time
of the next-order balance yields

u1 5 2U · =u0, (30)

which implies that ^u& 5 u0 1 O(e) and u9 5 eu1 1
O(e2).

The t-average of (29) yields

]u0 2 w 2g 5 2e ^u · =u & 2 gv · =u 1 gk¹ u . (31)1 0 0 0]ts

Substitution of (30) into the above equation and division
by g leads to the slow-time tracer equation (see appendix
C):

]u0 21 V · =u 5 k¹ u . (32)0 0]ts

The tracer surface boundary condition (6) is particularly
simple here: its fast-time expression is irrelevant to the
wave dynamics because n0 is small, as in the stress
condition above, and the wave-added terms in its slow-
time form are negligible because /B0 5 e. Thus, thewB0

slow-time boundary condition is the same as without
surface waves,

]u0k 5 T at z 5 0. (33)
]z

We now summarize the model we have derived for
the wave-averaged dynamics by reference to the pre-

1 This truncated Taylor series expansion, while formally correct to
leading order, neglects higher-order effects that arise due to the thin
viscous boundary layer for waves whose thickness, n/s, is usuallyÏ
much smaller than ^h& in the ocean. Here we are not concerned with
its effects on the waves themselves, but there is a ‘‘mean streaming’’
contribution to the current dynamics from this wave boundary layer
[e.g., see section 3.4 in Phillips (1977)], which a more relevant form
of this boundary condition perhaps should incorporate. However,
since viscous stress is so much smaller than turbulent Reynolds stress
almost everywhere in the upper ocean, we do not here attempt to
incorporate this type of correction in (27), since it is unlikely to be
used in a circulation model anyway [e.g., see (33) below].

ceding nondimensional equations and surface boundary
conditions to be applied at the mean sea level z 5 0:
momentum (19), vorticity (18), pressure (21), continuity
(= · v0 5 0), tracer (32), surface velocity (23), surface
pressure (25), surface stress (27), and surface tracer flux
(33). Their dimensional counterparts are easily inferred
by making the obvious reinterpretation of both the co-
ordinates and variables and by dropping the expansion
subscripts and the parameter j.

The equations thus derived have obvious parallels
with the original Boussinesq system and the tracer equa-
tion if the velocity q is replaced by V, the sum of the
lowest-order solenoidal velocity and the (steady) drift
velocity, but with modified boundary conditions, which
now preclude surface gravity wave solutions. Hence,
many classical results with the rigid-lid approximation
carry over to the wave-added dynamics. For example,
the domain-integrated energy balance can be written in
terms of V as

d 1 ]b02V 2 zb dx 5 2 n=V: =v 2 k dx,E 0 E 0[ ] [ ]dt 2 ]z

when we assume that us is time invariant and the bound-
ary conditions are either periodic or have zero normal
component for V (fn2), and we neglect any boundary
fluxes of momentum or buoyancy. Furthermore, by us-
ing the preceding vorticity and tracer equations, we can
derive an expression for the potential vorticity balance,
namely,

]Q
2 21 V · =Q 5 n=b · ¹ v 1 kZ · =(¹ b ),0 0 0]t

where the Ertel potential vorticity is defined as

Q 5 Z · =b0,

and contains no additional terms due to the wave av-
eraging.

All effects arising from averaging over the wave mo-
tions appear multiplied by the parameter j. The wave-
added terms in the momentum and tracer equations are
proportional to the Stokes drift; they are the vortex force
of CL, an analogous Coriolis vortex force, and a tracer
advection. This latter effect may also be derived by
comparing time-averaged Lagrangian and Eulerian rep-
resentations of the motion of a passive tracer in which
the velocity field is known, as in Longuet-Higgins
(1953); in fact, the momentum equation can also be
derived using Longuet-Higgins’ prescription. These as-
ymptotic theories can be contrasted to the GLM ap-
proach in which the drift terms are equivalent to the
results given above only when the wave-induced dif-

2 In particular, we have used W 5 w0 1 ws 5 0 at z 5 0. This is
derived from (23), the vertical integral of = · us 5 0, the assumption
that us at z 5 2D, and the identification of us dz with M in (24)0#2D

for the particular wave solution form (7); see section 3.
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ference between the mean Lagrangian and Eulerian ve-
locity fields is equal to the Stokes drift. In an asymptotic
theory, one would have to go higher order to obtain a
more accurate drift velocity expression than (17),
whereas the GLM theory readily yields a general ex-
pression for the role of the drift. However, the GLM
theory requires that the wave-induced displacement vec-
tor for the flow be known to make the model fully
calculable. Beyond relying on asymptotic theories, such
as the one here yielding the Stokes drift, we do not see
how the wave-induced drift usually is determinable oth-
er than empirically or computationally (i.e., by tracking
parcels in a known, time-averaged velocity field, with
the necessary choices for the tracing and averaging
times sometimes being difficult to justify).

We close this section with an evaluation of all the
wave-added terms in the model above for a monochro-
matic wave solution (7), expressed in dimensional var-
iables:

s 2 2kzu (z) 5 ska e k̂h

1
2M 5 sa k̂h2

1
2 2P 5 s a

2

1
2 2S 5 sk a k̂ , (34)h2

where k̂h is the unit vector in the direction of the wave-
vector kh. Magnitude estimates are made below in the
context of the large-scale circulation.

3. Large-scale oceanic circulation

We now take a considerable step in spatial and tem-
poral scales by making further approximations to the
wave-averaged Boussinesq model of section 2 to obtain
simpler equations appropriate for the large-scale oceanic
general circulation. For this problem, we will continue
to assume that the waves have the same leading-order,
linear, irrotational dynamics as before, with the local
(a, kh) spectrum determined by a higher-order dynamics
obtained from either observations (as in section 4) or
from a wave-dynamics model. The wave spectrum may
be slowly varying in space and time on the scale of the
general circulation, just as are the other external influ-
ences, the wind stress, and surface tracer fluxes. These
slow variations of the wave field are superimposed on
the local wave dynamics, which equilibrate on a shorter
timescale.

The usual computational model for the general cir-
culation, an oceanic GCM, is based upon the hydrostatic
primitive equations (PE) with parameterizations for
small-scale turbulent transport. However, experience
justifies the further approximation to the planetary geo-
strophic equations (PG) where mesoscale eddy trans-

ports are parameterized and regions of narrow, intense
currents are avoided (e.g., near the equator and the west-
ern boundaries). Because of their greater simplicity and
robustness, we shall develop a PG model here, which
includes wave-generated transport, rather than a more
general PE variant. For simplicity, we shall assume an
equation of state where density is conserved under adi-
abatic compression, and we shall use a local Cartesian
coordinate system rather than the spherical coordinates
of the earth’s ocean. We shall defer until section 5 a
discussion of the rather straightforward generalizations
of these simplifying assumptions to the more funda-
mental PE equations that underlie modern GCMs.

To derive the PG equations, the following simplifi-
cations of the Boussinesq equations are made: 1) the
vertical momentum equation is assumed to be in hy-
drostatic balance, 2) inertial terms and advective terms
are ignored in the horizontal momentum equations
(hence we also neglect the vortex force), and 3) the
horizontal component of the Coriolis vector, 2V, is ne-
glected while the spatially variable vertical component,
2V (z)(y) [ f ( y), is retained. As for any large-scale mod-
el, the PG equations include parameterized transports
by smaller-scale motions not explicitly calculated in the
model (e.g., eddy diffusion). This implies that our large-
scale model results from yet another scale of averaging,
beyond the wave scale used in section 2. It is interpreted
as an average over small-scale turbulence, which is par-
ticularly strong in the top and bottom boundary layers,
and over mesoscale eddies. Specifically, the average is
an ensemble average, over independent realizations of
these types of motion, so that it commutes with all other
operators; in any comparison with nature, of course, a
practical definition of the average as a space–time filter
would be required.

With the preceding simplifications, the PG model
equations in dimensional form are

]Rysf ẑ 3 v 5 2= f 2 f ẑ 3 u 1 1 = ·R ,h h h h]z

f 5 b,z

= ·v 1 w 5 0,h h z

Db ]Qys5 2u · = b 1 1 = · Q . (35)h h hDt ]z

Here much of the notation is carried over from the pre-
vious section, where (vh, w) is the velocity, us is the
Stokes drift, b is the buoyancy, and f [ p/r0 ø F is
the geopotential function in (20), and each of these
quantities is wave and ensemble averaged. The approx-
imation for f is consistent with having neglected qua-
dratic terms in the PG momentum balance. The quan-
tities (Rh, Ry ) and (Qh, Qy ) represent, respectively, the
(horizontal, vertical) momentum and buoyancy fluxes
associated with smaller-scale motions and molecular dif-
fusion:
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]vhR 5 2v9w9 1 n , R 5 2v9v9 1 n=vy h h h h h]z

]b
Q 5 2b9w9 1 k , Q 5 2b9v9 1 k=b . (36)y h h]z

The overbar and prime symbols refer to ensemble av-
erages and fluctuations. A complete specification of the
PG model requires specification of the parameterization
forms for the eddy fluxes in (36), but we shall not make
these choices explicitly in the present paper.

We consider a bounded oceanic domain whose ver-
tical extent is 2D(x, y) # z # h(x, y, t). The surface
boundary conditions are linearized about z 5 0 assum-
ing small deviations |h/D| K 1; we take their forms
from (23), (25), (27), and (33):

f 2 gh 5 p /r 2 Pa 0

w 5 = · Mh

1 1
t tR 5 t 2 nS ø ty r r0 0

Q 5 B (37)y

at z 5 0. The large-scale horizontal wind stress is t t

(where the superscript t denotes the top), and B is the
surface buoyancy flux. These boundary conditions are
the wave-modified variants of the usual rigid-lid ap-
proximation for large-scale circulation, because we have
neglected ]h/]t 1 vh · =h in the kinematic condition,
consistent with the results in section 2. Note that the
slow variations of the wave field are essential for a
nontrivial wave-averaged effect in the kinematic con-
dition: for a strictly monochromatic wave, M has no
spatial variation, hence zero divergence, whereas large-
scale spatial variations of (a, kh) in (34) give a nonzero
divergence. The approximation in the stress condition
is based on the smallness of n (about 1026 m2 s21 for
seawater). For any plausible wave conditions (e.g., with
a dominant component with a ; 1 m, k ; 0.1 m21,
hence s ; 1 s21), we estimate nS ; 1028 m2 s22 to be
very much smaller than (1/r0)t t ; 1024 m2 s22, with
|S| ; 1022 s21 from (34).

The analogous conditions at the bottom boundary are

w 5 2v · = Dh h

1
bR 5 ty r0

Q 5 0 (38)y

at z 5 2D, where t b is the bottom horizontal stress
(which is also to be parameterized). Lateral boundary
conditions are also required for (35) to be well posed.

For each vertical column, we can form a volume con-
servation law by integrating the continuity equation in
(35) and using the kinematic vertical boundary condi-
tions in (37) and (38):

=h · T 5 2=h · M, (39)

where
0

T [ v dz (40)E h

2D

is the horizontal volume transport.
We form the vertical vorticity equation as the curl of

the horizontal momentum equation in (35) and also use
the continuity relation:

]Rysby 5 fw 1 = · ( fu ) 1 curlz h [ ]]z

1 curl[= · R ], (41)h h

where b [ df/dy. Vertically integrating (41), using the
boundary conditions in (37) and (38), yields

1
(y) (y) t b bbT 5 2bT 1 curl[t 2 t ] 1 fv · = Dst h hr0

0

1 f = · [M 2 T ] 1 curl[R ] dz, (42)h st E h

2D

where Tst is the horizontal transport of the Stokes drift,
0

sT [ u dz, (43)st E
2D

and the superscripts t and b refer to top and bottom,
respectively.

When we evaluate Tst with a monochromatic linear
wave solution (7), as in (34), we obtain

1
2T 5 sa k̂ . (44)st h2

Thus, Tst 5 M for such a wave solution. This is not
coincidental. After multiplication by r, (43) is an ex-
pression for the mean wave momentum. For irrotational
periodic waves with zero Eulerian mean velocity, the
only contribution to the mean momentum comes from
the surface, whereas in the Lagrangian picture the mean
momentum is the result of integrating distributed mo-
mentum throughout the fluid column, hence integrating
the Stokes drift over the depth yields the mean wave
momentum, in agreement with the result obtained in the
Eulerian picture. Under the assumption that the irrota-
tional flow is periodic in both space and time Tst 5 M,
and the divergence term in the depth-integrated vorticity
balance (42) cancels. However, this is not always the
case, as, for example, if we allow for slow or large
modulation of the irrotational wave field.

To further proceed with the analysis of (42), we make
two additional simplifying assumptions: weak flow at
depth, and weak eddy lateral momentum flux Rh. The
former simplification enables us to neglect the bottom
stress and · =hD (this term contains the topographicbvh

pressure torque, or curl of the topographic form stress,
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associated with the so-called JEBAR effect; see Ped-
losky 1996). The latter simplification enables us to ne-
glect the last term in (42). These two assumptions hold
over most of the ocean, far away from its lateral bound-
aries, but they are not universally applicable. Incorpo-
rating these conditions and exploiting the numerical
equivalence of M and Tst, we can replace (39) and (42),
respectively, by

=h · T 5 2=h · Tst (45)

and

1
(y) (y) tbT 5 2bT 1 curl t . (46)st [ ]r0

This comprises a closed set of equations for the hor-
izontal transport T, given t t and Tst, which is a bound-
ary-value problem in two space dimensions. It is easily
solved in terms of a Lagrangian transport streamfunction
C(x, y) defined by

T 1 Tst [ ẑ 3 =hC. (47)

From (46) the differential equation for C is

1
tbC 5 curl t , (48)x [ ]r0

with an eastern-boundary condition of no normal trans-
port,

C 5 0 at x 5 Xeast(y). (49)

Note that (48)–(49) have the form of the usual Sverdrup
transport relations, except that they refer here to the
Lagrangian rather than Eulerian transport streamfunc-
tion; to obtain the latter, the Stokes transport must be
subtracted from curl[(1/r0)t t].

Given the transport T, we can solve separately for
the complementary baroclinic fields. This is usually
done as a nonlinear initial- and boundary-value problem
in three space dimensions, because the evolutionary ad-
justment rates for b extend to timescales of millenia
even with steady external forcing fields. The general
procedure for the solution is to determine F, vh, and w
given b, and then to step b forward in time. Whether
the problem for T is decoupled from the baroclinic prob-
lem depends largely on whether the final two approx-
imations preceding (45) are made, since they both are
usually associated with the baroclinic currents.

We can make a further boundary-layer approximation
in the horizontal momentum balance in (35) when Ry

is small everywhere except in thin regions near the ver-
tical boundaries. First, we decompose the horizontal ve-
locity as

vh 5 1 vgeo 1 .t bv vek ek (50)

The top and bottom Ekman velocities, and , havet bv vek ek

a momentum balance in (35) between the left-hand side
and the second and third right-hand side terms and also
vanish into the vertical interior. Their vertical boundary

conditions are the middle two in (37) and the first two
in (38) (with t b a functional of vgeo at z 5 2D). The
geostrophic velocity, vgeo, satisfies the remainder of (35).
In each of these balances, it is customary to neglect the
lateral eddy momentum flux in regions away from strong
currents (as above).

With (50) we can integrate the Ekman balance in (35)
over 2 # z # 0, where is the boundary-layert th hek ek

depth beyond which , us, and Ry are negligible:tvek

1
t tT 5 2ẑ 3 t 2 T , (51)ek stfr0

where
0

t tT [ dz v . (52)ek E ek
t2hek

Thus, the Eulerian Ekman transport has a contribution
that cancels the Lagrangian transport of the Stokes drift,
as well as a component perpendicular to the wind stress;
that is, the total Lagrangian transport in the boundary
layer is perpendicular to the wind stress.

We now integrate the continuity relation over the
boundary layer, neglecting any contribution from vgeo:

1
t t tw 5 = · T 1 = · M 5 curl t 1 = · (M 2 T )ek h ek h h st[ ]fr0

1
t5 curl t ,[ ]fr0

(53)

where is the Ekman pumping velocity at the basetwek

of the surface Ekman layer. The final expression in (53)
is a consequence of M 5 Tst for linear waves. Note that
this implies that there is no wave-induced effect in

. Since Ekman pumping provides a significant forcingtwek

for vgeo through the first term on the right-hand side of
(41), the geostrophic flow in the interior therefore also
lacks a direct wave-driven effect.

However, there is an indirect wave-driven effect on
vgeo through the dependence of F on b, which has ad-
vective influences from both vh and us in the final equa-
tion in (35). The advecting velocity for tracers, v 1 us,
has no wave-induced increment to the depth-averaged,
wind-driven response in (46); furthermore, (51) shows
that the Eulerian cancellation of the wave-induced trans-
port occurs within the top boundary layer. Nevertheless,
there is no reason to expect that the cancellation occurs
pointwise, and the mechanisms of vertical momentum
flux—Reynolds stress, Ry , and isopycnal form stress,
QH and v · =b acting through the Coriolis force—de-
termine how the wave-added advection is distributed
with depth. McWilliams et al. (1997) shows that the
Ekman-layer profile of vh(z) 1 us(z) in a large-eddy
simulation (LES) solution is quite different from vh(z)
when wave driving is neglected.

We now make a simple assessment of the relative
importance of the wave- and wind-driven effects based
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on the Ekman transport relation (51). (This assessment
will be made more elaborately in section 4.) A typical
value for the wind-driven component is (1/ fr0)t t ; 1
m2 s21, based on f ; 1024 s21, r0 ; 103 kg m23, and
t t ; 0.1 N m22. From (44), Tst has the same magnitude
for a monochromatic wave with amplitude a 5 1.34 m
and wavelength 2p/k 5 50 m (i.e., k 5 0.126 m21, s
5 1.11 s21, and sa2 5 1 m2 s21), and neither of these1

2

a or k values is uncommon for ocean waves. Therefore,
we conclude that the wave-driven effects sometimes are
significant compared to the wind-driven ones.

This comparison can also be expressed with nondi-
mensional parameters. We define R as the ratio of the
wind- and wave-driven components in (51),

t|t / fr |0R [ . (54)
|T |st

The turbulent Langmuir number,
1/2tÏ|t |/r0

La [ , (55)tur s1 2|u (0)|

measures the relative influences of wind-driven shear
instability and the Stokes-drift Coriolis force on the
boundary-layer turbulence. Commonly observed values
of Latur are somewhat less than one (Smith 1992), and
this range is also where the turbulent eddies begin to
resemble Langmuir cells (McWilliams et al. 1997). We
can therefore rewrite (54) as

hek2R 5 La , (56)tur1 2hst

where hek [ (t t/r0 f 2)1/2 is the usual Ekman-layer depth
and hst 5 1/2k is the Stokes-layer thickness. Thus, we
see a dependence of R both on the relative strengths of
the wind and waves and on the relative vertical length
scales of the boundary-layer turbulence and the wave
motions. Since the first right-hand-side factor here is
typically smaller than 1 and the second is typically larger
than 1, the two transport contributions can be compa-
rable.

A few empirical tests of the Ekman transport relation
(51) have been attempted directly from local current and
wave measurements under the assumption that the
Stokes drift can be calculated by (17) (Gnanadesikan
and Weller 1995; Weller and Pluddemann 1996) have
thus far failed to confirm (51), but the sampling uncer-
tainties may have precluded a sufficiently discriminating
test. This measurement strategy is a difficult one to carry
out because of the time averaging and the dense and
extensive vertical sampling needed in order to compute
the vertical integrals for transports and to extract the
approximate steady-state balance when the wind and
wave statistics are stable in time. An alternative would
be to make a pointwise test of the theory, which escapes
the sampling burden of estimating transports; however,
in this case, one would also have to deal with the in-

fluences of surface buoyancy forcing and stratification
and turbulent fluxes, Ry (z) and Qy (z) in (36), in com-
bination with us(z) in determining the vertical profiles
of (z). Since the transport relation (51)—or its im-ty ek

plicit pointwise balances—is a robust prediction of pre-
vious wave-averaged theories and ours, we believe it is
very important to resolve the present apparent disagree-
ment between theory and observations. We remark that
our theory is not essentially tied to the Stokes drift only
in the form given by (17). The fundamental relevant
quantity is the wave-induced difference between the
mean Lagrangian and Eulerian velocities, and experi-
mental tests could attempt to measure this directly.

When the PG boundary-value problem is posed in the
rigid-lid form above, then the surface pressure boundary
condition in (37) can be used as a diagnostic relation
for sea level, given f (0) from the PG equation solution,
since h otherwise drops out of the problem for f, b,
and the v:

h 5 g21[f (0) 2 pa/r0 1 P]. (57)

The wave-induced effect here is not negligible com-
pared to typical gyre-scale sea-level variations of a few
tenths of a meter, since a monochromatic wave estimate
(34) of P/g is 0.11 m for the same (a, k) 5 (1.34 m,
0.126 m21) values used above. More complete estimates
of P are made in section 4.

Alternatively, (57) can be viewed, as it is in the in-
terpretation of altimetric measurements, as a diagnostic
relation for the surface geopotential field after correcting
gh for the inverse-barometric response by adding pa/r0;
then ẑ 3 (1/ f )rf (0) is the surface geostrophic current.
However, (57) implies that P also must be subtracted
before this is a correct interpretation. This final correc-
tion is not currently being made, as far as we know.

4. Empirical estimates of the wave effects

An assessment of the wave-generated effects in the
large-scale circulation model presented in the previous
section could be made by evaluating the relevant quan-
tities from a wave climatology. However, since surface
wind climatologies are both more complete and more
readily available, we instead base our empirical esti-
mates on a wind climatology from a reanalysis using
an operational weather forecast model for the years
1979–95 (Kalnay et al. 1996). In the estimates that fol-
low we assume that the waves are fully developed and
in local equilibrium with the local wind on circulation
timescales. Obviously, this is not entirely correct. In
particular, the following estimates do not include re-
motely generated swell, which often is a substantial
component of the wave field. Nevertheless, this initial
assessment illustrates the nature of the wave effects on
the circulation. It may later be possible to obtain im-
proved estimates from a wave-dynamical model used in
an operational forecasting mode, such as the one by the
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WAMDI Group (1988) currently in use at the European
Centre for Medium-Range Weather Forecasts.

To make the estimates, we rely on the empirically
fitted wave spectrum of Pierson and Moskowitz (1964).
We shall assume that the wave dynamics are linear and
conservative to leading order, as in section 2, to derive
wave–wind relations in a way that closely parallels Ken-
yon (1969). As in Phillips (1977, chapter 4), we define
the directional horizontal wavenumber spectrum,

, for the surface waves asP (k, a)
1`

w 2^(h ) & 5 F(k ) dkEE h h

2`

` 2p

5 P (k, a)k dk da, (58)E E
0 0

where (k, a) is a cylindrical coordinate representation
of kh. We assume local isotropy in the wave spectra on
large spatial scales, so that

ds
kP (k, a) 5 f (s)S(a), (59)) )dk

where
2p

S(a) da 5 1,E
0

and s 5 gk. Thus,Ï
`

w 2^(h ) & 5 f (s) ds. (60)E
0

Likewise, referring to (25),
`

w 2 2P 5 ^(h ) & 5 s f (s) ds, (61)t E
0

and the Stokes drift velocity, as previously derived by
Kenyon [1969, Eq. (8)], is

` 22 2s z
s 3u 5 ê f (s)s exp ds, (62)h E [ ]g g0

where êh is the dominant direction of wave propagation,
which is assumed to coincide with the wind direction.

Pierson and Moskowitz (1964) fitted empirical spec-
tra of the following form for the ocean wave field under
fully developed conditions in deep water:

n2a g gnf (s) 5 exp 2b , (63)n n5 1 2[ ]s Ws

where n 5 2, 3, 4 are alternative fits, W 5 |Ua| is the
wind speed, and the associated constants are

f 5o 5 5/n na 5 (2pn ) e , b 5 (2pn ) ,n o n o1 2 1 22p n

f 5 0.0275, n 5 0.140. (64)o o

After inserting (63) into (60) and (61), we obtain the
closed-form expressions

4a W 5nw 2^(h ) & 5 G 1 1
2 4/n [ ]ng b nn

2a W 3nP 5 G 1 1 , (65)
2/n [ ]nb nn

by making use of the definition of the Gamma function,
G[g] 5 sg11e2s ds. Kenyon [1969, Eq. (13)] gives a`#0

closed-form expression for the drift velocity using the
Pierson–Moskowitz spectra when n 5 2. Accordingly,
we restrict our estimates to the n 5 2 fit, whence the
final formulas for the wave quantities in our wind-fitted
model are

w 2 24 4 22 4^(h ) & 5 (1.3 3 10 s m )W

1
23 2 21 2P 5 (1.0 3 10 s m )W

g

4Ïg|z|
su (z) 5 0.04U exp 2 . (66)a [ ]W

Furthermore, we can readily integrate the Stokes-drift
profile in the vertical to obtain a Stokes transport for-
mula,

Tst 5 (5.1 3 1024 s2 m21)W 2Ua, (67)

which is equal to M from (23) for periodic linear waves.
An empirically established bulk formula for wind

stress is

t 5 raCDWUa, (68)

where ra is the atmospheric surface density and CD is
the drag coefficient. We use the formulation of Large
and Pond (1982) for CD, and then calculate t by (68)
by the procedure described in Trenberth et al. (1989).

Using the preceding relations for the Stokes transport
and wind stress, we can derive an alternative formula
for R , defined in (54), which exposes its dependencies
on the most geographically variable quantities (viz., f
and Ua), ignoring its other dependencies. The result is

1
R } . (69)

| f U |a

Thus, we see that a high wind regime favors the wave-
driving influence, while weak winds favor the wind
driving unless the local waves are enhanced through
remotely generated swell. Moreover, the wave-driving
influence tends to increase with latitude since | f | does,
and from (56), we can attribute this to the decrease in
the Ekman-layer depth. Since wind speeds also tend to
be larger in middle and high latitudes, at least in winter,
both factors in (69) indicate that the wave driving is
relatively more important in these regions.

Equations (66)–(68) are fully determined from
Ua(xh, t), which we obtain from the 17-yr wind cli-
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FIG. 1. Annual-mean wind, Ua, at a height of 10 m above the sea
surface: (a) Northern Hemisphere; (b) Southern Hemisphere.

FIG. 2. Annual-mean wave height variance, ^(hw)2&, from (66): (a)
Northern Hemisphere; (b) Southern Hemisphere.

matology of Kalnay et al. (1996). This climatology con-
tains a wind field every 6 h on a T62 spatial grid (i.e.,
with a lat–long resolution finer than 28). In this paper
we show only the time-mean fields, in a polar stereo-
graphic format separately for each hemisphere.

The near-surface wind pattern in this climatology
(Fig. 1) shows the expected features: zonally oriented
tropical trade winds, midlatitude westerlies, and weak
polar easterlies; the Afro–Asian monsoon; and the

standing-eddy circulations of subtropical anticyclones
and subpolar cyclones.

The mean strength of the waves, ^(hw)2& from (66),
is shown in Fig. 2. The waves are strongest in the midst
of the westerly winds, away from land, and the variance
ranges from less than 0.5 m2 in the Tropics to more
than 3 m2 in both hemispheres.

The mean wave-averaged correction to the surface
pressure boundary condition (25), that is P 5 ^( )2&wht

from (66), is shown in Fig. 3, with a further division
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FIG. 3. Annual-mean increment to the surface-pressure boundary
condition, that is, g21P from (66): (a) Northern Hemisphere; (b)
Southern Hemisphere.

FIG. 4. Annual-mean Stokes transport, Tst from (67): (a) Northern
Hemisphere; (b) Southern Hemisphere.

by g so that it can be interpreted as an equivalent sea
level correction. The spatial pattern is qualitatively sim-
ilar to that in Fig. 2, ranging from about 0.04 m in the
Tropics to above 0.12 m (Northern Hemisphere) or 0.14
m (southern) in the subpolar regions. This quantity
weakens near Antarctica and in the Arctic Ocean, where
in addition sea ice frequently suppresses the surface
waves altogether.

The Stokes transport, Tst from (67), is shown in Fig.

4. The nonlinear dependence on the near-surface wind
enhances the spatial contrast in amplitude here, but the
directions are similar to those in Fig. 1. The westerly
wind regimes between about 408 and 608 have the stron-
gest Stokes transports, with a magnitude approaching 1
m2 s21.

For comparison, the Lagrangian Ekman transport, 2ẑ
3 (1/ fr0)t t from (51) and (68), is shown in Fig. 5. Its
pattern differs from that of Tst both in its larger tropical
and subtropical magnitudes and its approximate or-
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FIG. 5. Annual-mean Lagrangian Ekman transport 2ẑ 3 (1/ fr0)t t

from (68): (a) Northern Hemisphere; (b) Southern Hemisphere.

FIG. 6. The ratio of the wave- and wind-driven components in (51),
1/R from (54), using the fields in Figs. 4–5. The contour interval is
0.1. The largest contour of 1.0 is approached only where |Ua| → 0.

thogonality in direction (which, again, indicates that this
aspect is not changed by the nonlinearity of the wind
dependences). The magnitude of the Lagrangian Ekman
transport is much larger than Tst near the equator, but
these two quantities have opposite trends with increas-
ing latitude. The Stokes transport fraction grows to a
level of more than 40% of the Lagrangian Ekman trans-
port at higher latitudes. This confirms the estimate in
(69).

Previous empirical tests of Ekman and Sverdrup

transport relations have largely been confined to rela-
tively low latitudes. From Fig. 6, it is clear that this is
a region where they are best satisfied and the wave
effects are smallest. For example, Chereskin (1995)
found an empirical agreement in the California Current
between the Ekman transport relation to the surface
wind stress, with a relative uncertainty of about 20%.
This analysis is for the summer half of the year and
neglects wave effects. This conclusion is marginally
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consistent with the annual-mean R value there (Fig. 6),
and it is even more consistent with the smaller R value
that occurs during the summer season (not shown).
There would be a larger signal-to-noise ratio for testing
the Stokes transport contribution at higher latitudes and
during the winter season.

5. Summary and discussion

In the present study we have followed the approach
of Craik and Leibovich (1976) to derive a generalized
Boussinesq model for oceanic currents in which the av-
erage dynamical effects of the gravity wave field are
taken into account. The prescription is very general: it
relies on the decomposition of the dynamics in terms
of rapidly and slowly varying components, where the
former is approximately an irrotational flow with zero
Eulerian time average but nonzero Lagrangian average.
The surface waves contribute to the slow-time dynamics
via the Stokes drift and wave-averaged modifications to
the boundary conditions.

In a first step toward the oceanic context, we assume
that the irrotational wave field is composed of nondis-
sipative, deep-water waves with small wave slope and
use this solution form to derive the Stokes drift and
leading-order approximations for other wave-averaged
contributions. We use an empirical specification of the
wave spectrum in lieu of theoretically addressing the
nonlinear, nonconservative higher-order wave dynam-
ics. In this formulation, the important wave-added terms
in the model are the following: Stokes-drift vortex and
Coriolis forces, a Stokes-drift tracer advection, a Stokes-
drift transport divergence in the surface kinematic
boundary condition for vertical velocity, and a sea level
tendency variance increment to the surface pressure
boundary condition.

In a second step toward a particular oceanic dynam-
ical regime, further approximations are made appropri-
ate to a wave field with large-scale, slow-time variations
in its spectrum and large-scale, wave-averaged currents
away from regions of narrow intense flow (e.g., near
the western boundary). This leads to the generalized
planetary geostrophic equations that retain several of
the wave-added terms. Analyses are made for solution
properties that are independent of particular parameter-
izations for smaller-scale tracer and momentum fluxes,
such as the surface boundary-layer transport, the interior
geostrophic momentum and planetary vorticity balanc-
es, and the depth-integrated transport. We show that the
traditional relations for the Ekman and Sverdrup trans-
ports as functionals of the surface wind stress apply to
the total Lagrangian-mean transport, not the Eulerian-
mean as usually stated, where the Stokes transport is a
component of the Lagrangian mean. This implies that
these Eulerian-mean transports have a Stokes-canceling
component, albeit with a different depth profile than the
Stokes-drift velocity. The wave-added contribution to
the surface pressure boundary condition modifies the

usual inverse-barometer and surface geostrophic dy-
namic height relations; an implication of this is that the
inferences of surface geostrophic dynamic height from
atmospheric surface pressure and altimetric sea level
measurements should include the wave effect.

Under the assumption that both the surface stress and
surface gravity wave spectrum are in equilibrium with
the surface wind, we use empirical regression formulas
to estimate some of the important wave-added fields
from a global wind climatology. These estimates show
that the wave effects are more significant at higher lat-
itudes where the winds are stronger. In particular, in the
midlatitude westerly wind regime, the Stokes transport
is a significant fraction of the Ekman transport and the
wave-tendency variance is a significant fraction of the
mean surface geostrophic dynamic height. In subtropical
and equatorial regions, in contrast, the wave-added ef-
fects are usually small compared to the wind stress ef-
fects. The present empirical analysis is only a prelim-
inary one in several respects. Obvious future extensions
are to the low-frequency, basin-scale variability; the re-
motely generated swell component; and estimates di-
rectly from either wave observations or wave–forecast
models that can also include disequilibrium wave pro-
cesses. These extensions would permit the very inter-
esting process of remote generation of currents by prop-
agating, evolving wave fields.

The wave-averaged theory makes predictions that
need observational or laboratory testing. This is prob-
ably not easy to do comprehensively. Even the Stokes
drift itself has only been measured poorly and incom-
pletely in the ocean, and it may be more prudent to rely
on at least this (ancient) part of the theory than to at-
tempt its direct measurement. The two types of tests that
seem to us most interesting and feasible are for the
Eulerian Ekman transport (51)—or its pointwise veloc-
ity counterpart—and for the relationship between the
wave-averaged sea level and surface geostrophic current
[i.e., the gradient of the first condition in (37)]. Both of
these tests can be made over a small geographical re-
gion, over a short time interval of days, and with only
near-surface measurements. Obviously, it would be sen-
sible to make these tests of the wave effects where the
signal-to-noise ratios are favorable, which occurs in
high wave conditions, as in extratropical latitudes in the
winter season. We do not suggest specific experimental
designs here.

An oceanic general circulation model (OGCM) could
easily be generalized to incorporate the wave-added dy-
namical effects derived here. The relevant fluid-dynam-
ical model is the hydrostatic primitive equations with
tracer equations for potential temperature and salinity
and the true equation of state for seawater. All of the
extra terms in section 2 should be included, except in
the surface stress condition (27) [for the reason ex-
plained in the discussion following (33)]. Furthermore,
if a more general free-surface condition were preferred
[e.g., as discussed following (23)], it could be used in-
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stead of the rigid-lid approximation presented here. In-
cluding these wave-added effects in an OGCM requires
either a companion large-scale wave model or a cli-
matological dataset for the wave properties (as in section
4). Even though our empirical estimates indicate that
some of the wave-added effects are significant in mid-
dle- and high-latitude regions, we can anticipate that
certain aspects of an OGCM solution will change rel-
atively little, due to several partial cancellations in the
wave-modified solutions. An example of this is the can-
cellation between horizontal boundary-layer transport
convergence and the surface vertical velocity in the re-
sulting Ekman pumping at the base of the boundary
layer, which leaves the interior geostrophic circulation
unaffected by waves [see (53)]. Another example is the
partial cancellation (i.e., in the integral over depth) be-
tween the horizontal currents advecting the tracer fields
and the wave-added Stokes-drift advection of the Eu-
lerian current, which tends to have a Stokes-compen-
sating component [e.g., as in (51)]; this leaves only the
difference in their vertical profiles as the noncancelling
part of the advecting velocity.

In summary, we believe that this wave-averaged the-
ory is relevant to many oceanic current regimes, and
that at least some of its predictions can feasibly be tested
by observations. Its consequences are likely to be sig-
nificant for the large-scale, wind-driven circulation.
These remarks pertain both to the particular simple
wind-gyre solutions presented here, as well to more gen-
eral ones for which the wave-averaged Boussinesq mod-
el is relevant.
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APPENDIX A

Wave Transport in the Vorticity Equation

Here we calculate

= 3 ^uw 3 v1& 5 ^v1 · =uw& 2 ^uw · =v1& (A1)

in Eq. (15), with

v1 5 = 3 (U 3 Z),

where U [ uw( · , s) ds and Z [ v0 1 2V. Thet#
following derivation follows the methodology estab-
lished in CL. It corrects a minor typographical error in
the original Craik and Leibovich (1976) calculation [cf.
Eq. (11) in their paper] and differs from the original by
the inclusion of Coriolis forces.

We begin by stating some relations that will be useful
in the calculation. Since uw has zero divergence, so too
does U. By definition v0 has zero divergence and it is
easily verified that = · v1 5 0 here. The averages are
such that ^Z& 5 Z, since ^v0& 5 v0 and ^2V& 5 2V.

Next, we show that the Stokes drift has no divergence,

= · us 5 0.

Using tensor notation with a comma denoting differ-
entiation, the kth component of the Stokes-drift velocity
is the time average of Uj . The quantitywuk,j

]
w w[(U U ) ] 5 u U 1 U uj j,k ,k j,k k, j j,k k, j]t

is an identity since the velocity is divergence free. Fur-
thermore, since the velocity is periodic and the time
average ^uw& is zero, the left-hand side of the above
expression is identically zero and thus Stokes drift is
solenoidal.

Now we proceed to calculate (A1). The following
vector identity is used frequently:

curl(A 3 B) 5 A divB 2 B divA 1 (B · grad)A

2 (A · grad)B,

for arbitrary vectors A and B. Substituting (14) into
(A1) yields

w{= 3 ^u 3 v &}1 i

w w w5 ^Z U u & 2 ^U Z u & 1 ^u (U Z ) &k j,k i, j j k, j i,k k j i, j ,k

w w2 ^u (Z U ) & 1 ^Z U u &k j i, j ,k k,k j i, j

w2 ^{u · =[U= · Z]} &. (A2)i

The implications of a nonsolenoidal V will be consid-
ered briefly in appendix B. Here, however, we consider
the geophysical setting, in which V is spatially uniform
in an inertial frame, hence = · 2V 5 0 in a geocentric
rotating frame. Thus, the last two terms in (A2) vanish.

The first term in (A2) can be shown to be

^ZkUj,k & 5 Zk 2 Zk^Uj &,w s wu u ui,j i,k i,jk (A3)

where 5 ^Uj & is the Stokes-drift velocity. Sinces wu ui i,j

]
w w(U U ) 5 ^u U 1 U u &j k j k j k7 8]t

and the left-hand side of this expression is identically
zero, we can write the third term in (A2) as

^ (UjZi,j),k& 5 ^ Zi,jkUj& 2 ^ Zi,juj,k&.w w wu u Uk k k

However, the first term on the right-hand side of this
expression is zero, since Zi,jk is symmetric and Uj iswuk

antisymmetric. The second term, on the other hand, can
be identified as 2Zi,j . It is easy to see that the secondsuj

term of (A3) cancels with the second and fourth terms
of (A2). Hence, Eq. (A2) may be written as
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{= 3 ^uw 3 v1&}i 5 Zk 2 Zi,k 5 {= 3 (us 3 Z)}i.s su ui,k i

(A4)

APPENDIX B

Vortex Force with a Nonsolenoidal Rotation
Vector

In this appendix we briefly consider the implications
of a nonzero = · 2V on the vortex force.

Taking into account the results of appendix A and
assuming that 2V is not divergence free, the vortex
force may be written as

{= 3 ^uw 3 v1&}i 5 s s sZ u 2 Z u 1 Z uk i,k i,k i k,k i

2 ^{uw · =[U= · Z]}i&, (B1)

where the fifth term (A2) was replaced by its equivalent
Zk,k . Since the divergence of the first three terms onsui

the right-hand side is identically zero, we can write it
as a curl of a quantity. This implies that the divergence
of the last term must also be zero, which is verified
below. Thus,

{= 3 ^uw 3 v1&}i 5 ^{= 3 (uw 3 Z)}i&

2 ^{uw · =[U= · Z]}i&. (B2)

Now we consider the last term in the above equation.
First note that = · Z 5 = · 2V. Next we verify that the
last quantity in (B2) is divergence free:

5 1 1 1w w w w w[u (zU ) ] zU u z U u z u U z U uj i , j ,i i,j j,i ,j i j,i ,i j i,j ,ij i j

5 0, (B3)

with z [ = · 2V, hence it is expressible in terms of the
curl of another quantity.

Let Wij [ ^Ui &. This quantity has the property thatwuj

Wij,i 5 and Wij,j 5 2 and hence is antisymmetric,s su uj i

thus implying that Wij 5 e ijk , where eijk is the cyclicsxk

operator and xs is a vector streamfunction for the Stokes
drift velocity. That is,

5 2Wij,j 5 2eijk 5 2(= 3 xs) i.s su xi k,j

Taking the curl of this expression yields,

Dxs 5 vs,

assuming = · xs 5 0, where vs is the vorticity of the
Stokes-drift velocity.

We can write the explicit expression for the second
term on the right-hand side of (B2) as the curl of some
quantity,

^{( Uiz), j}i& 5 = 3 (zxs),wuj

since

5 1 5 1 e ijkx s
kz, j

w s s^(u U z) & 2u z W z 2u zj i , j i ij , j i

5 1 {=z 3 x s}i
s2u zi

5 {= 3 x s}iz 1 {=z 3 x s}i. (B4)

To summarize,

w= 3 ^u 3 v &1

s s5 = 3 (u 3 Z) 2 = 3 [(= · Z)x ]
s s5 (v 1 2V) · =u 2 u · =(v 1 2V)0 0

s s1 (= · 2V)u 2 = 3 [(= · 2V)x ]. (B5)

APPENDIX C

Wave Transport in the Tracer Equation

Here we provide the details of the calculation of

^uw · =u1&

after (30) is replaced in Eq. (31). With the help of an
identity,

^{uw · =(U · =u)}i& 5 ^{= · (uw= · (uU))}i&

5 .w^u (U u ) &i j , j , i

However,

^ (Uju, j), i& 5 ^ Uj,iu, j& 1 ^ Uju, ji&.w w wu u ui i i (C1)

The first term on the right-hand side of the above equa-
tion can be shown to satisfy

]
w w^u U u & 5 (U U )u 2 ^U u u &,i j,i , j i j,i , j i j,i , j7 8]t

and with time averaging the time derivative term is zero.
Thus,

^ Uj,iu, j& 5 2 ^u, j&.w su ui j

Again, since the time average of a time derivative
must vanish, the following equation shows that the sec-
ond term in (C1) vanishes:

]
w w w(U U )u 5 u U u 1 u U u 5 2u U u .i j , ji i j , ji i j , ji i j , ji]t

At this stage, all the terms can be replaced in (31), and
then a time average is performed. With 5 ^Ui &,s wu uj j,i

the time-averaged tracer equation is then (32).
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