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ABSTRACT

The interaction between the Coriolis force and the Stokes drift associated with ocean surface waves leads
to a vertical transport of momentum, which can be expressed as a force on the mean momentum equation
in the direction along wave crests. How this Coriolis–Stokes forcing affects the mean current profile in a
wind-driven mixed layer is investigated using simple models, results from large-eddy simulations, and
observational data. The effects of the Coriolis–Stokes forcing on the mean current profile are examined by
reappraising analytical solutions to the Ekman model that include the Coriolis–Stokes forcing. Turbulent
momentum transfer is modeled using an eddy-viscosity model, first with a constant viscosity and second with
a linearly varying eddy viscosity. Although the Coriolis–Stokes forcing penetrates only a small fraction of
the depth of the wind-driven layer for parameter values typical of the ocean, the analytical solutions show
how the current profile is substantially changed through the whole depth of the wind-driven layer. It is
shown how, for this oceanic regime, the Coriolis–Stokes forcing supports a fraction of the applied wind
stress, changing the boundary condition on the wind-driven component of the flow and hence changing the
current profile through all depths. The analytical solution with the linearly varying eddy viscosity is shown
to reproduce reasonably well the effects of the Coriolis–Stokes forcing on the current profile computed
from large-eddy simulations, which resolve the three-dimensional overturning motions associated with the
turbulent Langmuir circulations in the wind-driven layer. Last, the analytical solution with the Coriolis–
Stokes forcing is shown to agree reasonably well with current profiles from previously published observa-
tional data and certainly agrees better than the standard Ekman model. This finding provides evidence that
the Coriolis–Stokes forcing is an important mechanism in controlling the dynamics of the upper ocean.

1. Introduction

The oceanic wind-driven current profile is difficult to
observe because the velocities are small and of similar
magnitude to the velocities associated with inertial os-
cillations and surface wave motions. Consequently
there are few detailed measurements of the Ekman cur-
rent profile. Observations suggest three features of the
wind-driven current profile that need to be explained
by any model. First, the surface current lies at an angle
of between 10° and 45° to the surface wind stress
(Huang 1979). Second, at a depth between 5 and 20 m
the current is deflected by approximately 75° to the

wind stress (Price and Sundermeyer 1999). Third, the
current speed is rapidly attenuated with depth. The
classical Ekman model cannot explain all these ob-
served features (Lewis and Belcher 2004).

The difficulties in observation due to similarity in
magnitude between the current speed and the speeds
associated with other physical processes suggest that
other processes may be dynamically important. Surface
waves are a ubiquitous feature of the ocean surface.
The leading order water motions associated with the
surface waves are periodic and, at least below the
troughs, do not affect the time-averaged, mean, current
profile. Surface waves also produce a mean Lagrangian
transport in their direction of propagation, the Stokes
drift (e.g., Phillips 1977). For a monochromatic wave
the Stokes drift is given by

us � Use
2kz and Us � �ak�2c, �1�

for wave amplitude a, wavenumber k, wave phase
speed c, and depth z that is zero at the mean sea level
and decreasing downward. The significance is that, in
an inviscid fluid, lines of vorticity move with fluid par-
cels, and so the Stokes drift tilts and stretches initially
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vertical vorticity into the horizontal plane. In the ocean
mixed layer there are two sources of vertical vorticity:
vorticity from three-dimensional turbulent motions
within the mixed layer and planetary vorticity. Distor-
tion of turbulent vorticity by Stokes drift is at the heart
of models for Langmuir circulations (Leibovich 1983;
McWilliams et al. 1997; Teixeira and Belcher 2002).
The interaction of the Stokes drift with planetary vor-
ticity is the subject of this paper.

The effects of Stokes drift in a rotating frame was
first considered by Ursell (1950), Hasselmann (1970),
and Pollard (1970) who showed that, for an inviscid
ocean, there can be no net mass transport associated
with the Stokes drift. Subsequently, also using a
Lagrangian description, Weber (1983a, b) showed how
including viscosity, no matter how small, yields a non-
zero net mass transport. Hasselmann (1970) also shows
that the interaction between the planetary vorticity and
the Stokes drift yields a force on the Eulerian momen-
tum balance: f � us. To give expression to this process,
here we refer to this forcing as the Coriolis–Stokes forc-
ing. The origin of this forcing can be understood in two
ways. First, and intuitively, the Stokes drift attempts to
tilt and stretch the planetary vorticity into the horizon-
tal leading to a vortex force on the flow. Alternatively,
the f � us forcing can be interpreted as the divergence
of a wave-induced stress as follows. The Eulerian ve-
locity is decomposed into a rapidly varying wave orbital
velocity, ũ, and a mean velocity, u. On a rotating ocean,
the plane of the orbital velocity is tilted in the along
wave crest direction by the Coriolis acceleration, as
shown schematically in Fig. 1. This tilting introduces
an along wave crest component into the orbital ve-
locity, �̃, which is correlated with the vertical com-
ponent, w̃. Hence there is a wave-induced stress ��̃w̃,
whose divergence Hasselmann (1970) shows can be ex-
pressed as

��
�

�z
�̃w̃ � ��| f � us |, �2�

acting in the direction along wave crests. It is the effect
of this Coriolis–Stokes forcing on vertical profiles of the
mean current that is the focus of this paper.

When the momentum equations are averaged over
the wave periods, the Coriolis–Stokes forcing appears
as an extra term in the mean horizontal momentum
equations that govern the ageostrophic motions so that

�f ẑ � �u � us� �
��

�z
, �3�

where � is the density and � is the turbulent stress (see
Huang 1979). The boundary conditions are a constant
wind stress, 	0, at the mean sea surface z � 0 and the
turbulent stress and ageostrophic velocity tend to zero
at large depth:

�0 � ��2

*x̂ on z � 0; u → 0, � → 0 as z → ��. �4�

Here �* is the friction velocity in the water. There are
two important depth scales in this problem. First, there
is the Stokes depth scale, 
s � 1/(2k), over which the
Stokes drift, us, and the f � us forcing penetrate. Sec-
ond, there is the Ekman depth scale, 
e, over which
turbulent stresses balance Coriolis force. Typical values
for these parameters in the open ocean mixed layer are

e � 50 m, which is much greater than 
s � 5 m.

a. Magnitude of the Coriolis–Stokes forcing

What is the magnitude of the Coriolis–Stokes forcing
in comparison with the terms in the standard Ekman
balance? The depth-integrated transports give a first
indication; they are defined by

FIG. 1. Schematic illustrating the orbital path for a particle under a wave is tilted, by
planetary rotation, in the along–wave crest direction. The new �̃ component orbital velocity
correlates with the w̃ component to produce a nonzero stress. The divergence of this stress can
be written as (Hasselmann 1970) ��f � us.
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T � �
��

0

u dz � Ue�e and Ts � �
��

0

us dz � Us�s.

�5�

Integration of (3) and rearranging gives

T � Ts � �
ẑ � �0

f�
, �6�

which shows that the net (Eulerian plus Lagrangian)
transport is unaffected by the waves (see McWilliams
and Restrepo 1999). We define the Ekman–Stokes
number, Es (cf. McWilliams and Restrepo 1999), to be
a measure of the wave-induced transport in comparison
with the total net transport, namely

Es �
wave-induced transport

total net transport
�

|Ts |
| ẑ � �0�f | �

Us�s

Ue�e
, �7�

where Ue is the velocity scaling for the pure Ekman
current, defined by the transport relation (5), such that
Ue
e � �2

*/f. We evaluate this expression for Es by using
the formula for us as a function of wind speed at 19.5 m
obtained by Kenyon (1969) based on the Pierson and
Moskowitz (1964) spectrum of the fully developed sea,
which is then integrated over depth to give the wave-
driven transport. Assuming a log profile for the wind
speed, Es is then a function of U10 given by

Es � 0.39
fU10

cD
�1 �

cD
1�2 ln1.95

�
�3

, �8�

where cD is the atmospheric drag coefficient defined by
	0 � �acDU2

10, with air density �a � 1.2 kg m�3 and cD

taken from Garratt [1992, Eq. (4.24)], namely cD �
(0.75 � 0.067U10) � 10�3.

Figure 2 shows how Es increases with wind speed at
four latitudes. For example, at a latitude of 50°N,
Es(U10 � 12 m s�1) � 0.4 suggesting that the wave-

induced transport can be a significant fraction of the
wind-induced transport. These plots can be compared
with those in McWilliams and Restrepo (1999) who de-
duce global maps of Es based on climatological winds
(although they appear to use the 19.5-m wind speed in
place of U10). The finding that the Eulerian depth-
integrated wave-driven transport is comparable to the
wind-forced Ekman transport motivates the present
analysis, which aims to determine the vertical distribu-
tion of the Eulerian wave-driven transport in the Ek-
man–Stokes layer.

b. Aims of the present paper

Madsen (1978) and Huang (1979) showed that the
Coriolis–Stokes forcing acts in combination with the
Coriolis force and the divergence of vertical momen-
tum transfer by turbulent stresses, thereby changing the
usual Ekman balance in the wind-driven mixed layer
and the current profiles. Later studies have developed
the theory for more sophisticated representations of the
turbulent stress (Jenkins 1986, 1987), for finite depths
(Xu and Bowen 1994), and for the role of Langmuir
circulations (Gnanadesikan and Weller 1995). A num-
ber of questions remain however.

Huang’s (1979) solution shows that the Coriolis–
Stokes forcing, which penetrates only into shallow
depths, affects the current profiles through its whole
depth. So, the first question is by what physical mecha-
nism is the whole depth affected? Here we address this
question in section 2 by reappraising Huang’s analytical
solution for the current profile. This reappraisal shows
how the depth-integrated transport is partitioned be-
tween a portion that occupies only the Stokes depth
and another portion that occupies the whole wind-
driven mixed layer. This analysis then shows how for
practical purposes the Coriolis–Stokes forcing can be
represented as an effective boundary condition on the
standard Ekman flow.

A second question is what evidence is there that the
role of the Coriolis–Stokes forcing is real and measur-
able? To address this question we examine effects of
the Coriolis–Stokes forcing on the otherwise standard
Ekman dynamics: we ignore further complicating ef-
fects of stratification, etc, to isolate the role of Coriolis–
Stokes forcing. The question is addressed here in two
ways. First, in section 3 the results of the simple models
are compared with current profiles computed from
large-eddy simulations of the wind-driven ocean mixed
layer that account for the effects of the Stokes drift.
And second, in section 4 the results of the simple model
are compared with previous observations of the wind-
driven ocean mixed layer.

2. Structure of the mean current profile in the
Ekman–Stokes layer

The Coriolis–Stokes forcing changes the dynamical
balance in wind driven mixed layer and, hence, the

FIG. 2. Graph showing how Es, the ratio of wave-induced to
total net transport, varies with U10 for four different latitudes: 40°,
50°, 60°, and 70°. Even moderate wind speeds of U10 � 12 m s�1

suggest that wave-induced effects could have a nonnegligible im-
pact in the ocean mass transport.
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structure of the mean current profile, resulting in the
Ekman–Stokes layer. In this section we reappraise so-
lutions to simple models to show how this forcing
changes the currents over the whole depth of the layer.
This analysis then suggests a practical method for in-
corporating the Coriolis–Stokes forcing into large-scale
models.

a. Current profile with a constant eddy viscosity

Just as for the classical Ekman layer, many of the
characteristics of the current in the Ekman–Stokes
layer are shown in the solution to the dynamical equa-
tions with a constant eddy viscosity �m. This problem
was first considered by Madsen (1978) and Huang
(1979). Here we reappraise the solution by writing it in
a form that highlights how the shallow wave process
change the current profile over the whole depth of the
Ekman–Stokes layer.

The turbulent stress in (3), �, is parameterized with a
simple gradient transfer eddy-viscosity model:

� � ��m

�u
�z

, �9�

where �m is the eddy viscosity, taken in this subsection
to be constant.

Huang (1979) shows that the solution is obtained by
recasting the momentum equation [(3)] into complex
notation, where u � ui � �j is re-expressed as U � u �
i�. The solution to (3) is then obtained using standard
methods. Here we decompose this solution to the Eu-
lerian velocity into three parts, thus

U � Ue � Ues � Us, �10�

where

Ue � �1 � i�Ue exp��1 � i�
z

�e
�, �11�

Ues � �1 � i�Ue exp��1 � i�
z

�e
�

× �Us�s

Ue�e

1
2

�e
2��s

2

�1 � i
1
2

�e
2��s

2�� , and

�12�

Us � �
Us

�1 � i
1
2

�e
2��s

2� exp� z

�s
�. �13�

In this case, 
e � (2�m/f)1/2. Writing the solution in this
way enables clear physical interpretation of the role of
the Coriolis–Stokes forcing. Here Ue is the pure Ekman
solution and would be the entire solution if the wave-
induced affects were not included. However, the
Stokes–Coriolis forcing introduces two new terms into
the solution. First, there is a Stokes component of the

current, Us. This part of the solution is forced directly
by the Coriolis–Stokes force; mathematically it arises as
a particular integral to the Coriolis–Stokes forcing. The
Stokes component of the current decays over the
Stokes depth scale, 
s. (The Stokes component of the
Eulerian current Us is the dynamical response to the
Coriolis–Stokes forcing and should not be confused
with the Lagrangian Stokes drift, us.) Second, there is
an Ekman–Stokes component of the current, Ues. Im-
portant is that this term decays over the Ekman depth
scale, 
e, and so changes the current profile through the
whole depth of the layer. This part of the solution arises
to ensure that the total solution satisfies the wind stress
boundary condition imposed at the sea surface. That is,
the Stokes component of the solution leads to a surface
stress: the Ekman–Stokes component is required to re-
move this surface stress. Since the Ekman–Stokes has
the same depth variation as the Ekman part of the so-
lution, it is as if we have the Ekman solution but with a
changed surface boundary condition. In this sense the
effect of the Coriolis–Stokes forcing is to change the
boundary condition on the Ekman current.

The decomposition of the solution (11)–(13) is shown
in a hodograph and as depth profiles in Fig. 3. The thick
lines represent the full solution, the thin solid lines rep-
resent the Ekman component, the dashed lines denote
the Ekman–Stokes component, and the dotted–dashed
lines denote the Stokes current component. Notice how
the Ekman–Stokes component of the solution pen-
etrates through the whole depth of the wind-driven
layer, whereas the Stokes component of the solution
penetrates only the upper fraction of the layer. The
wave-induced effect is to further rotate the current vec-
tors, as compared with the pure Ekman solution.

The analysis of section 1a showed the magnitude of
the depth integrated wave-driven transport. Now we
can understand the depth profile of this transport. Con-
sider then the depth-integrated Eulerian transport car-
ried by each of the three components of the solution in
(10):

Te � �iUe�e, Tes � �Us�s

1
2

i�e
2��s

2

1 �
1
2

i�e
2��s

2

, and

Ts � �Us�s

1

1 �
1
2

i�e
2��s

2

. �14�

If the positive real axis is taken to be east, with wind
and waves in that direction, then the depth-integrated
wind-driven transport, Te, equals the value obtained in
section 1a and is to the south. The sum of the transports
arising from the Coriolis–Stokes forcing yield the total
wave-driven transport—that is, Tes � Ts � �Us
s. The
power of the decomposition in (10) is now clear: the
total wave-driven Eulerian transport is partitioned be-
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tween Tes, which extends through depth 
e, and Ts,
which extends through depth 
s. Figure 4 shows how
these vector transports vary with the controlling param-
eter, 
e /
s. With the wind stress to the east, the total
wave-driven Eulerian transport, Tes � Ts, is to the west.
As shown in Fig. 4, the vector transports Tes and Ts lie
on opposite sides of a circle with a diameter equal to
the total Eulerian wave-driven transport. The vector Ts

makes an angle , given by tan  � 1⁄2
2
e/
2

s , to the west;
Ts has a northerly component, and Tes has a southerly
component.

Hence the net water transport, which is the sum of
the Eulerian and Lagrangian transports, has a compli-
cated structure. Over the shallow Stokes depth, the net
water transport is the sum of the Eulerian transport
Ts and the depth-integrated Lagrangian Stokes drift
T L

s � Us
s. The resultant Ts � T L
s � �Tes has a northerly

component, as shown in Fig. 4. Over the depth of the
wind-driven layer, the net water transport is the sum
of the usual southward wind-driven Ekman trans-
port, Te, and the wave-driven transport, Tes. The result-
ant, Tes � Te, has a westward component as shown in
Fig. 4.

When 
e /
s is small,  becomes small and the wave-

driven transport is carried by Ts over the Stokes depth.
This is the limit of no wind when the wave-driven Eu-
lerian transport is equal and opposite to the Lagrangian
Stokes drift at every depth. When 
e /
s is large, which is
typical of the open ocean, most of the wave-driven
transport is carried by Tes over the whole depth of the
wind-driven mixed layer. In that case and for depths
greater than the Stokes depth, |z | 	 
s, the solution for
the velocity becomes approximately the sum of (11)
and (12) and can be written

U � �1 � iEs�Ue, �15�

where Es � Us
s/Ue
s. The Coriolis–Stokes forcing adds
a new component to the standard Ekman solution that
accounts for the depth-integrated Eulerian transport by
the waves and has the same variation with depth as the
standard Ekman solution.

We shall see in section 2c below that this new ap-
praisal of Huang’s solution demonstrates an efficient
way of representing the Coriolis–Stokes forcing in
large-scale ocean models. First we analyze a more faith-
ful model for the turbulent stress.

FIG. 3. Mean flow velocity components for a solution to the
eddy-viscosity closure model with constant eddy viscosity. The
parameters are �m � 1.16 � 10�2 m2 s�2, �* � 6.1 � 10�3 m s�1,
f � 1 � 10�4 s�1, us � 0.068 m s�1, and k � 0.105 m�1 giving depth
scales 
e � 15 m and 
s � 5 m. The thick line is the full solution,
the solid thin line is the Ekman component, the dashed line is the
Ekman–Stokes component, and the dotted–dashed line is the
Stokes component. All velocities are normalized by the friction
velocity �*. The wind stress and wave propagation directions are
in the positive x direction.
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b. Linearly varying eddy viscosity

We expect the solutions obtained above with the con-
stant viscosity to give the correct qualitative effects of
the Coriolis–Stokes forcing. To substantiate this claim,
particularly in the case that 
e 	 
s, we briefly analyze
here the solution obtained with an eddy viscosity that
increases linearly with depth. This models the increased
efficiency of turbulence to mix momentum farther from
the boundary. Very near the surface, within the dis-
tance of a significant wave height, wave breaking and
other processes significantly change the mixing and
more sophisticated modeling is required (see Craig and
Banner 1994). Below this layer, however a linear mix-
ing length model is adequate according to Craig and
Banner (1994). Hence we retain a simple model that
contains just Ekman dynamics plus the Coriolis–Stokes
forcing, but now we expect that the turbulent stress is
better represented.

The eddy viscosity is now specified to be

�m�z� � ���*z � ��*z�, �16�

when z � 0; � � 0.4 is the von Kármán constant, and
z� � �z. The momentum equations then reduce to

�

�
 �

�U

�
 � � 
U � 
us, �17�

where �2 � i4f/��*z�.1 The particular solution is ob-
tained by the method of variation of parameters, giving
(following Madsen 1977; Lewis and Belcher 2004)

U ��2�*
�

� 4i �
0

ẑ�

I0��8it�ûs�t� dt�K0�
�

� 4iI0�
� �
ẑ�

�

K0��8it�ûs�t� dt, �18�

where I0 and K0 are modified Bessel functions
(Abramowitz and Stegun 1972),

ẑ� � z���e, �e � 2��*�f, and ûs�t� � Us exp��t�e ��s�.

In the limits that 
e /
s 	 1 and |z | 	 
s, the solution
simplifies to

U �
2�*
� �1 � i

Us�s

Ue�e
�K0�
� � �1 � iEs�Ue, �19�

1 Strictly speaking, there is another term representing the re-
distribution of momentum within the Stokes layer, which arises
from the nonzero vertical gradient of eddy viscosity (Jenkins
1989). Since we are interested in the flow beneath this region,
when 
e /
s 	 1, this is captured in the surface stress boundary
condition.

FIG. 4. Schematic showing the components of the vector depth-integrated transport. The
Eulerian wave-driven transport has two components Ts and Tes, which sum to minus the
depth-integrated Lagrangian Stokes drift, T L

s , and lie on opposite sides of a circle; Ts makes an
angle  to the north, where tan � 1⁄2
2

e/
2
s . The total water transport (Eulerian plus

Lagrangian) then has components over two depth scales: Ts � T L
s over the Stokes depth;

Tes � Ts over the Ekman depth.
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where Ue � 2(�*/�)K0(�) is the solution for the standard
Ekman problem with no Coriolis–Stokes forcing. This
is in agreement with what was found with the constant-
eddy-viscosity case. This agreement is no accident. In
this limit of 
e /
s 	 1, the Stokes response [the last term
in (18)] to the f � us forcing is negligible over most of
the depth of the wind driven layer, as is the correspond-
ing contribution to the net transport. Hence the wave-
induced Eulerian transport, which is to equal �Ts by
the integral constraint (6), must be carried by the Ek-
man–Stokes component of the solution. The signifi-
cance is that, in this limit of 
e /
s 	 1, which is the limit
appropriate for much of the ocean mixed layer, the
Eulerian wave-driven transport is carried through the
same depth as the wind-driven transport. We have
shown here that this result follows through indepen-
dently of the eddy-viscosity model used to compute the
turbulent stress.

c. Effective boundary condition for a shallow wave
forcing

Above it was shown how in the limit of 
e/
s 	 1,
when the Ekman–Stokes layer is deep in comparison
with the depth of the Coriolis–Stokes forcing, f � us,
the effect of the forcing on the current profile reduces
to a canonical form. We now develop an argument to
show how this can be understood as the Coriolis–Stokes
forcing changing the boundary condition on the wind-
driven layer.

Recall that the Coriolis–Stokes forcing arises from a
stress caused by the orbital motions associated with the
surface wave [see (2)]. Hence the momentum equation
governing the wind-driven layer can be written

�f ẑ × u �
��tot

�z
�

�

�z
�� � �w�, �20�

where the total stress, �tot is the sum of the turbulent
stress � and the wave-induced stress �w � ���̃w̃, de-
fined in Eq. (2). In the limit of 
e /
s 	 1, the Stokes
layer is thin and below the Stokes layer the wave-
induced stress is zero. Hence the total stress below the
Stokes layer is just the turbulent stress. Now, a scale
analysis of (20) shows that the vertical gradient of the
total stress is small when |z | � 
e. Hence, as in the
atmospheric boundary layer, the total stress within a
very shallow layer is approximately constant with
height. So the total stress just below the Stokes layer
equals the total stress at the surface. At the surface the
turbulent stress equals the applied wind stress, �0, and
the wave-induced stress is given, on integrating (2), by

�w�0� � ��
��

0

�f � us dz � ��f � Ts. �21�

Here Ts is the vector depth-integrated wave-driven
transport. So the total stress just below the Stokes layer,
which equals the turbulent stress just below the Stokes

layer, is the applied wind stress plus the surface wave
induced stress (21). Putting these two results together,
the Ekman–Stokes layer can be modeled using stan-
dard Ekman balance

�f ẑ � u �
��

�z
, �22�

subject to the effective boundary conditions

� � �0 � �f � Ts � ��2

*��̂0 � ẑ � ûsEs� on z � 0,

u → 0 as z → � �, �23�

for arbitrary wind and wave directions (with hats de-
noting unit vectors). The turbulent stress 	 can then be
modeled using any standard technique.

Figure 5 demonstrates use of the effective boundary
condition. The figure shows, for these cases when 
e /
s

� 6, good agreement between mean current profiles
calculated with the resolved profile of Coriolis–Stokes
forcing and with the effective boundary condition
(which are plotted only below the Stokes depth). Also
shown is the total Eulerian plus Lagrangian motion
(which is the speed of movement of water parcels),
obtained by adding the Stokes drift to the Eulerian
solutions. The profiles show that, for these particular
parameters, the speeds near the surface are then close
to the standard Ekman solution, but deeper they follow
the Stokes–Ekman form.

The derivation of the effective boundary condition
shows that for the parameter regime of most interest in
the ocean, it is the depth-integrated wave-induced
transport that needs to be known to capture the effects
of the Coriolis–Stokes forcing on the bulk of the flow.
The detailed vertical profile of the Stokes drift is un-
important. This motivates the use of a single monochro-
matic wave in LES and the comparisons with observa-
tions.

This finding also has implications for representation
of the Coriolis–Stokes term in ocean general circulation
models. These models do not typically have sufficient
vertical resolution to compute the flow within the upper
part of the mixed layer where the Coriolis–Stokes force
acts. The present analysis shows that the effect of this
forcing on the mixed layer can be represented by
changing the boundary condition on the standard Ek-
man equations.

3. Large-eddy simulation of the Ekman–Stokes
layer

We have reappraised simple models for the wind-
driven mixed layer that show how the Coriolis–Stokes
force changes the mean current profile through all
depths. These models represented the turbulent stress
associated with three-dimensional overturning turbu-
lent motions through simple eddy-viscosity models.
These turbulent motions are represented more faith-
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fully in this section through large-eddy simulation
(hereinafter LES), where the fully nonlinear equations
of motion are integrated forward in time with sufficient
resolution to compute explicitly the large-scale turbu-
lent motions. Only the small-scale turbulence is param-
eterized. In this section the mean current profiles are
computed by an LES model of the turbulent Ekman–
Stokes layer.

Following Skyllingstad and Denbo (1995) and
McWilliams et al. (1997), we perform LES of the wave-
filtered Craik–Leibovich equations to account for
wavelength-averaged effects of surface waves. With this
procedure the momentum equation becomes

Du
Dt

� f � �u � us� � ��� � us � � � SGS. �24�

Here u is the wave-averaged Eulerian velocity, f � f ẑ is
the Coriolis parameter, ẑ is the upward unit vector, � �

� � u is the local vorticity vector, and D/Dt � �/�t �
u · � is the material derivative. The subgrid-scale pro-
cesses (denoted SGS) are parameterized using a stan-
dard Smagorinsky model. Last, � is the generalized
pressure given by

� �
p

�0
�

1
2

�|u � us |2 � |u |2�. �25�

We consider the simplest problem that highlights
clearly the role of wave-induced processes when the
density is prescribed to be constant with depth and a
single monochromatic wave. (Note that this assumption
of monochromatic waves is not likely to be important:
the analysis above shows how it is the depth-integrated
wave-induced transport that is important, not the ver-
tical variation of Stokes drift.)

The governing equations then contain the Coriolis–
Stokes forcing, f � us, and also the vortex force, us � �,

FIG. 5. Mean current profiles calculated with the effective boundary condition, with turbulence parameterized with a linear eddy-
viscosity model. There are four values of Us, and �* � 6.1 � 10�3 m s�1 and f � 10�4 s�1, so that 
e � �*/f � 61 m and k � 0.0525 m�1,
so that 
s � 10 m. Hence 
e /
s � 6 	 1. (top) Hodographs, (middle) vertical profile of u/�*, and (bottom) vertical profile of �/�*: thick
lines, full solution with Coriolis–Stokes forcing; thin lines, standard Ekman solution; thick line with star, solution with the effective
boundary condition; thin line with star, total Eulerian plus Lagrangian drift. Solutions with effective boundary condition plotted from
z � �
s downward.
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which represents the straining of the vorticity associ-
ated with resolved mean and turbulent motions by the
Stokes drift. This latter term gives rise to Langmuir
circulations (as reviewed by Leibovich 1983), which
lead to enhanced vertical mixing. The LES with the
vortex force yields a turbulent boundary layer with
elongated Langmuir vortices on a range of scales,
whose dynamics are described in Skyllingstad and
Denbo (1995), McWilliams et al. (1997), and Teixeira
and Belcher (2002). Here we focus on the mean current
profiles produced by the LES.

The equations are integrated numerically using a
code based on the atmospheric boundary layer code
BLASIUS (Wood and Mason 1993), which has been
modified to include the two wave-forcing terms. The
code is run in LES mode (Brown et al. 2001) using a
Smagorinsky subgrid model. For further model details
refer to Wood et al. (1998). The domain is periodic and
isotropic in the horizontal directions spanning 120 m
with a resolution of 3 m. In the vertical direction 200
grid points span 90 m with a resolution of 0.46 m. This
is similar to the 3 m � 3 m � 0.6 m resolution used by
McWilliams et al. (1997), which is vertically uniform.
Our simulations also have uniform vertical resolution
except in the upper 1 m where we use a stretched grid
over four levels. The most significant difference be-
tween our simulations and those of McWilliams et al.
(1997) is in the stratification. In the McWilliams et al.
(1997) study, the upper 33 m is neutrally buoyant and
the rest is stably stratified. Here we simplify and make
the whole domain neutrally buoyant to isolate clearly
the effects of the wave processes. At the surface a con-
stant wind stress is applied in the x direction such that
at z � �z0,

�m

�u

�z
� �2

* and �m

��

�z
� 0, �26�

where �m is the mixing-length eddy viscosity, which pa-
rameterizes the stress very near the surface, �* is the
friction velocity in the water, and z0 is the roughness
length. No attempt is made to represent mixing by
breaking waves. At the lower boundary, z � �90 m, a
no-slip condition is imposed (although the domain was
sufficiently deep that this boundary condition did not
play a dynamical role). The code was checked by per-
forming a simulation with the parameters of McWil-
liams et al. (1997). Vertical profiles of the mean flow
and turbulence statistics from our simulation (not
shown) are in good agreement with McWilliams et al.
(1997).

A total of 16 simulations have been performed for a
range of k and Us wave parameters. Each of the simu-
lations had �* � 6.1 � 10�3 m s�1 (corresponding to a
10-m atmospheric wind speed, U10 � 5 m s�1) and f �
1 � 10�4 s�1. The roughness of the sea surface from
below is taken to be z0 � 0.1 m, which is smaller than
the values used by Craig and Banner (1994), but expe-

rience with the linear eddy-viscosity model indicates
that the current profiles in the bulk of the Ekman layer
are insensitive to this parameter. The wave parameters
are k � 0.02625, 0.0525, 0.105, and 0.210 m�1, which
yields wavelength � � 240, 120, 60, and 30 m and a
surface Stokes drift of Us � 0, 0.017, 0.034, 0.068, and
0.271 m s�1. Lewis and Belcher (2004) show that, with
a constant viscosity, the transient motions, with and
without Coriolis–Stokes forcing, decay on the inertial
period T � O(2	/f) � 6 � 104 s. Hence each run was
integrated to 2 � 105 s, which is a little over three
inertial periods. Profiles of the second-order turbulence
moments were monitored and satisfactory steady state
was seen after this time. Mean flow and turbulent sta-
tistics were gathered starting at 5000 s and computed
from instantaneous horizontal averages that are taken
approximately every 10 s.

LES results and comparison with eddy-viscosity
closure model

The mean current profiles obtained from the LES are
now compared with the simple eddy-viscosity closure
model discussed in section 2b. Figure 6 shows solutions
from four simulations, all with k � 0.0525 m�1 (� � 120
m) but with increasing wave amplitudes, and hence in-
creasing Us. [Since Es � Us/(2k), increasing k has the
same qualitative effect as decreasing Us.]

The upper panels show hodographs of the locus of
the current vector as the depth increases. The middle
panels show corresponding profiles of mean along-wind
velocity, u against depth. The lower panels show the
corresponding mean across-wind velocity, �, against
depth. In each panel the thicker solid line is the LES
data, the thinner solid line is the solution from the
model with linearly varying eddy-viscosity closure, and
the dashed line is LES data from a run without wave
forcing (that is the pure Ekman solution).

First consider the LES solutions. Even for moderate
values of the Stokes drift, for example when a � 0.95 m
so that ak � 0.05, Us � 0.034 m s�1 and Es � 0.9, the
LES with wave forcing is markedly different from the
pure Ekman solution without wave forcing. The effect
of the Coriolis–Stokes force is primarily to rotate the
current profiles southward, consistent with the effective
boundary condition ideas in section 2.

Comparing the LES solutions with the solution from
the model with linearly increasing eddy viscosity we see
that there is a reasonably good quantitative agreement,
particularly within the bulk of the Ekman–Stokes
layer. Very close to the surface, within the layer af-
fected directly by the Coriolis–Stokes forcing, |z | � 
s

� 10 m, the LES shows less shear than the solution
from the closure model. It seems likely that the en-
hanced mixing due to the Langmuir circulations, which
are undoubtedly present in the LES, reduce the shear
there. The eddy-viscosity model has a prescribed lin-
early varying eddy viscosity, which makes no attempt to
represent these Langmuir circulations. Nevertheless,
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over the bulk of the layer the simple model does a
reasonable job. We conclude that the Coriolis–Stokes
forcing can significantly change the mean current pro-
file and that the effects on the bulk of the wind driven
layer can be captured with even a simple turbulence
model.

4. Evidence for effects of Coriolis–Stokes forcing
in observational data

In this section we seek evidence of the effects of the
Coriolis–Stokes forcing in observed wind-driven cur-
rent profiles. Extracting the mean wind-driven current
profile from the background of wave orbital motions,
inertial oscillations, and geostrophic eddies requires so-

phisticated and sensitive instruments that can be de-
ployed for long periods. Consequently it is only rela-
tively recently that data have been collected that can
be compared with models of the wind-driven current
profile, and there are relatively few such data. Here we
use data described in Price and Sundermeyer (1999),
namely the LOTUS data and the EBC data. The pro-
files show considerable deviations from the classical
Ekman profiles, which Price and Sundermeyer (1999)
attribute to dynamical effects of mixed layer stratifica-
tion and diurnal variations in the mixed layer depth.
However, Lewis and Belcher (2004) point out several
potential problems with this interpretation. First, Price
and Sundermeyer (1999) use a laminar model to rep-
resent the turbulent ocean boundary layer and so do

FIG. 6. Plots comparing LES solutions with wave forcing (thick solid lines) with LES solutions without wave forcing (thin dashed solid
lines) and linear eddy-viscosity closure model solutions (thin solid lines) for a range of Us and k � 0.0525 m�1: (top) hodographs of �/�*
against u/�*; (middle) vertical profile of u/�* and (bottom) vertical profile of �/�*. The eddy-viscosity closure model solution is in
remarkably good qualitative agreement with the wave-forced LES solution. The wind forcing and wave propagation are both directed
along the positive x axis. With varying Us, the corresponding wave amplitude a and Es are Us � 0.017 m s�1 (a � 0.67 m, Es � 0.4),
Us � 0.034 m s�1 (a � 0.95 m, Es � 0.9), Us � 0.068 m s�1 (a � 1.34 m, Es � 1.7), and Us � 0.271 m s�1 (a � 2.68 m, Es � 6.9).
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not obtain the logarithmic velocity profile observed
close to the surface below the breaking wave zone (Ter-
ray et al. 1996). Second, their solutions, while matching
the observed angle of deflection of the subsurface cur-
rent, give surface current deflections smaller than the
values cited in Huang (1979). Hence we examine
whether a model that incorporates Coriolis–Stokes
forcing, but with uniform density, can explain the de-
viations from classical Ekman profiles.

The Long-Term Upper-Ocean Study (LOTUS3)
data (Briscoe and Weller 1984; Price et al. 1987) were
collected in the western Sargasso Sea (34°N, 70°W)
spanning 160 days during the summer months of 1982.
The current profile was recorded by vector-measuring
current meters mounted on from R/P FLIP, which is a
stable platform and so does not suffer contamination
from mooring motions. The data were processed by
first subtracting the geostrophic velocity, taken to be
the velocity at some depth, in this case 50 m which is
deeper than the wind penetration depth. Then, since
the wind direction was not steady over the 160-day pe-
riod, daily averages of wind and current were rotated
such that the wind was aligned with a nominal north.
These daily data were then averaged over the 160 days.
Further analysis details are given in Price and Sunder-
meyer (1999) and references therein.

The eastern boundary current (EBC) data are re-
ported in Chereskin (1995). This dataset is taken from
a mooring 400 km off the coast of North California
(37°N, 128°W) and was collected over a 6-month period
from 8 April to 20 October 1993 using ADCP and buoy
wind observations. The data required no rotating prior
to averaging as the wind was sufficiently unidirectional
over the 6-month collecting period. Chereskin (1995)
and the references therein describe how the sampling
strategy of the ADCP and the subsequent analysis of
the data were designed to minimize effects of mooring
motions.

Price and Sundermeyer (1999) also describe a third
dataset, the Trans-Pacific Hydrographic Section
(TPHS) data, which was originally reported in Wijffels
et al. (1994). The Coriolis parameter at this location is
much smaller and the corresponding Ekman depth
scale is larger (of order 150 m) and the assumption of
uniform density ceases to be reliable (Lewis and
Belcher 2004), and so we consider this dataset no fur-
ther.

Both the LOTUS and the EBC data are then good
data to compare with the model: they both measured
Eulerian currents and were as free from contamination
from moorings as is possible.

a. Determination of the surface wave parameters

Neither of the datasets used here measured the sur-
face waves. Here we use two methods to estimate the
wave parameters.

First, the wave parameters are determined assuming
a fully developed sea. Thus the Pierson and Moskowitz

(1964) wave spectrum2 was used to deduce the wave
parameters from the measured wind speed. The Peir-
son–Moskowitz spectrum is integrated over frequency
to calculate the surface Stokes drift and the peak wave-
number of the spectrum is used for the exponential
depth scale.

Second, we estimate parameters of the surface waves
from the European Centre for Medium-Range
Weather Forcasts (ECMWF) reanalysis, which contains
global analysis of the wave properties. In this system
wave spectra are computed from the ECMWF inte-
grated forecasting system, which includes the WAM
wave model, with some surface wave measurements as-
similated (e.g., Janssen et al. 1997). In the wave data
the magnitude and direction of the depth-integrated
wave-induced transport are calculated from 6 hourly
data dumps. For comparison with the LOTUS3 data,
the directional information is discarded as the LOTUS3
current data are realigned with a nominal north each
day. For the EBC data there is no such adjustment,
and so the wave transports are projected onto the mean
wave direction. Figure 7 shows values of the depth-
integrated wave-induced transport obtained from the
ECMWF data together with comparisons with values
estimated from the Pierson–Moskowitz spectrum. The
top row is for the LOTUS3 campaign and the bottom
row is for the EBC campaign. The left-hand plots show
maps of the depth-integrated wave-driven transport
averaged over the observation period. The location of
the LOTUS3 (34°N, 70°W) and EBC (37°N, 128°W)
sites are marked with boxes. The right-hand plots
show time series of the transport (solid line) of the
depth-integrated wave-driven transport at the obser-
vation points. Also shown is the value obtained from
the Pierson–Moskowitz spectrum with the time-aver-
aged wind speed, which shows encouraging agree-
ment with the average obtained from the full ECMWF
data.

In section 2 we showed that, provided the depth-
integrated transport is correct, the detailed profile of
Stokes drift is unimportant in determining the current
profile. Hence, in the model profiles shown below the
waves are represented as monochromatic, but with pa-
rameters Us and k chosen such that the depth-inte-
grated transport is equal to the value from the ECMWF
reanalysis. Either Us, the surface value of the Stokes
drift, or k needs to be specified. Here we show results
with Us determined from the value obtained from the
Peirson–Moskowitz spectrum at the mean wind speed,
and then k inferred to yield the correct depth-inte-
grated transport. Very similar current profiles were ob-
tained by taking k from the peak in the Peirson–Mosko-

2 The 10-m wind speed from the observations are scaled to
19.5-m wind speed [which is the independent parameter in the
Pierson and Moskowitz (1964) spectrum] using the method de-
scribed in section 1.
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witz spectrum and then inferring Us to yield the correct
transport.

b. Comparison with the observations

Figure 8 shows the observed current profiles. Also
shown are profiles from the simple model with the tur-
bulent stress modeled with a linear eddy viscosity, both
with and without the Coriolis–Stokes. The simple
model solutions are calculated for an infinite layer of
uniform density and then postprocessed in the same
way as the observations. Thus the profile is “rezeroed”
by subtracting the velocity at the depth used by Price
and Sundermeyer (1999) as the depth of the geo-
strophic, namely 50 m for the LOTUS3 data and 60 m
for the EBC data.

The solutions from the simple model that account for
the Coriolis–Stokes force with wave properties deduced
assuming a fully developed sea (the solid line) shows
markedly improved agreement with the data when
compared with the classical Ekman solution, obtained
when the Coriolis–Stokes force is set to zero (the dot–
dashed line). Also shown is the range that the theory

can take when the wave parameters are varied. The
solid shading denotes the range of solutions from the
model when the wavelength of the waves is changed by
�50%. The hatched envelope arises from changing the
square of the wave amplitude, and hence Us, by �50%.
In general, the observational data lie within the bounds
of uncertainty, although the data appear to be rotated
even more than the model. Accounting for Coriolis–
Stokes forcing certainly improves the agreement with
the classical Ekman solution, which lies some distance
away from the data.

The dashed line in Fig. 8 denotes the solution from
the simple model when the wave parameters are calcu-
lated using the depth-integrated transport from the
ECMWF data. The hodograph is turned slightly less
than from the fully developed sea because the depth-
integrated transport is smaller than for a fully devel-
oped sea. We note that, as shown in Fig. 7, there is
spatial variability in the ECMWF estimates for the
depth-integrated transport, and so it is possible that the
actual transport was higher than estimated, thereby
bringing the two model curves together.

FIG. 7. Depth-integrated wave-driven transport obtained from the ECMWF reanalysis data (m2 s�1): (top) LOTUS3 data and
(bottom) EBC data. (left) Maps of depth-integrated wave-driven transports averaged over the observation periods. (right) Time series
of the depth-integrated wave-driven transport at the measurement locations. Also shown is the value calculated from the Peirson–
Moskowitz spectrum with the average wind speed. Since the EBC data were interpreted as if the mean wind direction were constant,
the instantaneous wave-induced transport is projected into the mean direction (the dashed line in the bottom right is the magnitude of
the vector transport).
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We conclude that the changes to the current profile
due to Coriolis–Stokes forcing are consistent with the
differences between observations and the classical Ek-
man profile. The comparisons given here indicate that
there is some quantitative agreement between the ob-
servations and the simple model once account has been
made of the uncertainties in the wave parameters, al-
though there is a suggestion that the measured hodo-
graphs are rotated even further.

5. Concluding remarks

We have examined the role of the Coriolis–Stokes
forcing, f � us, in shaping the mean current profile in
the wind-driven ocean mixed layer. At first sight this
force might be thought to be small since it involves the
Stokes drift, which scales on the wave slope squared.
Estimates show that in conditions of even modest sea
state the depth-integrated transport associated with this
forcing can be a considerable fraction of the depth-
integrated wind-driven transport. This observation mo-
tivated the present more detailed examination of the
role of this forcing.

Simple analytical solutions, based on parameterizing
the turbulence using simple eddy viscosities, show how
the Coriolis–Stokes forcing interacts with the Coriolis
force and the turbulent stress divergence. The resulting
wind-driven current profile is characterized by two
length scales, namely the depth scale of the wind-driven
layer, 
e, and the depth of penetration of the Coriolis–
Stokes forcing, 
s. In typical ocean conditions 
s � 
e,
and yet the current profile is completely changed
through all depths, with the current vectors rotated far-
ther away from the direction of the wind stress. The
reason is that the Coriolis–Stokes forcing absorbs a

fraction of the applied wind stress, thus changing the
effective boundary condition on the standard wind-
driven Ekman solution. A corollary to this finding is
that the effects of the Coriolis–Stokes forcing can be
represented simply by integrating the standard equa-
tions of motion, but with the boundary condition
changed by an amount that depends on the depth-
integrated Stokes drift. Hence there is no need for nu-
merical ocean models to resolve explicitly the region
affected directly by the Coriolis–Stokes forcing.

We investigated the relevance of these findings to the
real ocean by comparing the results of the simple mod-
els to large-eddy simulations and observations. The
LES resolve the large-scale turbulent motions,
but represent the effects of the waves through their
wavelength-averaged effects only. Nevertheless,
the wind and wave conditions are prescribed and re-
main constant, giving clean data to compare with the
simple theory. The observational data, taken from the
LOTUS3 and EBC campaigns, on the other hand, con-
tain the complexity of the real world, including variable
wind speed and direction. Wave properties were not
measured during the observations and so were esti-
mated here by (i) assuming that the waves were fully
developed with respect to the local wind speed and (ii)
using ECMWF reanalysis data. When compared with
both the LES and the observations the simple models
that account for the Coriolis–Stokes forcing have
shown encouraging agreement. This provides perhaps
the first evidence of the signature of the Coriolis–
Stokes forcing in observations. These findings suggest
that future observations of the wind-driven mixed layer
also need to measure surface wave properties.

Ultimately it is the wind that provides the momen-
tum flux to the surface wind stress, with its wind-driven

FIG. 8. Hodograph comparisons between simple analytic model (assuming a fully developed sea) and observational measurements
from (a) LOTUS3 (�* � 8.3 � 10�3 m s�1, z0 � 1.6 � 10�3 m) and (b) EBC (�* � 9.4 � 10�3 m s�1, z0 � 1.4 � 10�3 m) datasets.
Dot–dash line is the model with us � 0—no wave effects. Heavy solid line is the model with wave effects. Solid shaded envelope is k
(from FDS) �50%. Hatched envelope is U2

s (i.e., a2 from FDS) �50%. Heavy dashed line is hodographs using ECMWF wave model
values for wave-induced transport. Crosses denote observational measurements, and white dots represent corresponding depths in
analytical model for (a) 5, 10, 15, and 25 m and (b) 8, 16, 24, 32, 40, and 48 m.
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flow, and to the surface waves, with their associated the
Coriolis–Stokes forcing. In the present paper the wind
and waves have been specified separately. An impor-
tant topic for future research will therefore be to ex-
amine the partition of the momentum flux between
these two components.
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