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direction of their propagation, called Stokes drift us. Stokes drift provides a vortex
stretching (also called the vortex force) and a Stokes Coriolis force that influence the
evolution of the ambient currents. In addition to these new forces, the scalar fields
whose distribution specifies a geostrophic, hydrostatic flow (i.e. buoyancy and potential
vorticity) are advected by the sum of the Stokes and the wave-averaged Eulerian
velocity. In this paper we extend the geostrophic, hydrostatic balance that is germane
to oceanic submesoscale surface fronts and filaments, so that wave effects can be
incorporated in a generalized balanced stationary state.

The relevant dynamical regime comprises rotating, stratified flows near the top of
the ocean. This defines a regime parameter, the Rossby number R = V/f ` (with V a
characteristic frontal velocity scale, ` its width, and f the Coriolis frequency), that is
typically quite small for basin-scale and mesoscale currents and often is not large even
for submesoscale currents. The density field is usually stably stratified in the upper
ocean – often weakly so in the ‘mixed layer’ created by boundary layer turbulence,
but strongly so in the pycnocline below. Surface waves develop in response to wind
generation, with typical equilibrium conditions characterized by a Stokes drift with
magnitude (Vs) larger than the current speed (V) and vertical length scale (hs) smaller
than the scale of the currents or stratification (h). The parameter ✏ = Vsh/(f `hs)
quantifies the relative size of the wave-induced effects in the adjusted front.

Conservative geostrophic balance is well accepted as relevant for surface fronts
observed in the ocean, and a conservative generalization to encompass wave balance
should be at least as relevant. It is common diagnostic practice to decompose sub-
inertial surface currents into geostrophic and Ekman-layer components, assuming a
linear superposition of their respectively conservative and non-conservative (turbulent)
dynamics, at least partly justified by a difference in their horizontal scales.
Nevertheless, frontal flows may have significant modifications by turbulent mixing, and
this needs further investigation, for example using large-eddy simulation models with
full wave-averaged dynamics, where the conservative wave-adjusted states obtained
here could be used for consistent initialization. The conservative theory including
surface wave effects presented in this paper is a useful first step on this path.

In § 2 we specify the wave-averaged dynamical equations, then identify steady
frontal and filamentary flow configurations without surface waves, and next derive
the generalized balance relations in the presence of waves. We posit a conservative
adjustment process for the evolution between these two configurations. In § 3 we
perform an asymptotic analysis for small R to explicitly pose the adjustment problem,
and we identify another relevant parameter, ✏, which is typically larger than R in
the ocean (figure 1). In § 4 we solve the adjustment problem at leading order in
R, ✏ ⌧ 1, for both frontal and filamentary flows with both uniform stratification and
a surface mixed layer. In § 5 we extend these solutions to finite ✏ while retaining
R ⌧ 1, consistent with the observational estimate in figure 1. We do not consider
cases here with R ⇠ 1, despite their importance for the oceanic submesoscale, because
the nonlinear equations that result are less tractable. In § 6 we give a summary and
discussion of some further implications of this phenomenon.

2. Wave-averaged dynamics and frontal balance
In the presence of a steady, horizontally uniform surface gravity wave field,

conservative wave-averaged Boussinesq fluid equations for the current u are
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Here f is the Coriolis frequency, and we have made the ‘traditional approximation’
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+ f ẑ ⇥ u

L +rp� b ẑ =
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whose distribution specifies a geostrophic, hydrostatic flow (i.e. buoyancy and potential
vorticity) are advected by the sum of the Stokes and the wave-averaged Eulerian
velocity. In this paper we extend the geostrophic, hydrostatic balance that is germane
to oceanic submesoscale surface fronts and filaments, so that wave effects can be
incorporated in a generalized balanced stationary state.

The relevant dynamical regime comprises rotating, stratified flows near the top of
the ocean. This defines a regime parameter, the Rossby number R = V/f ` (with V a
characteristic frontal velocity scale, ` its width, and f the Coriolis frequency), that is
typically quite small for basin-scale and mesoscale currents and often is not large even
for submesoscale currents. The density field is usually stably stratified in the upper
ocean – often weakly so in the ‘mixed layer’ created by boundary layer turbulence,
but strongly so in the pycnocline below. Surface waves develop in response to wind
generation, with typical equilibrium conditions characterized by a Stokes drift with
magnitude (Vs) larger than the current speed (V) and vertical length scale (hs) smaller
than the scale of the currents or stratification (h). The parameter ✏ = Vsh/(f `hs)
quantifies the relative size of the wave-induced effects in the adjusted front.

Conservative geostrophic balance is well accepted as relevant for surface fronts
observed in the ocean, and a conservative generalization to encompass wave balance
should be at least as relevant. It is common diagnostic practice to decompose sub-
inertial surface currents into geostrophic and Ekman-layer components, assuming a
linear superposition of their respectively conservative and non-conservative (turbulent)
dynamics, at least partly justified by a difference in their horizontal scales.
Nevertheless, frontal flows may have significant modifications by turbulent mixing, and
this needs further investigation, for example using large-eddy simulation models with
full wave-averaged dynamics, where the conservative wave-adjusted states obtained
here could be used for consistent initialization. The conservative theory including
surface wave effects presented in this paper is a useful first step on this path.

In § 2 we specify the wave-averaged dynamical equations, then identify steady
frontal and filamentary flow configurations without surface waves, and next derive
the generalized balance relations in the presence of waves. We posit a conservative
adjustment process for the evolution between these two configurations. In § 3 we
perform an asymptotic analysis for small R to explicitly pose the adjustment problem,
and we identify another relevant parameter, ✏, which is typically larger than R in
the ocean (figure 1). In § 4 we solve the adjustment problem at leading order in
R, ✏ ⌧ 1, for both frontal and filamentary flows with both uniform stratification and
a surface mixed layer. In § 5 we extend these solutions to finite ✏ while retaining
R ⌧ 1, consistent with the observational estimate in figure 1. We do not consider
cases here with R ⇠ 1, despite their importance for the oceanic submesoscale, because
the nonlinear equations that result are less tractable. In § 6 we give a summary and
discussion of some further implications of this phenomenon.
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conservative wave-averaged Boussinesq fluid equations for the current u are
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+ (f ẑ + !)⇥ u

L = �r
�
⇡ + 1

2 |u|
2
�
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�
r⇥ u

S
�
⇥ u

L � u

S
t

. (4)

The potential vorticity equation associated with (1) through (4) is

q
t

+ u

L ·rq = 0 , (5)

where
q = fN2 +N2! + fb

z

+ ! ·rb . (6)

and !
def
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3 A disturbing observation

McWilliams and Fox-Kemper begin with an observation. They point out that when u

S = 0,
(4) has a simple, exact solution associated with some parallel flow u

L = v0(x, z) ŷ:

fv0 = p0x and p0z = b0 ; (8)

in other words, geostrophic and hydrostatic balance. Thermal wind is fv0z = b0x. Yet
something disturbing occurs when you superpose this flow with a steadily propagating wave-
field associated with a non-zero Stokes drift field u

S = (uS(z), vS(z), 0). To be steady the
wave field has u

L = 0, but nevertheless the fact remains that uS 6= 0. Note the advection
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1 Overview

Ultimately I like this paper, though I still have to read it all the way to the end. I think
they could have formulated their equations, analysis, and problem better. All of the non-
dimensional numbers litter their presentation, and their failure to to use the Lagrangian-mean
(how many times do you need to say “anti-Stokes flow”?) hampered the coherence of the
paper. But the problem is nice and I like the analytical examples. Roy told me that GFD
is Jim McWilliams “hobby”, and I think this paper reflects that, which adds to its charm.
I do think they took their nostalgia for old-fashioned GFD a little too far with the spare,
poorly-resolved figures that look like they are from 1960. Also, they could have solved the
full problem instead of making an ✏ ⌧ 1 assumption. But I suppose they were shooting for
simple illustration, and they achieved it.

2 The basic equations

McWilliams and Fox-Kemper (MF) define their system in (2.1a,b). They write the Boussi-
nesq equations in terms of total buoyancy but quickly abandon it, after which their equations
(would) read
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This equation assumes steady Stokes drift so that uS
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= 0. I think it would be very interesting
to think about the e↵ect of non-steady Stokes drift. I think it both explains why Langmuir
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= ẑ ·!. Note that, cast in the Lagrangian-mean, q and b† are materially conserved.

That means we should be able to define an available potential vorticity for this system.
Finally, I insist on using (uL, b) as my dependent variables. I’m sticking to my guns.

3 A disturbing observation

McWilliams and Fox-Kemper begin with an observation. They point out that when u
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field associated with a non-zero Stokes drift field u
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ẑ ·r⇥ u

L + fb
z

+rb ·r⇥ u

L

| {z }
mean

+2N2r2v⇠ +rb ·r2
h

| {z }
wave

. (7)

In the above I have used the fact that h = 2
�
w⌘ x̂ + u⇠ ŷ + v⇠ ẑ
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something disturbing occurs when you superpose this flow with a steadily propagating wave-
field associated with a non-zero Stokes drift field u
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The two approaches are equivalent with ⇡⇤ def
= p. Now, McWilliams and Fox-Kemper claim

that geostrophic balance is interfered as well. I dispute this; especially because the Stokes-
Coriolis force, from a physical point of view, is a necessary component of geostrophic balance
in wave-averaged equations, and the appearance of the “vortex force” is a red herring having
only to do with their unusual definition of ⇡. But I agree that hydrostatic balance is not the
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v0 is nonlinear, and hence small
in a small Rossby regime. However, the scaling considered in this paper is for strong, rapidly
varying waves; thus vS
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compensates for the smallness of v0. MF would refer you to Figure 1.
Next, McWilliams and Fox-Kemper pose a Rossby adjustment problem for the transition

between the two states in (8) and (10).
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= ẑ ·!. Note that, cast in the Lagrangian-mean, q and b† are materially conserved.

That means we should be able to define an available potential vorticity for this system.
Finally, I insist on using (uL, b) as my dependent variables. I’m sticking to my guns.

Greg’s note: the identity r ⇥ u

S = �r2
h is useful for writing (6) in terms of u

L
and

b. For example, we have

q = fN2 +N2
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�
For an ordinary low

Rossby number scaling, the first wave term is the only one to appear alongside the O(R)
mean terms. Note that it is the second derivative of a horizontal displacement term. It is

zero for a unidirectional plane wave, because we can choose a frame in which one of v or

⇠ is zero? In McWilliams and Fox-Kemper (2013) it is a term from the second quantity,

b
x

@2
z

( x̂ ·h) = 2b
x

(w⌘)
zz

= b
x

vS
z

, which comprises the wave contribution to PV balance.

3 A disturbing observation

McWilliams and Fox-Kemper begin with an observation. They point out that when u

S = 0,
(4) has a simple, exact solution associated with some parallel flow v0(x, z):

fv0 = p0x and p0z = b0 ; (8)

in other words, geostrophic and hydrostatic balance. Thermal wind is fv0z = b0x. Yet
something disturbing occurs when you superpose this flow with a steadily propagating wave-
field associated with a non-zero Stokes drift field u

S = (uS(z), vS(z), 0). To be steady the
wave field has u

L = 0, but nevertheless the fact remains that uS 6= 0. Note the advection
term is zero and does not interfere. We do find, however,

�
r⇥ u

S
�
⇥ u

L = �vS
z
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1 Overview

Ultimately I like this paper, though I still have to read it all the way to the end. I think
they could have formulated their equations, analysis, and problem better. All of the non-
dimensional numbers litter their presentation, and their failure to to use the Lagrangian-mean
(how many times do you need to say “anti-Stokes flow”?) hampered the coherence of the
paper. But the problem is nice and I like the analytical examples. Roy told me that GFD
is Jim McWilliams “hobby”, and I think this paper reflects that, which adds to its charm.
I do think they took their nostalgia for old-fashioned GFD a little too far with the spare,
poorly-resolved figures that look like they are from 1960. Also, they could have solved the
full problem instead of making an ✏ ⌧ 1 assumption. But I suppose they were shooting for
simple illustration, and they achieved it.

2 The basic equations

McWilliams and Fox-Kemper (MF) define their system in (2.1a,b). They write the Boussi-
nesq equations in terms of total buoyancy but quickly abandon it, after which their equations
(would) read
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The “pressure-like” term ⇡ is not defined and, indeed, it hides wave-averaged terms. I want
to point out that there are other ways to write these equations which are potentially more
illuminating. For example, after a small amount of manipulation we can write the equations
in McWilliams and Sullivan 1997 as
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This equation assumes steady Stokes drift so that uS
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= 0. I think it would be very interesting
to think about the e↵ect of non-steady Stokes drift. I think it both explains why Langmuir
circulations are only seen in unsteady situations and also provides an inviscid mechanism for
the generation of internal waves. But we will leave that for later. Another useful form is
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The potential vorticity equation associated with (1) through (4) is
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where
q = fN2 +N2! + fb
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and !
def
= ẑ ·!. Note that, cast in the Lagrangian-mean, q and b† are materially conserved.

That means we should be able to define an available potential vorticity for this system.
Finally, I insist on using (uL, b) as my dependent variables. I’m sticking to my guns.

3 A disturbing observation

McWilliams and Fox-Kemper begin with an observation. They point out that when u

S = 0,
(4) has a simple, exact solution associated with some parallel flow u

L = v0(x, z) ŷ:

fv0 = p0x and p0z = b0 ; (7)

in other words, geostrophic and hydrostatic balance. Thermal wind is fv0z = b0x. Yet
something disturbing occurs when you superpose this flow with a steadily propagating wave-
field associated with a non-zero Stokes drift field u

S = (uS(z), vS(z), 0). To be steady the
wave field has u

L = 0, but nevertheless the fact remains that uS 6= 0. Note the advection
term is zero and does not interfere. We do find, however,
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Thus, the “forcing” on the right side of the Lagrangian-mean equations is non-zero, and the
steady balance is
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fv0 = p0x and p0z = b0 � vS
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v0 . (10)

Hydrostatic balance is disturbed! The extra term appears to be associated with Stokes driven
tilting of vertical vorticity in the x-direction, although that may not be the correct physical
interpretation. I believe Buhler and McIntyre would associate it with mean advection of wave
pseudomomentum. We can combine these two equations to obtain the disturbing thermal
wind relationship, which they later give in (3.4). Noting that vS

x

= 0, this yields
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andtake

Thus, the “forcing” on the right side of the Lagrangian-mean equations is non-zero, and the
steady balance is
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S = uS(z)x̂+ vS(z) ŷ . (10)

fv0 = p0x and p0z = b0 � vS
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v0 . (11)

Hydrostatic balance is disturbed! The extra term appears to be associated with Stokes driven
tilting of vertical vorticity in the x-direction, although that may not be the correct physical
interpretation. I believe Buhler and McIntyre would associate it with mean advection of wave
pseudomomentum. We can combine these two equations to obtain the disturbing thermal
wind relationship, which they later give in (3.4). Noting that vS
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The two approaches are equivalent with ⇡⇤ def
= p. Now, McWilliams and Fox-Kemper claim

that geostrophic balance is interfered as well. I dispute this; especially because the Stokes-
Coriolis force, from a physical point of view, is a necessary component of geostrophic balance
in wave-averaged equations, and the appearance of the “vortex force” is a red herring having
only to do with their unusual definition of ⇡. But I agree that hydrostatic balance is not the
same, and that we have an interesting problem on our hands.

An objection one could take to this observation is that vS
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v0 is nonlinear, and hence small
in a small Rossby regime. However, the scaling considered in this paper is for strong, rapidly
varying waves; thus vS

z

compensates for the smallness of v0. MF would refer you to Figure 1.
Next, McWilliams and Fox-Kemper pose a Rossby adjustment problem for the transition

between the two states in (8) and (11).
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+ f ẑ ⇥ u

L +rp� b ẑ =
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+ f ẑ ⇥ u

L +rp� b ẑ =
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that geostrophic balance is interfered as well. I dispute this; especially because the Stokes-
Coriolis force, from a physical point of view, is a necessary component of geostrophic balance
in wave-averaged equations, and the appearance of the “vortex force” is a red herring having
only to do with their unusual definition of ⇡. But I agree that hydrostatic balance is not the
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z

compensates for the smallness of v0. MF would refer you to Figure 1.
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Somehow it is true that vS
z

= 2r2v⇣. I hope.

3

The unsteady Stokes drift contribution is interesting. I think it both explains why Langmuir
circulations are only seen in unsteady situations and also provides an inviscid mechanism for
the generation of internal waves. But we will leave that for later. Another useful form is

DL
u

L

Dt
+ f ẑ ⇥ u
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1 Overview

Ultimately I like this paper, though I still have to read it all the way to the end. I think
they could have formulated their equations, analysis, and problem better. All of the non-
dimensional numbers litter their presentation, and their failure to to use the Lagrangian-mean
(how many times do you need to say “anti-Stokes flow”?) hampered the coherence of the
paper. But the problem is nice and I like the analytical examples. Roy told me that GFD
is Jim McWilliams “hobby”, and I think this paper reflects that, which adds to its charm.
I do think they took their nostalgia for old-fashioned GFD a little too far with the spare,
poorly-resolved figures that look like they are from 1960. Also, they could have solved the
full problem instead of making an ✏ ⌧ 1 assumption. But I suppose they were shooting for
simple illustration, and they achieved it.

2 The basic equations

McWilliams and Fox-Kemper (MF) define their system in (2.1a,b). They write the Boussi-
nesq equations in terms of total buoyancy but quickly abandon it, after which their equations
(would) read
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The “pressure-like” term ⇡ is not defined and, indeed, it hides wave-averaged terms. I want
to point out that there are other ways to write these equations which are potentially more
illuminating. For example, after a small amount of manipulation we can write the equations
in McWilliams and Sullivan 1997 as
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This equation assumes steady Stokes drift so that uS
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= 0. I think it would be very interesting
to think about the e↵ect of non-steady Stokes drift. I think it both explains why Langmuir
circulations are only seen in unsteady situations and also provides an inviscid mechanism for
the generation of internal waves. But we will leave that for later. Another useful form is
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The potential vorticity equation associated with (1) through (4) is

q
t

+ u

L ·rq = 0 , (5)

where
q = fN2 +N2! + fb

z

+ ! ·rb . (6)

and !
def
= ẑ ·!. Note that, cast in the Lagrangian-mean, q and b† are materially conserved.

That means we should be able to define an available potential vorticity for this system.
Finally, I insist on using (uL, b) as my dependent variables. I’m sticking to my guns.

3 A disturbing observation

McWilliams and Fox-Kemper begin with an observation. They point out that when u

S = 0,
(4) has a simple, exact solution associated with some parallel flow u

L = v0(x, z) ŷ:

fv0 = p0x and p0z = b0 ; (7)

in other words, geostrophic and hydrostatic balance. Thermal wind is fv0z = b0x. Yet
something disturbing occurs when you superpose this flow with a steadily propagating wave-
field associated with a non-zero Stokes drift field u

S = (uS(z), vS(z), 0). To be steady the
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Thus, the “forcing” on the right side of the Lagrangian-mean equations is non-zero, and the
steady balance is
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Hydrostatic balance is disturbed! The extra term appears to be associated with Stokes driven
tilting of vertical vorticity in the x-direction, although that may not be the correct physical
interpretation. I believe Buhler and McIntyre would associate it with mean advection of wave
pseudomomentum. We can combine these two equations to obtain the disturbing thermal
wind relationship, which they later give in (3.4). Noting that vS
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= 0, this yields
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The two approaches are equivalent with ⇡⇤ def
= p. Now, McWilliams and Fox-Kemper claim

that geostrophic balance is interfered as well. I dispute this; especially because the Stokes-
Coriolis force, from a physical point of view, is a necessary component of geostrophic balance
in wave-averaged equations, and the appearance of the “vortex force” is a red herring having
only to do with their unusual definition of ⇡. But I agree that hydrostatic balance is not the
same, and that we have an interesting problem on our hands.

An objection one could take to this observation is that vS
z

v0 is nonlinear, and hence small
in a small Rossby regime. However, the scaling considered in this paper is for strong, rapidly
varying waves; thus vS

z

compensates for the smallness of v0. MF would refer you to Figure 1.
Next, McWilliams and Fox-Kemper pose a Rossby adjustment problem for the transition

between the two states in (8) and (10).
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�
r⇥ u

S
�
⇥ u

L + u

S
t

. (4)

The potential vorticity equation associated with (1) through (4) is

q
t

+ u

L ·rq = 0 , (5)

where
q = fN2 +N2! + fb

z

+ ! ·rb . (6)

and !
def
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to statically stable flows, with

@zb
† = N2(z) + @zb(x, z) > 0 (2.4)

at all locations. The associated two-dimensional q field is

q = (f + @xv)(N2 + @zb) � @zv@xb = fN2 + N2@xv + f @zb + J(v, b), (2.5)

where J(↵, �) = @x↵@z� � @z↵@x� is the two-dimensional Jacobian differential operator.
In the absence of waves q = q0 is evaluated using v = v0 and b = b0.

This hydrostatic, geostrophic balanced flow has the property that when b0(x, z) and
q0(x, z) are specified, v0 is then fully determined by ‘inversion’ of the balance relations
under the constraint that v0 ! 0 in the far field. Invertibility is a general property of
balanced flows (Gent & McWilliams 1983). We now seek to generalize the balance
relations for currents in the presence of surface waves.

Assume there is an obliquely incident, steady, conservative surface gravity wave
field with a Stokes drift velocity, us = (us(z), vs(z), 0). This permits a differently
balanced steady two-dimensional solution of (2.1). In the cross-front direction, it has
velocity u = �us(z). This is an ‘anti-Stokes’ Eulerian flow that opposes the Stokes
drift; because f 6= 0 and the pressure does not vary in y, the only term that can balance
the Stokes Coriolis term (fus) in the ŷ momentum equation is the Eulerian Coriolis
term (fu). The rest of the wave-adjusted two-dimensional flow is the along-front
velocity v = v(x, z) and vertical velocity w = 0; so the Lagrangian circulation in the
cross-frontal plane is zero. The steady x̂, ẑ momentum equations are

�f (v + vs|{z}
SC

) = �@x⇡+ vs@xv| {z }
SV

, @z⇡= b + vs@zv| {z }
SV

) f @z(v + vs|{z}
SC

) = @xb � (@zvs)@xv| {z }
SV

.

(2.6)

No momentum advection is present in these balances. The Stokes Coriolis (SC) and
Stokes vortex (SV) forces now interfere with geostrophic, hydrostatic balance, and
the thermal wind relation and down-front vorticity balance are now unbalanced by
Stokes Coriolis (SC) and Stokes vortex (SV) tilting terms. The ŷ momentum, buoyancy
conservation, and continuity equations in (2.1) are satisfied trivially for b = b(x, z), due
to the anti-Stokes flow and combined advection by Eulerian and Stokes velocities
in (2.1)–(2.2). Notice, however, that the system (2.6) is undetermined, with two
independent equations for three fields, (v,⇡, b). The associated two-dimensional
q = q(x, z) field is given by (2.5).

We resolve the indeterminacy by posing the wave-balanced front problem as one
of conservative adjustment of the waveless balanced front (2.3), analogous to the
geostrophic adjustment of an initially unbalanced flow. That is, we assume an initial
front v0(x, z) and an adiabatic adjustment to the arrival of the surface waves, reaching
a final steady flow v(x, z) through a transient stage of advective rearrangement of the
material parcels and radiation of internal inertia-gravity waves. This type of analysis
using conservation during material parcel displacement is more fully explained in
McWilliams 2006 (§ 4.3).

This concept also assumes that the spatially and temporally variable current does
not alter the surface waves, consistent with an asymptotic time scale separation and
a small ratio between current and wave propagation speeds (McWilliams et al. 2004).
Lagrangian-advective conservation of q and total buoyancy, b + b, between the initial
and final states is expressed by

q(x, z) = q0(x0, z0), (b + b)(x, z) = (b + b0)(x0, z0) (2.7)
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compare with (2.6) using

The unsteady Stokes drift contribution is interesting. I think it both explains why Langmuir
circulations are only seen in unsteady situations and also provides an inviscid mechanism for
the generation of internal waves. But we will leave that for later. Another useful form is
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The potential vorticity equation associated with (1) through (4) is
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q = fN2 +N2! + fb
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and !
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= ẑ ·!. Note that, cast in the Lagrangian-mean, q and b† are materially conserved.

That means we should be able to define an available potential vorticity for this system.
Finally, I insist on using (uL, b) as my dependent variables. I’m sticking to my guns.
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3 A disturbing observation

McWilliams and Fox-Kemper begin with an observation. They point out that when u

S = 0,
(4) has a simple, exact solution associated with some parallel flow u

L = v0(x, z) ŷ:

fv0 = p0x and p0z = b0 ; (10)

in other words, geostrophic and hydrostatic balance. Thermal wind is fv0z = b0x. Yet
something disturbing occurs when you superpose this flow with a steadily propagating wave-
field associated with a non-zero Stokes drift field u

S = (uS(z), vS(z), 0). To be steady the
wave field has u

L = 0, but nevertheless the fact remains that uS 6= 0. Note the advection
term is zero and does not interfere. We do find, however,
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Thus, the “forcing” on the right side of the Lagrangian-mean equations is non-zero, and the
steady balance is

u

S = uS(z)x̂+ vS(z) ŷ . (12)

fv0 = p0x and p0z = b0 � vS
z
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Hydrostatic balance is disturbed! The extra term appears to be associated with Stokes driven
tilting of vertical vorticity in the x-direction, although that may not be the correct physical
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how do we get from

here

to here

This equation assumes steady Stokes drift so that uS
t

= 0. I think it would be very interesting
to think about the e↵ect of non-steady Stokes drift. I think it both explains why Langmuir
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I don’t think the term with a minus is an issue; note that it cancels with the 4th term if we
were to expand that one all the way out.
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b = p1z + vSzv1 (110)
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Conservative adjustment

consider a transient adjustment for which
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If ✏ � R, we should take this term into account. Indeed, Figure 1 points the way.

5 Potential vorticity and wave-averaged adjustment
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A special scaling  
for oceanic wave-balanced flows
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5 Potential vorticity and wave-averaged adjustment

The adjustment problem can be posed generally finding the final fields that satisfy

DLq

Dt
= 0 , and
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Dt
= 0 . (38)

The potential vorticity q is actually not the most fundamental conserved quantity.
Bill told me that, in a two dimensional system in (x, z), if we have two quantities

D�

Dt
= 0 , and

D✓

Dt
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then it happens that
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This is because the intersection of lines of constant � and ✓ define an area within the fluid,
and area is conserved under the fluid map. This is true in higher dimensions, but because
increasingly more confusing to apply in practice. That’s why it’s easier to work with potential
vorticity.
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Now consider a general adjustment problem between two states: initial and final. The initial
state has no waves; therefore the balance is
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and area is conserved under the fluid map. This is true in higher dimensions, but because
increasingly more confusing to apply in practice. That’s why it’s easier to work with potential
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and area is conserved under the fluid map. This is true in higher dimensions, but because
increasingly more confusing to apply in practice. That’s why it’s easier to work with potential
vorticity.
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FIGURE 1. (Colour online) Estimated ratio ✏/R ⇡ (|us ·u|h) /(|u|2hs) governing the relative
importance of Stokes effects versus nonlinearity. Eulerian velocity (u) is taken as the
AVISO weekly satellite geostrophic velocity or �us (for anti-Stokes flow) if |us| > |u|. The
front/filament depth (h) is estimated as the mixed layer depth from the de Boyer Montégut
et al. (2004) climatology. An exponential fit to the Stokes drift of the upper 9 m projected
onto the AVISO geostrophic velocity provides us · u and hs. Stokes drift is taken from the
Wave Watch 3 simulation described in Webb & Fox-Kemper (2011). u,us, and hs are all for
the year 2000, while h is from a climatology of observations over 1961–2008. The year 2000
average of ✏/R is shown.

by neglecting the locally horizontal projection of Earth’s rotation vector; ! = r ⇥ u

is the vorticity; us(z) is the waves’ Lagrangian-mean Stokes-drift profile, and u + us

is the total wave-averaged Lagrangian-mean velocity for waves and currents; z is the
vertical coordinate parallel to gravity and the rotation axis, and ẑ is its unit vector;
the total buoyancy field is b† = �(⇢ � ⇢0)g/⇢0, and ⇡† is a generalized pressure field
that additionally includes the Bernoulli head from averaging over the wave fluctuations,
normalized by a spatially constant mean density ⇢0. These equations can be combined
to yield Lagrangian-advective conservation of Ertel potential vorticity q,

@tq + (u + us) ·rq = 0, q = (f ẑ + !) ·rb†, (2.2)

as a complement to the advective conservation of b† in (2.1).
A well-known and importantly oceanic steady solution of (2.1) is a geostrophic,

hydrostatic, parallel flow, u = v0(x, z)ŷ, with associated ⇡0(x, z) and b0(x, z), when
there are no waves (i.e. us = 0):

f v0 = @x⇡0, @z⇡0 = b0 ) f @zv0 = @xb0. (2.3)

The last relation is derived from the first two and is called thermal wind balance.
Here (x, y, z) and (u, v, w) are Cartesian coordinates and velocities. We assume f is
spatially uniform and oriented in the vertical for simplicity. We further assume that b0

is additive on top of a background stratification profile, b(z) = R
z N2(z0) dz0, where N(z)

is the buoyancy frequency, which is in hydrostatic balance with a mean background
pressure, ⇡(z). Henceforth we denote by b the dynamical buoyancy increment to b in a
decomposition of the total buoyancy, b† = b + b (ditto for ⇡). We restrict our attention



Conservative adjustment with particle displacements
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The states have the same PV so that Q
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0

. Why don’t McWilliams and Fox-Kemper
proceed from here? I’m not sure. We lose the superscript L’s below because they are onerous.
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This is an elliptic equation with constant coe�cients for p
1

, the pressure in the adjusted
state. Q
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is the source term and is known by imposing Q
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6 A perturbed final state

For whichever reason, McWilliams and Fox-Kemper decide they don’t want to solve this
equation, and instead make the assumption that the final state is an O(✏) perturbation on
the initial state. This means that we essentially take an intermediate limit where
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MF write it in terms of buoyancy instead, which means we take another z-derivative to get
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This is not yet confirmed, just copied from (4.5) in MF.

7

Conservation of buoyancy...

b†
0

(x
0

, z
0

) = b†(x, z) + ⇠b†
x

+ ⇣b†
z

(x, z) + · · · , (58)

= b̄(x, z) + b
0

+ ⇣N2 +O(R2) (59)

R ⌧ 1 (60)

6 A perturbed final state

For whichever reason, McWilliams and Fox-Kemper decide they don’t want to solve this
equation, and instead make the assumption that the final state is an O(✏) perturbation on
the initial state. This means that we essentially take an intermediate limit where

R ⌧ vS
z

b
x

fb
z

⌧ 1 . (61)

If the final state is a small perturbation on the initial state, we can propose the perturbation
fields

b
1

= b
0

+ ✏ b0 , and v
1

= v
0

+ ✏ v0 . (62)

In terms of the perturbed fields, Q
1

becomes

Q
1

= v
0x

+

✓
fb

0

N2

◆

z| {z }
Q0

+v0
x

+

✓
fb0

N2

◆

z

+
vSb

0x

N2

+O(✏) . (63)

Because Q
1

= Q
0

we can eliminate the two. Recalling that (v
0

, b
0

) obey the waveless balance
conditions, the perturbation fields satisfy

fv0 = p0
x

, (64)

b0 = p0
1z

+ vS
z

v
0

+O(✏) . (65)

Thus, moving the wavy source terms to the other side of the equals sign, we have

p0
xx

+

✓
f 2p0

z

N2

◆

z

= �fvSb
0x

N2

�
✓
f 2vSv

0

N2

◆

z

. (66)

MF write it in terms of buoyancy instead, which means we take another z-derivative to get

b0
xx

+ @2

z

✓
f 2b0

N2

◆
= fvSv

0xx

�
✓
fvSv

0

N2

◆

z

. (67)

This is not yet confirmed, just copied from (4.5) in MF.

7

Conservation of buoyancy...

b†
0

(x
0

, z
0

) = b†(x, z) + ⇠b†
x

+ ⇣b†
z

(x, z) + · · · , (58)

= b̄(x, z) + b
0

+ ⇣N2 +O(R2) (59)

okay...
q = fN2 + v

x

+ fb
z

+ vS
z

b
x

+O(R2) (60)

and
b = b

0

+ ⇣N2 +O(R2) . (61)

R ⌧ 1 (62)

6 A perturbed final state

For whichever reason, McWilliams and Fox-Kemper decide they don’t want to solve this
equation, and instead make the assumption that the final state is an O(✏) perturbation on
the initial state. This means that we essentially take an intermediate limit where

R ⌧ vS
z

b
x

fb
z

⌧ 1 . (63)

If the final state is a small perturbation on the initial state, we can propose the perturbation
fields

b
1

= b
0

+ ✏ b0 , and v
1

= v
0

+ ✏ v0 . (64)

In terms of the perturbed fields, Q
1

becomes

Q
1

= v
0x

+

✓
fb

0

N2

◆

z| {z }
Q0

+v0
x

+

✓
fb0

N2

◆

z

+
vSb

0x

N2

+O(✏) . (65)

Because Q
1

= Q
0

we can eliminate the two. Recalling that (v
0

, b
0

) obey the waveless balance
conditions, the perturbation fields satisfy

fv0 = p0
x

, (66)

b0 = p0
1z

+ vS
z

v
0

+O(✏) . (67)

Thus, moving the wavy source terms to the other side of the equals sign, we have

p0
xx

+

✓
f 2p0

z

N2

◆

z

= �fvSb
0x

N2

�
✓
f 2vSv

0

N2

◆

z

. (68)

MF write it in terms of buoyancy instead, which means we take another z-derivative to get

b0
xx

+ @2

z

✓
f 2b0

N2

◆
= fvSv

0xx

�
✓
fvSv

0

N2

◆

z

. (69)

This is not yet confirmed, just copied from (4.5) in MF.

7

(turn the page)

⇣ =
1

N2
(b� b0) (1)



Conservative adjustment with particle displacements

Because wL
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The states have the same PV so that Q
1

= Q
0

. Why don’t McWilliams and Fox-Kemper
proceed from here? I’m not sure. We lose the superscript L’s below because they are onerous.
Consider that the balance conditions are
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We can therefore cast the problem for the final state in terms of pressure, since Q
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This is an elliptic equation with constant coe�cients for p
1

, the pressure in the adjusted
state. Q

1

is the source term and is known by imposing Q
0

= Q
1

, as in ordinary adjustment
problems.
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z
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R ⌧ 1 (57)
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implies small displacements
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This is an elliptic equation with constant coe�cients for p
1

, the pressure in the adjusted

state. Q1
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This is an elliptic equation with constant coe�cients for p
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Now consider a general adjustment problem between two states: initial and final. The initial
state has no waves; therefore the balance is

Q
0

= v
0x

+

✓
fb

0

N2

◆

z

. (49)

The final state has waves, so that

Q
1

= vL
1x

+

✓
fb

1

N2

◆

z

+
vS
z

b
1x

N2

. (50)

The states have the same PV so that Q
1

= Q
0

. Why don’t McWilliams and Fox-Kemper
proceed from here? I’m not sure. We lose the superscript L’s below because they are onerous.
Consider that the balance conditions are

fvL
1

= p
1x

, (51)

b
1

= p
1z

+ vS
z

vL
1

,

= p
1z

+ f�1vS
z

p
1x

.
(52)

We can therefore cast the problem for the final state in terms of pressure, since Q
1

becomes

Q
1

= f�1p
1xx

+

✓
fp

1z

N2

◆

z

+

✓
vS
z

p
1x

N2

◆

z

+
vS
z

p
1zx

N2

+
(vS

z

)2p
1xx

fN2

, (53)

= f�1

✓
1 +

vS
z

N2

◆
p
1xx

+

✓
fp

1z

N2

◆

z

+

✓
vS
z

p
1x

N2

◆

z

+

✓
vS
z

N2

◆
p
1zx

. (54)

This is an elliptic equation with constant coe�cients for p
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Conservative adjustment with particle displacements
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This is an elliptic equation with constant coe�cients for p
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next, observe that

Conservation of buoyancy...

b†
0

(x
0

, z
0

) = b†(x, z) + ⇠b†
x

+ ⇣b†
z

(x, z) + · · · , (59)

= b̄(x, z) + b
0

+ ⇣N2 +O(R2) (60)

okay...
q = fN2 + v

x

+ fb
z

+ vS
z

b
x

+O(R2) (61)

and
b = b

0

+ ⇣N2 +O(R2) . (62)

R ⌧ 1 (63)

6 A perturbed final state

For whichever reason, McWilliams and Fox-Kemper decide they don’t want to solve this
equation, and instead make the assumption that the final state is an O(✏) perturbation on
the initial state. This means that we essentially take an intermediate limit where
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MF write it in terms of buoyancy instead, which means we take another z-derivative to get
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This is not yet confirmed, just copied from (4.5) in MF.
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6 A perturbed final state
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A way that was easier for me.

Because wL
g

= 0, we find nothing at leading order. At first-order we have
�
@
t

+ u

L ·r
� �

N2vL
x

+ fb
z

+ vS
z

b
x

�
+ wL

a

@
z

q0 = 0 , (27)

which we can manipulate in the usual way to obtain

�
@
t

+ u

L ·r
�
Q = 0 , where Q

def
= vL

x

+

✓
fb

N2

◆

z

+
vS
z

b
x

N2
. (28)

Now consider a general adjustment problem between two states: initial and final. The initial
state has no waves; therefore the balance is
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The states have the same PV so that Q1 = Q0. Why don’t McWilliams and Fox-Kemper
proceed from here? I’m not sure. We lose the superscript L’s below because they are onerous.
Consider that the balance conditions are
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This is an elliptic equation with constant coe�cients for p1, the pressure in the adjusted
state. Q1 is the source term and is known by imposing Q0 = Q1, as in ordinary adjustment
problems.

6 A perturbed final state

For whichever reason, McWilliams and Fox-Kemper decide they don’t want to solve this
equation, and instead make the assumption that the final state is an O(✏) perturbation on
the initial state. This means that we essentially take an intermediate limit where
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Oceanic wave-averaged Rossby adjustment: McWilliams
and Fox Kemper 2013

Greg and Bill ⇤

May 20, 2015

1 Overview

Ultimately I like this paper, though I still have to read it all the way to the end. I think
they could have formulated their equations, analysis, and problem better. All of the non-
dimensional numbers litter their presentation, and their failure to to use the Lagrangian-mean
(how many times do you need to say “anti-Stokes flow”?) hampered the coherence of the
paper. But the problem is nice and I like the analytical examples. Roy told me that GFD
is Jim McWilliams “hobby”, and I think this paper reflects that, which adds to its charm.
I do think they took their nostalgia for old-fashioned GFD a little too far with the spare,
poorly-resolved figures that look like they are from 1960. Also, they could have solved the
full problem instead of making an ✏ ⌧ 1 assumption. But I suppose they were shooting for
simple illustration, and they achieved it.

2 The basic equations

McWilliams and Fox-Kemper (MF) define their system in (2.1a,b). They write the Boussi-
nesq equations in terms of total buoyancy but quickly abandon it, after which their equations
(would) read

u

t

+ (f ẑ + !)⇥ u

L = �r
�
⇡ + 1

2 |u|
2
�
+ b ẑ , (1)

b
t

+ u

L ·rb+ wLN2 = 0 . (2)

The “pressure-like” term ⇡ is not defined and, indeed, it hides wave-averaged terms. I want
to point out that there are other ways to write these equations which are potentially more
illuminating. For example, after a small amount of manipulation we can write the equations
in McWilliams and Sullivan 1997 as

u

L
t

+ (f ẑ + !)⇥ u

L +r
�
p+ 1

2 |u
L|2

�
� b ẑ = 0 . (3)
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buoyancy equation

The unsteady Stokes drift contribution is interesting. I think it both explains why Langmuir
circulations are only seen in unsteady situations and also provides an inviscid mechanism for
the generation of internal waves. But we will leave that for later. Another useful form is

DL
u

L

Dt
+ f ẑ ⇥ u

L +rp� b ẑ =
�
r⇥ u

S
�
⇥ u

L + u

S
t . (4)

The potential vorticity equation associated with (??) through (??) is

qt + u

L ·rq = 0 , (5)

where
q = fN2 +N2! + fbz + ! ·rb . (6)

and !
def
= ẑ ·!. Note that, cast in the Lagrangian-mean, q and b† are materially conserved.

That means we should be able to define an available potential vorticity for this system.
Finally, I insist on using (uL, b) as my dependent variables. I’m sticking to my guns.

b
def
= b† � b̄ , (7)

p
def
= ⇡† � ⇡̄ � u

S ·u , (8)

u

L def
= u+ u

S . (9)

3 A disturbing observation

McWilliams and Fox-Kemper begin with an observation. They point out that when u

S = 0,
(??) has a simple, exact solution associated with some parallel flow u

L = v0(x, z) ŷ:

fv0 = p0x and p0z = b0 ; (10)

in other words, geostrophic and hydrostatic balance. Let’s call this state “0”. Thermal wind
is fv0z = b0x. Yet something disturbing occurs when you superpose this flow with a steadily
propagating wave-field associated with a non-zero Stokes drift field u

S = (uS(z), vS(z), 0).
Call this state “1”. To be steady the wave field has uL = 0, but nevertheless the fact remains
that uS 6= 0. Note the advection term is zero and does not interfere. We do find, however,

�
r⇥ u

S
�
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L = �vSzv1 ẑ . (11)

Thus, the “forcing” on the right side of the Lagrangian-mean equations is non-zero, and the
steady balance is

u

S = uS(z)x̂+ vS(z) ŷ . (12)

fv1 = p1x and p1z = b1 � vSzv1 . (13)

u

L = v1(x, z) ŷ . (14)

2

PV equation

PV and buoyancy combine in the same way as ordinary 
QGPV, except there is an extra term in the PV.  We get:I don’t think the term with a minus is an issue; note that it cancels with the 4th term if we

were to expand that one all the way out.

u

L ·r = 0 (109)

fvL = px (110)

b = pz + vSzv
L (111)
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adjustment problem is posed by 
equating initial and final PV:
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source elliptic problem for b or p
| {z }

the dependent variables in our system. We find
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This is a deliberate ordering. Note that in the ordinary QG scaling, we would define

fN2 = O(1) , and q
2

= O(R2) , (25)

and
N2vL

x
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z

= O(R) . (26)

The term vS
z

b
x

in q
1

, on the other hand, arises from ! ·rb, and is ordinarily neglected.
However, McWilliams and Fox-Kemper define the parameter
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Observe that
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⇠ ✏ . (28)

If ✏ � R, we should take this term into account. Indeed, Figure 1 points the way.
We have
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v = vL � vS (37)
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5 Potential vorticity and wave-averaged adjustment

The adjustment problem can be posed generally finding the final fields that satisfy

DLq

Dt
= 0 , and

DLb†

Dt
= 0 . (39)

The potential vorticity q is actually not the most fundamental conserved quantity.
Bill told me that, in a two dimensional system in (x, z), if we have two quantities
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= 0 , and

D✓

Dt
= 0 , (40)

then it happens that
D

Dt

@(�, ✓)

@(x, z)
= 0 . (41)

This is because the intersection of lines of constant � and ✓ define an area within the fluid,
and area is conserved under the fluid map. This is true in higher dimensions, but because
increasingly more confusing to apply in practice. That’s why it’s easier to work with potential
vorticity.

We then develop the PV equation. Notice that with wL = wL

g

+RwL
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equation has the expansion
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which we can manipulate in the usual way to obtain
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Now consider a general adjustment problem between two states: initial and final. The initial
state has no waves; therefore the balance is

Q
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. (45)
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the dependent variables in our system. We find
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This is a deliberate ordering. Note that in the ordinary QG scaling, we would define
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FIGURE 2. Initial frontal fields b0(x, z) and v0(x, z) from (4.8). The contours have an interval
of 0.1 and straddle zero. Positive and negative contours are solid and dashed, respectively.

front at a depth of the base of the Stokes flow layer, z ⇡ ���1. Its shape is broadly
like that of v0 except that b0 vanishes toward the surface to satisfy the boundary
condition. The accompanying v0 has subsurface extrema at a similar depth, but it is a
negative (up-front) flow on the light side of the front (x > 0) and positive (down-front)
flow on the dense side, with weak opposing flows in a very thin layer closer to the
centre of the front. When added to the initial front (v0, b0), the adjustment has the
effect of shifting the centre of the front leftward toward the dense side beneath the
surface, in association with the Stokes flow that has a positive along-front component.
Because waves often are aligned with winds, the leading-order cross-front shift has the
curious effect that it opposes the Ekman overturning circulation driven by down-front
winds (Thomas 2005). Thus, conservative wave adjustment may act to destabilize the
front when the wind tends to stabilize it, and stabilize it when the wind tends to
destabilize.

The adjustment displacement field has an anti-symmetric � 0, with convergent
inward displacements within the Stokes flow layer coming from the sides; downward
displacements in the centre; and divergent (outward and downward) displacements at
depth. Because of the even horizontal symmetry in b0 for a front, � 0

0 = 0 from (4.3).
In the horizontal far field, � 0(z) and ⇠ 0(z) 6= 0, but they are horizontally uniform and
have opposite sign on the two sides, with no net horizontal displacement across the
front. The sense of v0 is consistent with a Coriolis torque, @zv

0, forced by the frontal
torque, �Ss@xv0, associated with the cross-front Stokes vortex force in the the first
equation in (3.4). The buoyancy torque, �@xb0, partly opposes the v0 flow response,
but not to the full extent of thermal wind balance. Below the Stokes flow layer, the
forcing term in (4.5) becomes very small, and thermal wind balance holds. However,
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6 A perturbed final state

For whichever reason, McWilliams and Fox-Kemper decide they don’t want to solve this
equation, and instead make the assumption that the final state is an O(✏) perturbation on
the initial state. This means that we essentially take an intermediate limit where
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⌧ 1 . (73)
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4.1. Constant N2

In the special case of N2(z) constant with depth (i.e. non-dimensional N = B1/2),
the boundary value problem (4.5) is a two-dimensional Poisson equation with a
homogeneous Dirichlet boundary condition. The solution for this in a lower half-plane
domain geometry is known in terms of its Green’s function (Guenther & Lee 1996):

b0 = 1
4⇡

Z 1

�1
dx̃

Z 0

�1
(B1/2 dz̃) ln


r2(x̃, z̃)

r2(x̃, �z̃)

�
F 0(x̃, z̃), (4.7)

with r2 = (x � x̃)2 + B(z � z̃)2. The Green’s function is ln[r] in an unbounded domain,
and the combination ln[r2(x̃, z̃)] � ln[r2(x̃, �z̃)] satisfies the boundary condition of
b0 = 0 at z = 0 through the use of an image point above the z = 0 surface. In this
leading-order, constant-N limit, the only parameters are B and �, both here and in
the diagnostic formulas (4.2) for � 0 and (4.6) for v0. We evaluate (4.7) by numerical
quadrature using second-order discretization.

The static stability constraint (3.11) sets a limit on the minimum allowable
stratification. For example, with constant stratification and the frontal flow defined
in (4.8) without any wave adjustment, this lower limit is B > p

⇡/2R. This limitation
on the stratification, frontal flow, and wave adjustment formally does not apply at
leading order as R, ✏ ! 0, but for finite parameter values and a given frontal flow
it will limit both the minimum N2 and a wave-response amplitude consistent with
conservative adjustment.

4.1.1. Front

We define a simple initial frontal flow and balanced buoyancy anomaly by

v0(x, z) = e�x2+z, b0(x, z) =
p
⇡

2
erf[x]ez. (4.8)

This is a step in b0 towards lighter water near the surface for x > 0 and a positive,
surface-trapped jet in v0 (figure 2). The maximum velocity is equal to one at (0, 0),
and the maximum b0 is

p
⇡/2 = 0.89 at (1, 0); v0 is even in x, and b0 is odd.

With this symmetry the evaluation of (4.7) can be shortened by restricting the
x̃ integration to the positive half-line and replacing the logarithmic argument with
r2(x̃, z̃)r2(�x̃, z̃)r2(x̃, �z̃)r2(�x̃, �z̃).

Without loss of generality because of the sign-symmetry of Ss in (4.5) and (4.6),
we define the Stokes drift with a positive down-front component (vs > 0). The Stokes
shear profile is taken to be

Ss(z) = e�z. (4.9)

This shape corresponds to a monochromatic surface wave with dimensional wavelength
4⇡hs, and it is less surface-intensified than the Stokes drift of a realistic wave spectrum
(Webb & Fox-Kemper 2011). The sign of the adjustment fields would switch with a
change in the sign of vs and Ss. This formula implies that in defining ✏ we choose
the Stokes velocity scale Vs in (3.3) as equal to the surface value of the along-axis
component of Stokes drift vs. As remarked just above (2.6), the cross-axis Stokes
component us simply induces an anti-Stokes flow u during the adjustment. If the
gravity wave field is perpendicular to the initial flow, then the associated vortex force
is zero; the Stokes Coriolis force is cancelled by the anti-Stokes flow u0 = �us; and
v0 = b0 = 0 after the adjustment, hence v = v0 and b = b0.

A frontal solution is shown in figure 3 for B = 1 and � = 2 and constant
stratification (N2 = 1). The adjustment in b0 is a positive monopole centred on the

Because Q1 = Q0 we can eliminate the two. Recalling that (v0, b0) obey the waveless balance
conditions, the perturbation fields satisfy

fv0 = p0
x

, (51)

b0 = p01z + vS
z

v0 +O(✏) . (52)

Thus, moving the wavy source terms to the other side of the equals sign, we have
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MF write it in terms of buoyancy instead, which means we take another z-derivative to get
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. (54)

This is not yet confirmed, just copied from (4.5) in MF.

7 Implications and illustrations

MF examine two sample flows with constant N : a front and a “filament”. For all examples
they use the Stokes drift profile

vS
z

= e�z . (55)

8 Sanity checks

Depth of Stokes drift field for ordinary waves? Buoyancy frequency in the (upper) mixed
layer? What does it mean that we know waves are always present? I suppose we should ask
Sean.

9 Energy conservation

We found that the wave modified quasigeostrophic potential vorticity takes the form
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, (56)

where we have corrected a rogue factor of f . To obtain energy conservation we take pQ
t

and
integrate over the domain. The final two terms can be combined by appropriate application
of integration by parts, and we find
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FIGURE 2. Initial frontal fields b0(x, z) and v0(x, z) from (4.8). The contours have an interval
of 0.1 and straddle zero. Positive and negative contours are solid and dashed, respectively.

front at a depth of the base of the Stokes flow layer, z ⇡ ���1. Its shape is broadly
like that of v0 except that b0 vanishes toward the surface to satisfy the boundary
condition. The accompanying v0 has subsurface extrema at a similar depth, but it is a
negative (up-front) flow on the light side of the front (x > 0) and positive (down-front)
flow on the dense side, with weak opposing flows in a very thin layer closer to the
centre of the front. When added to the initial front (v0, b0), the adjustment has the
effect of shifting the centre of the front leftward toward the dense side beneath the
surface, in association with the Stokes flow that has a positive along-front component.
Because waves often are aligned with winds, the leading-order cross-front shift has the
curious effect that it opposes the Ekman overturning circulation driven by down-front
winds (Thomas 2005). Thus, conservative wave adjustment may act to destabilize the
front when the wind tends to stabilize it, and stabilize it when the wind tends to
destabilize.

The adjustment displacement field has an anti-symmetric � 0, with convergent
inward displacements within the Stokes flow layer coming from the sides; downward
displacements in the centre; and divergent (outward and downward) displacements at
depth. Because of the even horizontal symmetry in b0 for a front, � 0

0 = 0 from (4.3).
In the horizontal far field, � 0(z) and ⇠ 0(z) 6= 0, but they are horizontally uniform and
have opposite sign on the two sides, with no net horizontal displacement across the
front. The sense of v0 is consistent with a Coriolis torque, @zv

0, forced by the frontal
torque, �Ss@xv0, associated with the cross-front Stokes vortex force in the the first
equation in (3.4). The buoyancy torque, �@xb0, partly opposes the v0 flow response,
but not to the full extent of thermal wind balance. Below the Stokes flow layer, the
forcing term in (4.5) becomes very small, and thermal wind balance holds. However,
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4.1. Constant N2

In the special case of N2(z) constant with depth (i.e. non-dimensional N = B1/2),
the boundary value problem (4.5) is a two-dimensional Poisson equation with a
homogeneous Dirichlet boundary condition. The solution for this in a lower half-plane
domain geometry is known in terms of its Green’s function (Guenther & Lee 1996):

b0 = 1
4⇡

Z 1
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dx̃

Z 0
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(B1/2 dz̃) ln


r2(x̃, z̃)

r2(x̃, �z̃)
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with r2 = (x � x̃)2 + B(z � z̃)2. The Green’s function is ln[r] in an unbounded domain,
and the combination ln[r2(x̃, z̃)] � ln[r2(x̃, �z̃)] satisfies the boundary condition of
b0 = 0 at z = 0 through the use of an image point above the z = 0 surface. In this
leading-order, constant-N limit, the only parameters are B and �, both here and in
the diagnostic formulas (4.2) for � 0 and (4.6) for v0. We evaluate (4.7) by numerical
quadrature using second-order discretization.

The static stability constraint (3.11) sets a limit on the minimum allowable
stratification. For example, with constant stratification and the frontal flow defined
in (4.8) without any wave adjustment, this lower limit is B > p

⇡/2R. This limitation
on the stratification, frontal flow, and wave adjustment formally does not apply at
leading order as R, ✏ ! 0, but for finite parameter values and a given frontal flow
it will limit both the minimum N2 and a wave-response amplitude consistent with
conservative adjustment.

4.1.1. Front

We define a simple initial frontal flow and balanced buoyancy anomaly by

v0(x, z) = e�x2+z, b0(x, z) =
p
⇡

2
erf[x]ez. (4.8)

This is a step in b0 towards lighter water near the surface for x > 0 and a positive,
surface-trapped jet in v0 (figure 2). The maximum velocity is equal to one at (0, 0),
and the maximum b0 is

p
⇡/2 = 0.89 at (1, 0); v0 is even in x, and b0 is odd.

With this symmetry the evaluation of (4.7) can be shortened by restricting the
x̃ integration to the positive half-line and replacing the logarithmic argument with
r2(x̃, z̃)r2(�x̃, z̃)r2(x̃, �z̃)r2(�x̃, �z̃).

Without loss of generality because of the sign-symmetry of Ss in (4.5) and (4.6),
we define the Stokes drift with a positive down-front component (vs > 0). The Stokes
shear profile is taken to be

Ss(z) = e�z. (4.9)

This shape corresponds to a monochromatic surface wave with dimensional wavelength
4⇡hs, and it is less surface-intensified than the Stokes drift of a realistic wave spectrum
(Webb & Fox-Kemper 2011). The sign of the adjustment fields would switch with a
change in the sign of vs and Ss. This formula implies that in defining ✏ we choose
the Stokes velocity scale Vs in (3.3) as equal to the surface value of the along-axis
component of Stokes drift vs. As remarked just above (2.6), the cross-axis Stokes
component us simply induces an anti-Stokes flow u during the adjustment. If the
gravity wave field is perpendicular to the initial flow, then the associated vortex force
is zero; the Stokes Coriolis force is cancelled by the anti-Stokes flow u0 = �us; and
v0 = b0 = 0 after the adjustment, hence v = v0 and b = b0.

A frontal solution is shown in figure 3 for B = 1 and � = 2 and constant
stratification (N2 = 1). The adjustment in b0 is a positive monopole centred on the
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FIGURE 2. Initial frontal fields b0(x, z) and v0(x, z) from (4.8). The contours have an interval
of 0.1 and straddle zero. Positive and negative contours are solid and dashed, respectively.

front at a depth of the base of the Stokes flow layer, z ⇡ ���1. Its shape is broadly
like that of v0 except that b0 vanishes toward the surface to satisfy the boundary
condition. The accompanying v0 has subsurface extrema at a similar depth, but it is a
negative (up-front) flow on the light side of the front (x > 0) and positive (down-front)
flow on the dense side, with weak opposing flows in a very thin layer closer to the
centre of the front. When added to the initial front (v0, b0), the adjustment has the
effect of shifting the centre of the front leftward toward the dense side beneath the
surface, in association with the Stokes flow that has a positive along-front component.
Because waves often are aligned with winds, the leading-order cross-front shift has the
curious effect that it opposes the Ekman overturning circulation driven by down-front
winds (Thomas 2005). Thus, conservative wave adjustment may act to destabilize the
front when the wind tends to stabilize it, and stabilize it when the wind tends to
destabilize.

The adjustment displacement field has an anti-symmetric � 0, with convergent
inward displacements within the Stokes flow layer coming from the sides; downward
displacements in the centre; and divergent (outward and downward) displacements at
depth. Because of the even horizontal symmetry in b0 for a front, � 0

0 = 0 from (4.3).
In the horizontal far field, � 0(z) and ⇠ 0(z) 6= 0, but they are horizontally uniform and
have opposite sign on the two sides, with no net horizontal displacement across the
front. The sense of v0 is consistent with a Coriolis torque, @zv

0, forced by the frontal
torque, �Ss@xv0, associated with the cross-front Stokes vortex force in the the first
equation in (3.4). The buoyancy torque, �@xb0, partly opposes the v0 flow response,
but not to the full extent of thermal wind balance. Below the Stokes flow layer, the
forcing term in (4.5) becomes very small, and thermal wind balance holds. However,
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FIGURE 2. Initial frontal fields b0(x, z) and v0(x, z) from (4.8). The contours have an interval
of 0.1 and straddle zero. Positive and negative contours are solid and dashed, respectively.

front at a depth of the base of the Stokes flow layer, z ⇡ ���1. Its shape is broadly
like that of v0 except that b0 vanishes toward the surface to satisfy the boundary
condition. The accompanying v0 has subsurface extrema at a similar depth, but it is a
negative (up-front) flow on the light side of the front (x > 0) and positive (down-front)
flow on the dense side, with weak opposing flows in a very thin layer closer to the
centre of the front. When added to the initial front (v0, b0), the adjustment has the
effect of shifting the centre of the front leftward toward the dense side beneath the
surface, in association with the Stokes flow that has a positive along-front component.
Because waves often are aligned with winds, the leading-order cross-front shift has the
curious effect that it opposes the Ekman overturning circulation driven by down-front
winds (Thomas 2005). Thus, conservative wave adjustment may act to destabilize the
front when the wind tends to stabilize it, and stabilize it when the wind tends to
destabilize.

The adjustment displacement field has an anti-symmetric � 0, with convergent
inward displacements within the Stokes flow layer coming from the sides; downward
displacements in the centre; and divergent (outward and downward) displacements at
depth. Because of the even horizontal symmetry in b0 for a front, � 0

0 = 0 from (4.3).
In the horizontal far field, � 0(z) and ⇠ 0(z) 6= 0, but they are horizontally uniform and
have opposite sign on the two sides, with no net horizontal displacement across the
front. The sense of v0 is consistent with a Coriolis torque, @zv

0, forced by the frontal
torque, �Ss@xv0, associated with the cross-front Stokes vortex force in the the first
equation in (3.4). The buoyancy torque, �@xb0, partly opposes the v0 flow response,
but not to the full extent of thermal wind balance. Below the Stokes flow layer, the
forcing term in (4.5) becomes very small, and thermal wind balance holds. However,

initial velocity

cold hot

Oceanic wave-balanced fronts

cold

Conservation of buoyancy...

b†
0

(x
0

, z
0

) = b†(x, z) + ⇠b†
x

+ ⇣b†
z

(x, z) + · · · , (59)

= b̄(x, z) + b
0

+ ⇣N2 +O(R2) (60)

okay...
q = fN2 +N2v

x

+ fb
z

+ vS
z

b
x

+O(R2) (61)

v
x

+

✓
fb

N2

◆

z

+
vS
z

b
x

N2

| {z }
def
=Q

= v
0x

+

✓
fb

0

N2

◆

z

| {z }
def
=Q0

(62)

v = v
0

+ ✏v0 (63)

b = b
0

+ ✏b0 (64)

v0
x

+

✓
fb0

N2

◆

z

= �vS
z

b
0x

N2

+O(✏) (65)

balance conditions...

v0 = p0
x

/f , (66)

b0 = p0
z

+ vS
z

v , (67)

= p0
z

+ vS
z

v
0

+O(✏) (68)

hmmm
v
z

= f�1p
xz

= f�1b
x

� vS
z

v
0x

(69)

and
b = b0

0

+ ⇣N2 +O(R2) . (70)

b0
xx

+

✓
fb0

N2

◆

zz

= fvS
z

v
0xx

�
✓
fvS

z

v
0z

N2

◆

z

(71)

R ⌧ 1 (72)

6 A perturbed final state

For whichever reason, McWilliams and Fox-Kemper decide they don’t want to solve this
equation, and instead make the assumption that the final state is an O(✏) perturbation on
the initial state. This means that we essentially take an intermediate limit where
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4.1. Constant N2

In the special case of N2(z) constant with depth (i.e. non-dimensional N = B1/2),
the boundary value problem (4.5) is a two-dimensional Poisson equation with a
homogeneous Dirichlet boundary condition. The solution for this in a lower half-plane
domain geometry is known in terms of its Green’s function (Guenther & Lee 1996):

b0 = 1
4⇡

Z 1
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with r2 = (x � x̃)2 + B(z � z̃)2. The Green’s function is ln[r] in an unbounded domain,
and the combination ln[r2(x̃, z̃)] � ln[r2(x̃, �z̃)] satisfies the boundary condition of
b0 = 0 at z = 0 through the use of an image point above the z = 0 surface. In this
leading-order, constant-N limit, the only parameters are B and �, both here and in
the diagnostic formulas (4.2) for � 0 and (4.6) for v0. We evaluate (4.7) by numerical
quadrature using second-order discretization.

The static stability constraint (3.11) sets a limit on the minimum allowable
stratification. For example, with constant stratification and the frontal flow defined
in (4.8) without any wave adjustment, this lower limit is B > p

⇡/2R. This limitation
on the stratification, frontal flow, and wave adjustment formally does not apply at
leading order as R, ✏ ! 0, but for finite parameter values and a given frontal flow
it will limit both the minimum N2 and a wave-response amplitude consistent with
conservative adjustment.

4.1.1. Front

We define a simple initial frontal flow and balanced buoyancy anomaly by

v0(x, z) = e�x2+z, b0(x, z) =
p
⇡

2
erf[x]ez. (4.8)

This is a step in b0 towards lighter water near the surface for x > 0 and a positive,
surface-trapped jet in v0 (figure 2). The maximum velocity is equal to one at (0, 0),
and the maximum b0 is

p
⇡/2 = 0.89 at (1, 0); v0 is even in x, and b0 is odd.

With this symmetry the evaluation of (4.7) can be shortened by restricting the
x̃ integration to the positive half-line and replacing the logarithmic argument with
r2(x̃, z̃)r2(�x̃, z̃)r2(x̃, �z̃)r2(�x̃, �z̃).

Without loss of generality because of the sign-symmetry of Ss in (4.5) and (4.6),
we define the Stokes drift with a positive down-front component (vs > 0). The Stokes
shear profile is taken to be

Ss(z) = e�z. (4.9)

This shape corresponds to a monochromatic surface wave with dimensional wavelength
4⇡hs, and it is less surface-intensified than the Stokes drift of a realistic wave spectrum
(Webb & Fox-Kemper 2011). The sign of the adjustment fields would switch with a
change in the sign of vs and Ss. This formula implies that in defining ✏ we choose
the Stokes velocity scale Vs in (3.3) as equal to the surface value of the along-axis
component of Stokes drift vs. As remarked just above (2.6), the cross-axis Stokes
component us simply induces an anti-Stokes flow u during the adjustment. If the
gravity wave field is perpendicular to the initial flow, then the associated vortex force
is zero; the Stokes Coriolis force is cancelled by the anti-Stokes flow u0 = �us; and
v0 = b0 = 0 after the adjustment, hence v = v0 and b = b0.

A frontal solution is shown in figure 3 for B = 1 and � = 2 and constant
stratification (N2 = 1). The adjustment in b0 is a positive monopole centred on the

Because Q1 = Q0 we can eliminate the two. Recalling that (v0, b0) obey the waveless balance
conditions, the perturbation fields satisfy

fv0 = p0
x

, (51)

b0 = p01z + vS
z

v0 +O(✏) . (52)

Thus, moving the wavy source terms to the other side of the equals sign, we have
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MF write it in terms of buoyancy instead, which means we take another z-derivative to get
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This is not yet confirmed, just copied from (4.5) in MF.

7 Implications and illustrations

MF examine two sample flows with constant N : a front and a “filament”. For all examples
they use the Stokes drift profile

vS
z

= e�z . (55)

8 Sanity checks

Depth of Stokes drift field for ordinary waves? Buoyancy frequency in the (upper) mixed
layer? What does it mean that we know waves are always present? I suppose we should ask
Sean.

9 Energy conservation

We found that the wave modified quasigeostrophic potential vorticity takes the form
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where we have corrected a rogue factor of f . To obtain energy conservation we take pQ
t

and
integrate over the domain. The final two terms can be combined by appropriate application
of integration by parts, and we find
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4.1. Constant N2

In the special case of N2(z) constant with depth (i.e. non-dimensional N = B1/2),
the boundary value problem (4.5) is a two-dimensional Poisson equation with a
homogeneous Dirichlet boundary condition. The solution for this in a lower half-plane
domain geometry is known in terms of its Green’s function (Guenther & Lee 1996):

b0 = 1
4⇡

Z 1

�1
dx̃

Z 0

�1
(B1/2 dz̃) ln


r2(x̃, z̃)

r2(x̃, �z̃)

�
F 0(x̃, z̃), (4.7)

with r2 = (x � x̃)2 + B(z � z̃)2. The Green’s function is ln[r] in an unbounded domain,
and the combination ln[r2(x̃, z̃)] � ln[r2(x̃, �z̃)] satisfies the boundary condition of
b0 = 0 at z = 0 through the use of an image point above the z = 0 surface. In this
leading-order, constant-N limit, the only parameters are B and �, both here and in
the diagnostic formulas (4.2) for � 0 and (4.6) for v0. We evaluate (4.7) by numerical
quadrature using second-order discretization.

The static stability constraint (3.11) sets a limit on the minimum allowable
stratification. For example, with constant stratification and the frontal flow defined
in (4.8) without any wave adjustment, this lower limit is B > p

⇡/2R. This limitation
on the stratification, frontal flow, and wave adjustment formally does not apply at
leading order as R, ✏ ! 0, but for finite parameter values and a given frontal flow
it will limit both the minimum N2 and a wave-response amplitude consistent with
conservative adjustment.

4.1.1. Front

We define a simple initial frontal flow and balanced buoyancy anomaly by

v0(x, z) = e�x2+z, b0(x, z) =
p
⇡

2
erf[x]ez. (4.8)

This is a step in b0 towards lighter water near the surface for x > 0 and a positive,
surface-trapped jet in v0 (figure 2). The maximum velocity is equal to one at (0, 0),
and the maximum b0 is

p
⇡/2 = 0.89 at (1, 0); v0 is even in x, and b0 is odd.

With this symmetry the evaluation of (4.7) can be shortened by restricting the
x̃ integration to the positive half-line and replacing the logarithmic argument with
r2(x̃, z̃)r2(�x̃, z̃)r2(x̃, �z̃)r2(�x̃, �z̃).

Without loss of generality because of the sign-symmetry of Ss in (4.5) and (4.6),
we define the Stokes drift with a positive down-front component (vs > 0). The Stokes
shear profile is taken to be

Ss(z) = e�z. (4.9)

This shape corresponds to a monochromatic surface wave with dimensional wavelength
4⇡hs, and it is less surface-intensified than the Stokes drift of a realistic wave spectrum
(Webb & Fox-Kemper 2011). The sign of the adjustment fields would switch with a
change in the sign of vs and Ss. This formula implies that in defining ✏ we choose
the Stokes velocity scale Vs in (3.3) as equal to the surface value of the along-axis
component of Stokes drift vs. As remarked just above (2.6), the cross-axis Stokes
component us simply induces an anti-Stokes flow u during the adjustment. If the
gravity wave field is perpendicular to the initial flow, then the associated vortex force
is zero; the Stokes Coriolis force is cancelled by the anti-Stokes flow u0 = �us; and
v0 = b0 = 0 after the adjustment, hence v = v0 and b = b0.

A frontal solution is shown in figure 3 for B = 1 and � = 2 and constant
stratification (N2 = 1). The adjustment in b0 is a positive monopole centred on the
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FIGURE 2. Initial frontal fields b0(x, z) and v0(x, z) from (4.8). The contours have an interval
of 0.1 and straddle zero. Positive and negative contours are solid and dashed, respectively.

front at a depth of the base of the Stokes flow layer, z ⇡ ���1. Its shape is broadly
like that of v0 except that b0 vanishes toward the surface to satisfy the boundary
condition. The accompanying v0 has subsurface extrema at a similar depth, but it is a
negative (up-front) flow on the light side of the front (x > 0) and positive (down-front)
flow on the dense side, with weak opposing flows in a very thin layer closer to the
centre of the front. When added to the initial front (v0, b0), the adjustment has the
effect of shifting the centre of the front leftward toward the dense side beneath the
surface, in association with the Stokes flow that has a positive along-front component.
Because waves often are aligned with winds, the leading-order cross-front shift has the
curious effect that it opposes the Ekman overturning circulation driven by down-front
winds (Thomas 2005). Thus, conservative wave adjustment may act to destabilize the
front when the wind tends to stabilize it, and stabilize it when the wind tends to
destabilize.

The adjustment displacement field has an anti-symmetric � 0, with convergent
inward displacements within the Stokes flow layer coming from the sides; downward
displacements in the centre; and divergent (outward and downward) displacements at
depth. Because of the even horizontal symmetry in b0 for a front, � 0

0 = 0 from (4.3).
In the horizontal far field, � 0(z) and ⇠ 0(z) 6= 0, but they are horizontally uniform and
have opposite sign on the two sides, with no net horizontal displacement across the
front. The sense of v0 is consistent with a Coriolis torque, @zv

0, forced by the frontal
torque, �Ss@xv0, associated with the cross-front Stokes vortex force in the the first
equation in (3.4). The buoyancy torque, �@xb0, partly opposes the v0 flow response,
but not to the full extent of thermal wind balance. Below the Stokes flow layer, the
forcing term in (4.5) becomes very small, and thermal wind balance holds. However,

initial buoyancy
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like that of v0 except that b0 vanishes toward the surface to satisfy the boundary
condition. The accompanying v0 has subsurface extrema at a similar depth, but it is a
negative (up-front) flow on the light side of the front (x > 0) and positive (down-front)
flow on the dense side, with weak opposing flows in a very thin layer closer to the
centre of the front. When added to the initial front (v0, b0), the adjustment has the
effect of shifting the centre of the front leftward toward the dense side beneath the
surface, in association with the Stokes flow that has a positive along-front component.
Because waves often are aligned with winds, the leading-order cross-front shift has the
curious effect that it opposes the Ekman overturning circulation driven by down-front
winds (Thomas 2005). Thus, conservative wave adjustment may act to destabilize the
front when the wind tends to stabilize it, and stabilize it when the wind tends to
destabilize.

The adjustment displacement field has an anti-symmetric � 0, with convergent
inward displacements within the Stokes flow layer coming from the sides; downward
displacements in the centre; and divergent (outward and downward) displacements at
depth. Because of the even horizontal symmetry in b0 for a front, � 0

0 = 0 from (4.3).
In the horizontal far field, � 0(z) and ⇠ 0(z) 6= 0, but they are horizontally uniform and
have opposite sign on the two sides, with no net horizontal displacement across the
front. The sense of v0 is consistent with a Coriolis torque, @zv

0, forced by the frontal
torque, �Ss@xv0, associated with the cross-front Stokes vortex force in the the first
equation in (3.4). The buoyancy torque, �@xb0, partly opposes the v0 flow response,
but not to the full extent of thermal wind balance. Below the Stokes flow layer, the
forcing term in (4.5) becomes very small, and thermal wind balance holds. However,
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R ⌧ 1 (72)

6 A perturbed final state

For whichever reason, McWilliams and Fox-Kemper decide they don’t want to solve this
equation, and instead make the assumption that the final state is an O(✏) perturbation on
the initial state. This means that we essentially take an intermediate limit where
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4.1. Constant N2

In the special case of N2(z) constant with depth (i.e. non-dimensional N = B1/2),
the boundary value problem (4.5) is a two-dimensional Poisson equation with a
homogeneous Dirichlet boundary condition. The solution for this in a lower half-plane
domain geometry is known in terms of its Green’s function (Guenther & Lee 1996):

b0 = 1
4⇡

Z 1

�1
dx̃

Z 0

�1
(B1/2 dz̃) ln


r2(x̃, z̃)

r2(x̃, �z̃)

�
F 0(x̃, z̃), (4.7)

with r2 = (x � x̃)2 + B(z � z̃)2. The Green’s function is ln[r] in an unbounded domain,
and the combination ln[r2(x̃, z̃)] � ln[r2(x̃, �z̃)] satisfies the boundary condition of
b0 = 0 at z = 0 through the use of an image point above the z = 0 surface. In this
leading-order, constant-N limit, the only parameters are B and �, both here and in
the diagnostic formulas (4.2) for � 0 and (4.6) for v0. We evaluate (4.7) by numerical
quadrature using second-order discretization.

The static stability constraint (3.11) sets a limit on the minimum allowable
stratification. For example, with constant stratification and the frontal flow defined
in (4.8) without any wave adjustment, this lower limit is B > p

⇡/2R. This limitation
on the stratification, frontal flow, and wave adjustment formally does not apply at
leading order as R, ✏ ! 0, but for finite parameter values and a given frontal flow
it will limit both the minimum N2 and a wave-response amplitude consistent with
conservative adjustment.

4.1.1. Front

We define a simple initial frontal flow and balanced buoyancy anomaly by

v0(x, z) = e�x2+z, b0(x, z) =
p
⇡

2
erf[x]ez. (4.8)

This is a step in b0 towards lighter water near the surface for x > 0 and a positive,
surface-trapped jet in v0 (figure 2). The maximum velocity is equal to one at (0, 0),
and the maximum b0 is

p
⇡/2 = 0.89 at (1, 0); v0 is even in x, and b0 is odd.

With this symmetry the evaluation of (4.7) can be shortened by restricting the
x̃ integration to the positive half-line and replacing the logarithmic argument with
r2(x̃, z̃)r2(�x̃, z̃)r2(x̃, �z̃)r2(�x̃, �z̃).

Without loss of generality because of the sign-symmetry of Ss in (4.5) and (4.6),
we define the Stokes drift with a positive down-front component (vs > 0). The Stokes
shear profile is taken to be

Ss(z) = e�z. (4.9)

This shape corresponds to a monochromatic surface wave with dimensional wavelength
4⇡hs, and it is less surface-intensified than the Stokes drift of a realistic wave spectrum
(Webb & Fox-Kemper 2011). The sign of the adjustment fields would switch with a
change in the sign of vs and Ss. This formula implies that in defining ✏ we choose
the Stokes velocity scale Vs in (3.3) as equal to the surface value of the along-axis
component of Stokes drift vs. As remarked just above (2.6), the cross-axis Stokes
component us simply induces an anti-Stokes flow u during the adjustment. If the
gravity wave field is perpendicular to the initial flow, then the associated vortex force
is zero; the Stokes Coriolis force is cancelled by the anti-Stokes flow u0 = �us; and
v0 = b0 = 0 after the adjustment, hence v = v0 and b = b0.

A frontal solution is shown in figure 3 for B = 1 and � = 2 and constant
stratification (N2 = 1). The adjustment in b0 is a positive monopole centred on the

Because Q1 = Q0 we can eliminate the two. Recalling that (v0, b0) obey the waveless balance
conditions, the perturbation fields satisfy

fv0 = p0
x

, (51)

b0 = p01z + vS
z

v0 +O(✏) . (52)

Thus, moving the wavy source terms to the other side of the equals sign, we have
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MF write it in terms of buoyancy instead, which means we take another z-derivative to get
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This is not yet confirmed, just copied from (4.5) in MF.

7 Implications and illustrations

MF examine two sample flows with constant N : a front and a “filament”. For all examples
they use the Stokes drift profile

vS
z

= e�z . (55)

8 Sanity checks

Depth of Stokes drift field for ordinary waves? Buoyancy frequency in the (upper) mixed
layer? What does it mean that we know waves are always present? I suppose we should ask
Sean.

9 Energy conservation

We found that the wave modified quasigeostrophic potential vorticity takes the form
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where we have corrected a rogue factor of f . To obtain energy conservation we take pQ
t

and
integrate over the domain. The final two terms can be combined by appropriate application
of integration by parts, and we find
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4.1. Constant N2

In the special case of N2(z) constant with depth (i.e. non-dimensional N = B1/2),
the boundary value problem (4.5) is a two-dimensional Poisson equation with a
homogeneous Dirichlet boundary condition. The solution for this in a lower half-plane
domain geometry is known in terms of its Green’s function (Guenther & Lee 1996):

b0 = 1
4⇡

Z 1

�1
dx̃

Z 0

�1
(B1/2 dz̃) ln


r2(x̃, z̃)

r2(x̃, �z̃)

�
F 0(x̃, z̃), (4.7)

with r2 = (x � x̃)2 + B(z � z̃)2. The Green’s function is ln[r] in an unbounded domain,
and the combination ln[r2(x̃, z̃)] � ln[r2(x̃, �z̃)] satisfies the boundary condition of
b0 = 0 at z = 0 through the use of an image point above the z = 0 surface. In this
leading-order, constant-N limit, the only parameters are B and �, both here and in
the diagnostic formulas (4.2) for � 0 and (4.6) for v0. We evaluate (4.7) by numerical
quadrature using second-order discretization.

The static stability constraint (3.11) sets a limit on the minimum allowable
stratification. For example, with constant stratification and the frontal flow defined
in (4.8) without any wave adjustment, this lower limit is B > p

⇡/2R. This limitation
on the stratification, frontal flow, and wave adjustment formally does not apply at
leading order as R, ✏ ! 0, but for finite parameter values and a given frontal flow
it will limit both the minimum N2 and a wave-response amplitude consistent with
conservative adjustment.

4.1.1. Front

We define a simple initial frontal flow and balanced buoyancy anomaly by

v0(x, z) = e�x2+z, b0(x, z) =
p
⇡

2
erf[x]ez. (4.8)

This is a step in b0 towards lighter water near the surface for x > 0 and a positive,
surface-trapped jet in v0 (figure 2). The maximum velocity is equal to one at (0, 0),
and the maximum b0 is

p
⇡/2 = 0.89 at (1, 0); v0 is even in x, and b0 is odd.

With this symmetry the evaluation of (4.7) can be shortened by restricting the
x̃ integration to the positive half-line and replacing the logarithmic argument with
r2(x̃, z̃)r2(�x̃, z̃)r2(x̃, �z̃)r2(�x̃, �z̃).

Without loss of generality because of the sign-symmetry of Ss in (4.5) and (4.6),
we define the Stokes drift with a positive down-front component (vs > 0). The Stokes
shear profile is taken to be

Ss(z) = e�z. (4.9)

This shape corresponds to a monochromatic surface wave with dimensional wavelength
4⇡hs, and it is less surface-intensified than the Stokes drift of a realistic wave spectrum
(Webb & Fox-Kemper 2011). The sign of the adjustment fields would switch with a
change in the sign of vs and Ss. This formula implies that in defining ✏ we choose
the Stokes velocity scale Vs in (3.3) as equal to the surface value of the along-axis
component of Stokes drift vs. As remarked just above (2.6), the cross-axis Stokes
component us simply induces an anti-Stokes flow u during the adjustment. If the
gravity wave field is perpendicular to the initial flow, then the associated vortex force
is zero; the Stokes Coriolis force is cancelled by the anti-Stokes flow u0 = �us; and
v0 = b0 = 0 after the adjustment, hence v = v0 and b = b0.

A frontal solution is shown in figure 3 for B = 1 and � = 2 and constant
stratification (N2 = 1). The adjustment in b0 is a positive monopole centred on the
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FIGURE 3. Wave-adjustment fields for the front (4.8) with B = 1 and � = 2 and constant N:
(a) b0(x, z); (b) v0(x, z); (c) � 0(x, z). The fields are normalized by their extreme magnitudes
(i.e. 0.21, 0.12, and 0.25, respectively) and contoured with an interval of 0.1 straddling zero.
Positive and negative contours are solid and dashed, respectively. The along-front Stokes drift
is directed toward positive y. All signs reverse if the along-front Stokes drift is reversed.

the wave-adjusted buoyancy peaks near z = 1/�, and it decays slowly below, as does
the wave-adjusted velocity. The pattern in b0 relates to the vertical displacement ⇣ 0
as buoyancy conservation of the mean stratification b(z), as expressed in (4.1); the
displacement contributions from b0(x, z) would arise at O(R).

Where the right-side forcing is small, the homogeneous b0 and v0 solutions of the
left-side elliptic operator (4.5) that decay to zero in the far field have the form of
r�n times either cos[n✓ ] or sin[n✓ ], where r and ✓ are cylindrical coordinates in the
(x,B1/2z) plane. For the frontal flow, as can be derived by expanding the logarithmic
argument in (4.7) for large r, the leading-order solutions vary as the n = 1 solution,

b0 ⇠ sin[✓ ]
r

= B1/2z

r2
, v0 ⇠ cos[✓ ]

r
= x

r2
. (4.10)
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FIGURE 3. Wave-adjustment fields for the front (4.8) with B = 1 and � = 2 and constant N:
(a) b0(x, z); (b) v0(x, z); (c) � 0(x, z). The fields are normalized by their extreme magnitudes
(i.e. 0.21, 0.12, and 0.25, respectively) and contoured with an interval of 0.1 straddling zero.
Positive and negative contours are solid and dashed, respectively. The along-front Stokes drift
is directed toward positive y. All signs reverse if the along-front Stokes drift is reversed.

the wave-adjusted buoyancy peaks near z = 1/�, and it decays slowly below, as does
the wave-adjusted velocity. The pattern in b0 relates to the vertical displacement ⇣ 0
as buoyancy conservation of the mean stratification b(z), as expressed in (4.1); the
displacement contributions from b0(x, z) would arise at O(R).

Where the right-side forcing is small, the homogeneous b0 and v0 solutions of the
left-side elliptic operator (4.5) that decay to zero in the far field have the form of
r�n times either cos[n✓ ] or sin[n✓ ], where r and ✓ are cylindrical coordinates in the
(x,B1/2z) plane. For the frontal flow, as can be derived by expanding the logarithmic
argument in (4.7) for large r, the leading-order solutions vary as the n = 1 solution,
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6 A perturbed final state

For whichever reason, McWilliams and Fox-Kemper decide they don’t want to solve this
equation, and instead make the assumption that the final state is an O(✏) perturbation on
the initial state. This means that we essentially take an intermediate limit where
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4.1. Constant N2

In the special case of N2(z) constant with depth (i.e. non-dimensional N = B1/2),
the boundary value problem (4.5) is a two-dimensional Poisson equation with a
homogeneous Dirichlet boundary condition. The solution for this in a lower half-plane
domain geometry is known in terms of its Green’s function (Guenther & Lee 1996):

b0 = 1
4⇡

Z 1

�1
dx̃

Z 0

�1
(B1/2 dz̃) ln


r2(x̃, z̃)

r2(x̃, �z̃)

�
F 0(x̃, z̃), (4.7)

with r2 = (x � x̃)2 + B(z � z̃)2. The Green’s function is ln[r] in an unbounded domain,
and the combination ln[r2(x̃, z̃)] � ln[r2(x̃, �z̃)] satisfies the boundary condition of
b0 = 0 at z = 0 through the use of an image point above the z = 0 surface. In this
leading-order, constant-N limit, the only parameters are B and �, both here and in
the diagnostic formulas (4.2) for � 0 and (4.6) for v0. We evaluate (4.7) by numerical
quadrature using second-order discretization.

The static stability constraint (3.11) sets a limit on the minimum allowable
stratification. For example, with constant stratification and the frontal flow defined
in (4.8) without any wave adjustment, this lower limit is B > p

⇡/2R. This limitation
on the stratification, frontal flow, and wave adjustment formally does not apply at
leading order as R, ✏ ! 0, but for finite parameter values and a given frontal flow
it will limit both the minimum N2 and a wave-response amplitude consistent with
conservative adjustment.

4.1.1. Front

We define a simple initial frontal flow and balanced buoyancy anomaly by

v0(x, z) = e�x2+z, b0(x, z) =
p
⇡

2
erf[x]ez. (4.8)

This is a step in b0 towards lighter water near the surface for x > 0 and a positive,
surface-trapped jet in v0 (figure 2). The maximum velocity is equal to one at (0, 0),
and the maximum b0 is

p
⇡/2 = 0.89 at (1, 0); v0 is even in x, and b0 is odd.

With this symmetry the evaluation of (4.7) can be shortened by restricting the
x̃ integration to the positive half-line and replacing the logarithmic argument with
r2(x̃, z̃)r2(�x̃, z̃)r2(x̃, �z̃)r2(�x̃, �z̃).

Without loss of generality because of the sign-symmetry of Ss in (4.5) and (4.6),
we define the Stokes drift with a positive down-front component (vs > 0). The Stokes
shear profile is taken to be

Ss(z) = e�z. (4.9)

This shape corresponds to a monochromatic surface wave with dimensional wavelength
4⇡hs, and it is less surface-intensified than the Stokes drift of a realistic wave spectrum
(Webb & Fox-Kemper 2011). The sign of the adjustment fields would switch with a
change in the sign of vs and Ss. This formula implies that in defining ✏ we choose
the Stokes velocity scale Vs in (3.3) as equal to the surface value of the along-axis
component of Stokes drift vs. As remarked just above (2.6), the cross-axis Stokes
component us simply induces an anti-Stokes flow u during the adjustment. If the
gravity wave field is perpendicular to the initial flow, then the associated vortex force
is zero; the Stokes Coriolis force is cancelled by the anti-Stokes flow u0 = �us; and
v0 = b0 = 0 after the adjustment, hence v = v0 and b = b0.

A frontal solution is shown in figure 3 for B = 1 and � = 2 and constant
stratification (N2 = 1). The adjustment in b0 is a positive monopole centred on the

Because Q1 = Q0 we can eliminate the two. Recalling that (v0, b0) obey the waveless balance
conditions, the perturbation fields satisfy

fv0 = p0
x

, (51)

b0 = p01z + vS
z

v0 +O(✏) . (52)

Thus, moving the wavy source terms to the other side of the equals sign, we have
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MF write it in terms of buoyancy instead, which means we take another z-derivative to get
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. (54)

This is not yet confirmed, just copied from (4.5) in MF.

7 Implications and illustrations

MF examine two sample flows with constant N : a front and a “filament”. For all examples
they use the Stokes drift profile

vS
z

= e�z . (55)

8 Sanity checks

Depth of Stokes drift field for ordinary waves? Buoyancy frequency in the (upper) mixed
layer? What does it mean that we know waves are always present? I suppose we should ask
Sean.

9 Energy conservation

We found that the wave modified quasigeostrophic potential vorticity takes the form

Q =
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where we have corrected a rogue factor of f . To obtain energy conservation we take pQ
t

and
integrate over the domain. The final two terms can be combined by appropriate application
of integration by parts, and we find
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the boundary value problem (4.5) is a two-dimensional Poisson equation with a
homogeneous Dirichlet boundary condition. The solution for this in a lower half-plane
domain geometry is known in terms of its Green’s function (Guenther & Lee 1996):
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with r2 = (x � x̃)2 + B(z � z̃)2. The Green’s function is ln[r] in an unbounded domain,
and the combination ln[r2(x̃, z̃)] � ln[r2(x̃, �z̃)] satisfies the boundary condition of
b0 = 0 at z = 0 through the use of an image point above the z = 0 surface. In this
leading-order, constant-N limit, the only parameters are B and �, both here and in
the diagnostic formulas (4.2) for � 0 and (4.6) for v0. We evaluate (4.7) by numerical
quadrature using second-order discretization.

The static stability constraint (3.11) sets a limit on the minimum allowable
stratification. For example, with constant stratification and the frontal flow defined
in (4.8) without any wave adjustment, this lower limit is B > p

⇡/2R. This limitation
on the stratification, frontal flow, and wave adjustment formally does not apply at
leading order as R, ✏ ! 0, but for finite parameter values and a given frontal flow
it will limit both the minimum N2 and a wave-response amplitude consistent with
conservative adjustment.

4.1.1. Front

We define a simple initial frontal flow and balanced buoyancy anomaly by

v0(x, z) = e�x2+z, b0(x, z) =
p
⇡

2
erf[x]ez. (4.8)

This is a step in b0 towards lighter water near the surface for x > 0 and a positive,
surface-trapped jet in v0 (figure 2). The maximum velocity is equal to one at (0, 0),
and the maximum b0 is

p
⇡/2 = 0.89 at (1, 0); v0 is even in x, and b0 is odd.

With this symmetry the evaluation of (4.7) can be shortened by restricting the
x̃ integration to the positive half-line and replacing the logarithmic argument with
r2(x̃, z̃)r2(�x̃, z̃)r2(x̃, �z̃)r2(�x̃, �z̃).

Without loss of generality because of the sign-symmetry of Ss in (4.5) and (4.6),
we define the Stokes drift with a positive down-front component (vs > 0). The Stokes
shear profile is taken to be

Ss(z) = e�z. (4.9)

This shape corresponds to a monochromatic surface wave with dimensional wavelength
4⇡hs, and it is less surface-intensified than the Stokes drift of a realistic wave spectrum
(Webb & Fox-Kemper 2011). The sign of the adjustment fields would switch with a
change in the sign of vs and Ss. This formula implies that in defining ✏ we choose
the Stokes velocity scale Vs in (3.3) as equal to the surface value of the along-axis
component of Stokes drift vs. As remarked just above (2.6), the cross-axis Stokes
component us simply induces an anti-Stokes flow u during the adjustment. If the
gravity wave field is perpendicular to the initial flow, then the associated vortex force
is zero; the Stokes Coriolis force is cancelled by the anti-Stokes flow u0 = �us; and
v0 = b0 = 0 after the adjustment, hence v = v0 and b = b0.

A frontal solution is shown in figure 3 for B = 1 and � = 2 and constant
stratification (N2 = 1). The adjustment in b0 is a positive monopole centred on the
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FIGURE 3. Wave-adjustment fields for the front (4.8) with B = 1 and � = 2 and constant N:
(a) b0(x, z); (b) v0(x, z); (c) � 0(x, z). The fields are normalized by their extreme magnitudes
(i.e. 0.21, 0.12, and 0.25, respectively) and contoured with an interval of 0.1 straddling zero.
Positive and negative contours are solid and dashed, respectively. The along-front Stokes drift
is directed toward positive y. All signs reverse if the along-front Stokes drift is reversed.

the wave-adjusted buoyancy peaks near z = 1/�, and it decays slowly below, as does
the wave-adjusted velocity. The pattern in b0 relates to the vertical displacement ⇣ 0
as buoyancy conservation of the mean stratification b(z), as expressed in (4.1); the
displacement contributions from b0(x, z) would arise at O(R).

Where the right-side forcing is small, the homogeneous b0 and v0 solutions of the
left-side elliptic operator (4.5) that decay to zero in the far field have the form of
r�n times either cos[n✓ ] or sin[n✓ ], where r and ✓ are cylindrical coordinates in the
(x,B1/2z) plane. For the frontal flow, as can be derived by expanding the logarithmic
argument in (4.7) for large r, the leading-order solutions vary as the n = 1 solution,

b0 ⇠ sin[✓ ]
r

= B1/2z

r2
, v0 ⇠ cos[✓ ]

r
= x

r2
. (4.10)

velocity perturbation particle displacement
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FIGURE 3. Wave-adjustment fields for the front (4.8) with B = 1 and � = 2 and constant N:
(a) b0(x, z); (b) v0(x, z); (c) � 0(x, z). The fields are normalized by their extreme magnitudes
(i.e. 0.21, 0.12, and 0.25, respectively) and contoured with an interval of 0.1 straddling zero.
Positive and negative contours are solid and dashed, respectively. The along-front Stokes drift
is directed toward positive y. All signs reverse if the along-front Stokes drift is reversed.

the wave-adjusted buoyancy peaks near z = 1/�, and it decays slowly below, as does
the wave-adjusted velocity. The pattern in b0 relates to the vertical displacement ⇣ 0
as buoyancy conservation of the mean stratification b(z), as expressed in (4.1); the
displacement contributions from b0(x, z) would arise at O(R).

Where the right-side forcing is small, the homogeneous b0 and v0 solutions of the
left-side elliptic operator (4.5) that decay to zero in the far field have the form of
r�n times either cos[n✓ ] or sin[n✓ ], where r and ✓ are cylindrical coordinates in the
(x,B1/2z) plane. For the frontal flow, as can be derived by expanding the logarithmic
argument in (4.7) for large r, the leading-order solutions vary as the n = 1 solution,

b0 ⇠ sin[✓ ]
r

= B1/2z

r2
, v0 ⇠ cos[✓ ]

r
= x

r2
. (4.10)

Oceanic wave-balanced fronts
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6 A perturbed final state

For whichever reason, McWilliams and Fox-Kemper decide they don’t want to solve this
equation, and instead make the assumption that the final state is an O(✏) perturbation on
the initial state. This means that we essentially take an intermediate limit where
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4.1. Constant N2

In the special case of N2(z) constant with depth (i.e. non-dimensional N = B1/2),
the boundary value problem (4.5) is a two-dimensional Poisson equation with a
homogeneous Dirichlet boundary condition. The solution for this in a lower half-plane
domain geometry is known in terms of its Green’s function (Guenther & Lee 1996):

b0 = 1
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with r2 = (x � x̃)2 + B(z � z̃)2. The Green’s function is ln[r] in an unbounded domain,
and the combination ln[r2(x̃, z̃)] � ln[r2(x̃, �z̃)] satisfies the boundary condition of
b0 = 0 at z = 0 through the use of an image point above the z = 0 surface. In this
leading-order, constant-N limit, the only parameters are B and �, both here and in
the diagnostic formulas (4.2) for � 0 and (4.6) for v0. We evaluate (4.7) by numerical
quadrature using second-order discretization.

The static stability constraint (3.11) sets a limit on the minimum allowable
stratification. For example, with constant stratification and the frontal flow defined
in (4.8) without any wave adjustment, this lower limit is B > p

⇡/2R. This limitation
on the stratification, frontal flow, and wave adjustment formally does not apply at
leading order as R, ✏ ! 0, but for finite parameter values and a given frontal flow
it will limit both the minimum N2 and a wave-response amplitude consistent with
conservative adjustment.

4.1.1. Front

We define a simple initial frontal flow and balanced buoyancy anomaly by

v0(x, z) = e�x2+z, b0(x, z) =
p
⇡

2
erf[x]ez. (4.8)

This is a step in b0 towards lighter water near the surface for x > 0 and a positive,
surface-trapped jet in v0 (figure 2). The maximum velocity is equal to one at (0, 0),
and the maximum b0 is

p
⇡/2 = 0.89 at (1, 0); v0 is even in x, and b0 is odd.

With this symmetry the evaluation of (4.7) can be shortened by restricting the
x̃ integration to the positive half-line and replacing the logarithmic argument with
r2(x̃, z̃)r2(�x̃, z̃)r2(x̃, �z̃)r2(�x̃, �z̃).

Without loss of generality because of the sign-symmetry of Ss in (4.5) and (4.6),
we define the Stokes drift with a positive down-front component (vs > 0). The Stokes
shear profile is taken to be

Ss(z) = e�z. (4.9)

This shape corresponds to a monochromatic surface wave with dimensional wavelength
4⇡hs, and it is less surface-intensified than the Stokes drift of a realistic wave spectrum
(Webb & Fox-Kemper 2011). The sign of the adjustment fields would switch with a
change in the sign of vs and Ss. This formula implies that in defining ✏ we choose
the Stokes velocity scale Vs in (3.3) as equal to the surface value of the along-axis
component of Stokes drift vs. As remarked just above (2.6), the cross-axis Stokes
component us simply induces an anti-Stokes flow u during the adjustment. If the
gravity wave field is perpendicular to the initial flow, then the associated vortex force
is zero; the Stokes Coriolis force is cancelled by the anti-Stokes flow u0 = �us; and
v0 = b0 = 0 after the adjustment, hence v = v0 and b = b0.

A frontal solution is shown in figure 3 for B = 1 and � = 2 and constant
stratification (N2 = 1). The adjustment in b0 is a positive monopole centred on the

Because Q1 = Q0 we can eliminate the two. Recalling that (v0, b0) obey the waveless balance
conditions, the perturbation fields satisfy
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MF write it in terms of buoyancy instead, which means we take another z-derivative to get
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This is not yet confirmed, just copied from (4.5) in MF.

7 Implications and illustrations

MF examine two sample flows with constant N : a front and a “filament”. For all examples
they use the Stokes drift profile
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= e�z . (55)

8 Sanity checks

Depth of Stokes drift field for ordinary waves? Buoyancy frequency in the (upper) mixed
layer? What does it mean that we know waves are always present? I suppose we should ask
Sean.

9 Energy conservation

We found that the wave modified quasigeostrophic potential vorticity takes the form
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where we have corrected a rogue factor of f . To obtain energy conservation we take pQ
t

and
integrate over the domain. The final two terms can be combined by appropriate application
of integration by parts, and we find
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the boundary value problem (4.5) is a two-dimensional Poisson equation with a
homogeneous Dirichlet boundary condition. The solution for this in a lower half-plane
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with r2 = (x � x̃)2 + B(z � z̃)2. The Green’s function is ln[r] in an unbounded domain,
and the combination ln[r2(x̃, z̃)] � ln[r2(x̃, �z̃)] satisfies the boundary condition of
b0 = 0 at z = 0 through the use of an image point above the z = 0 surface. In this
leading-order, constant-N limit, the only parameters are B and �, both here and in
the diagnostic formulas (4.2) for � 0 and (4.6) for v0. We evaluate (4.7) by numerical
quadrature using second-order discretization.

The static stability constraint (3.11) sets a limit on the minimum allowable
stratification. For example, with constant stratification and the frontal flow defined
in (4.8) without any wave adjustment, this lower limit is B > p

⇡/2R. This limitation
on the stratification, frontal flow, and wave adjustment formally does not apply at
leading order as R, ✏ ! 0, but for finite parameter values and a given frontal flow
it will limit both the minimum N2 and a wave-response amplitude consistent with
conservative adjustment.

4.1.1. Front

We define a simple initial frontal flow and balanced buoyancy anomaly by

v0(x, z) = e�x2+z, b0(x, z) =
p
⇡

2
erf[x]ez. (4.8)

This is a step in b0 towards lighter water near the surface for x > 0 and a positive,
surface-trapped jet in v0 (figure 2). The maximum velocity is equal to one at (0, 0),
and the maximum b0 is

p
⇡/2 = 0.89 at (1, 0); v0 is even in x, and b0 is odd.

With this symmetry the evaluation of (4.7) can be shortened by restricting the
x̃ integration to the positive half-line and replacing the logarithmic argument with
r2(x̃, z̃)r2(�x̃, z̃)r2(x̃, �z̃)r2(�x̃, �z̃).

Without loss of generality because of the sign-symmetry of Ss in (4.5) and (4.6),
we define the Stokes drift with a positive down-front component (vs > 0). The Stokes
shear profile is taken to be

Ss(z) = e�z. (4.9)

This shape corresponds to a monochromatic surface wave with dimensional wavelength
4⇡hs, and it is less surface-intensified than the Stokes drift of a realistic wave spectrum
(Webb & Fox-Kemper 2011). The sign of the adjustment fields would switch with a
change in the sign of vs and Ss. This formula implies that in defining ✏ we choose
the Stokes velocity scale Vs in (3.3) as equal to the surface value of the along-axis
component of Stokes drift vs. As remarked just above (2.6), the cross-axis Stokes
component us simply induces an anti-Stokes flow u during the adjustment. If the
gravity wave field is perpendicular to the initial flow, then the associated vortex force
is zero; the Stokes Coriolis force is cancelled by the anti-Stokes flow u0 = �us; and
v0 = b0 = 0 after the adjustment, hence v = v0 and b = b0.

A frontal solution is shown in figure 3 for B = 1 and � = 2 and constant
stratification (N2 = 1). The adjustment in b0 is a positive monopole centred on the
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FIGURE 3. Wave-adjustment fields for the front (4.8) with B = 1 and � = 2 and constant N:
(a) b0(x, z); (b) v0(x, z); (c) � 0(x, z). The fields are normalized by their extreme magnitudes
(i.e. 0.21, 0.12, and 0.25, respectively) and contoured with an interval of 0.1 straddling zero.
Positive and negative contours are solid and dashed, respectively. The along-front Stokes drift
is directed toward positive y. All signs reverse if the along-front Stokes drift is reversed.

the wave-adjusted buoyancy peaks near z = 1/�, and it decays slowly below, as does
the wave-adjusted velocity. The pattern in b0 relates to the vertical displacement ⇣ 0
as buoyancy conservation of the mean stratification b(z), as expressed in (4.1); the
displacement contributions from b0(x, z) would arise at O(R).

Where the right-side forcing is small, the homogeneous b0 and v0 solutions of the
left-side elliptic operator (4.5) that decay to zero in the far field have the form of
r�n times either cos[n✓ ] or sin[n✓ ], where r and ✓ are cylindrical coordinates in the
(x,B1/2z) plane. For the frontal flow, as can be derived by expanding the logarithmic
argument in (4.7) for large r, the leading-order solutions vary as the n = 1 solution,

b0 ⇠ sin[✓ ]
r

= B1/2z

r2
, v0 ⇠ cos[✓ ]

r
= x

r2
. (4.10)
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(a) b0(x, z); (b) v0(x, z); (c) � 0(x, z). The fields are normalized by their extreme magnitudes
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is directed toward positive y. All signs reverse if the along-front Stokes drift is reversed.
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the wave-adjusted velocity. The pattern in b0 relates to the vertical displacement ⇣ 0
as buoyancy conservation of the mean stratification b(z), as expressed in (4.1); the
displacement contributions from b0(x, z) would arise at O(R).

Where the right-side forcing is small, the homogeneous b0 and v0 solutions of the
left-side elliptic operator (4.5) that decay to zero in the far field have the form of
r�n times either cos[n✓ ] or sin[n✓ ], where r and ✓ are cylindrical coordinates in the
(x,B1/2z) plane. For the frontal flow, as can be derived by expanding the logarithmic
argument in (4.7) for large r, the leading-order solutions vary as the n = 1 solution,
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the wave-adjusted buoyancy peaks near z = 1/�, and it decays slowly below, as does
the wave-adjusted velocity. The pattern in b0 relates to the vertical displacement ⇣ 0
as buoyancy conservation of the mean stratification b(z), as expressed in (4.1); the
displacement contributions from b0(x, z) would arise at O(R).

Where the right-side forcing is small, the homogeneous b0 and v0 solutions of the
left-side elliptic operator (4.5) that decay to zero in the far field have the form of
r�n times either cos[n✓ ] or sin[n✓ ], where r and ✓ are cylindrical coordinates in the
(x,B1/2z) plane. For the frontal flow, as can be derived by expanding the logarithmic
argument in (4.7) for large r, the leading-order solutions vary as the n = 1 solution,

b0 ⇠ sin[✓ ]
r

= B1/2z

r2
, v0 ⇠ cos[✓ ]

r
= x
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wave-averaging effectively introduces an inhomogeneous 
boundary condition into the elliptic problem.

Conservation of buoyancy...

b†
0

(x
0

, z
0

) = b†(x, z) + ⇠b†
x

+ ⇣b†
z

(x, z) + · · · , (59)

= b̄(x, z) + b
0

+ ⇣N2 +O(R2) (60)

okay...
q = fN2 +N2v
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balance conditions...

v0 = p0
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and
b = b0
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+ ⇣N2 +O(R2) . (70)
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✓
fvS
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(71)

R ⌧ 1 (72)

6 A perturbed final state

For whichever reason, McWilliams and Fox-Kemper decide they don’t want to solve this
equation, and instead make the assumption that the final state is an O(✏) perturbation on
the initial state. This means that we essentially take an intermediate limit where

R ⌧ vS
z

b
x

fb
z

⌧ 1 . (73)
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FIGURE 4. Initial cold filamentary fields b0(x, z) and v0(x, z) from (4.11). The contours have
an interval of 0.1 and straddle zero. Positive and negative contours are solid and dashed,
respectively.

dominant n = 2 structure of

b0 ⇠ sin[2✓ ]
r2

= 2B1/2xz

r4
, v0 ⇠ cos[2✓ ]

r
= x2 � Bz2

r4
, (4.12)

i.e. ⇠1/r2 as r ! 1. Even so, the decay is much slower than the decay of Ss or the
initial filament fields. The B and � dependences for the filament are similar to those
for the front (see also § 4.3).

4.2. Variable N2(z)

We choose canonical upper-ocean stratification as a simple, monotonic profile for a
nearly mixed layer above a broad pycnocline:

N2(z) = Bm + B � Bm

2
(1 � tanh[�m(z + hm)]). (4.13)

Within the mixed layer, N2 ⇡ Bm, and at depth N2 ! B. For a mixed layer above a
sharp transition to the pycnocline at z ⇡ �hm, we take 0 6 Bm ⌧ B and �mhm � 1 for
a sharp transition between the mixed layer and pycnocline.

The PDE system (3.4) and its boundary conditions are solved numerically in
the limit of ✏R ! 0 by expanding in Chebyshev basis functions algebraically
mapped from x0 2 [�1, 1] to x 2 [�1, 1] using basis functions TBn(x) and from
z0 2 [�1, 1] to z 2 [�1, 0] using TLn(z), as laid out by Boyd (2000). A similar
infinite half-plane approach was used for atmospheric linear instability calculations
by Lin & Pierrehumbert (1988). This representation is well suited to localized
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FIGURE 5. Wave-adjustment fields for the cold filament (4.11) with B = 1 and � = 2
and constant N: (a) b0(x, z); (b) v0(x, z); (c) � 0(x, z). The fields are normalized by their
extreme magnitudes (i.e. 0.21, 0.24, and 0.24, respectively) and contoured with interval of 0.1
straddling zero. Positive and negative contours are solid and dashed, respectively, when the
along-filament Stokes drift is directed toward positive y.

functions that vanish in the far field. The mapping functions are x = Lxx0/
p

1 � x02
and z = �Lz(1 + z0)/(1 � z0) and the collocation points are at x0

i = cos(⇡i/M)
and z0

j = cos(⇡j/N), with their respective truncation numbers of M and N ranging
from 30 to 60 depending on the parameter choices. Results presented here are
qualitatively robust to doubling the truncation numbers and varying the mapping
function coefficients (Lx = 2, Lz = 4) by a factor of 3. The primary advantages to this
approach are: (i) spectral accuracy in differentiation; (ii) high collocation resolution
near the upper boundary where the Stokes drift varies rapidly; (iii) high collocation
resolution near the centre of the front or filament feature; and (iv) bounded behaviour
at infinity. The stratification N2(z) and the pseudo-spectral collocation of right-side
‘forcing’ terms are evaluated on the Gauss–Lobatto ‘endpoints’ grid. Some care is

initial velocity velocity perturbation
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dominant n = 2 structure of
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= 2B1/2xz
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= x2 � Bz2

r4
, (4.12)

i.e. ⇠1/r2 as r ! 1. Even so, the decay is much slower than the decay of Ss or the
initial filament fields. The B and � dependences for the filament are similar to those
for the front (see also § 4.3).

4.2. Variable N2(z)

We choose canonical upper-ocean stratification as a simple, monotonic profile for a
nearly mixed layer above a broad pycnocline:

N2(z) = Bm + B � Bm

2
(1 � tanh[�m(z + hm)]). (4.13)

Within the mixed layer, N2 ⇡ Bm, and at depth N2 ! B. For a mixed layer above a
sharp transition to the pycnocline at z ⇡ �hm, we take 0 6 Bm ⌧ B and �mhm � 1 for
a sharp transition between the mixed layer and pycnocline.

The PDE system (3.4) and its boundary conditions are solved numerically in
the limit of ✏R ! 0 by expanding in Chebyshev basis functions algebraically
mapped from x0 2 [�1, 1] to x 2 [�1, 1] using basis functions TBn(x) and from
z0 2 [�1, 1] to z 2 [�1, 0] using TLn(z), as laid out by Boyd (2000). A similar
infinite half-plane approach was used for atmospheric linear instability calculations
by Lin & Pierrehumbert (1988). This representation is well suited to localized
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FIGURE 6. Wave-adjustment fields for the front (4.8) with � = 2 and a mixed layer N(z)
from (4.13) with Bm = 0.01, hm = 1.7, and �m = 3 at leading order in (✏, R): (a) b0(x, z);
(b) v0(x, z). The fields are normalized by their extreme magnitudes (i.e. 9.1 and 7.1,
respectively) and contoured with an interval of 0.1 straddling zero. Positive and negative
contours are solid and dashed, respectively, when the along-filament Stokes drift is directed
toward positive y.

required in evaluating first-order relations, such as (4.6), because two endpoints in x
are located at infinity. For this reason, first-order equation solutions must be performed
in (x0, z0) and then transformed to (x, z) by a change of variables. The method in § 5
employs the same rescaled coordinates using an iterative method when ✏ 6= 0.

Frontal and filamentary adjustment solutions to the leading-order approximation to
(3.4) with variable N(z) show a remarkable degree of pattern similarity to the constant-
N solutions in § 4.1, even across a wide range of the stratification profile parameters
in (4.13). N2(z) deforms and modulates the adjustment patterns but essentially does not
change their gross shape; e.g. b0(x, z) is a positive, subsurface monopole for a front
with either a uniform or mixed-layer stratification profile. In general terms, a small
mixed-layer value of Bm widens and deepens the adjustment response, analogous to
the overall B dependence for constant N. This is a modest effect for hm < 1 (a shallow
mixed layer compared to frontal depth scale), but it becomes quite strong for hm > 1
and Bm ⌧ 1, i.e. fronts shallower than the mixed layer but wider than the mixed
layer deformation radius. The perturbation fields (b0, v0) are wider with a mixed layer
(figures 6–7) than with the interior stratification uniform up to the surface (figures 3
and 5). In both fronts and filaments, v0(x, z) is strong with weak vertical shear all
across the mixed layer, and b0(x, z) amplifies from zero at the surface to a strong
response within the transition zone between the mixed layer and pycnocline (figures 6
and 7 for Bm = 0.01 and hm = 1.7). In an initial value problem, where waves arrive
at a front suddenly and then adjustment follows over the next inertial periods, this
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The generalization of the elliptic boundary-value problem (4.5) for b0 is

@2
x b0 + @2

z

✓
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= F 0 + @z

✓
✏Q0
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0
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✓
S2
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✓
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◆
+ (@zSs)

✓
@xb0

N2

◆
+ ✏S2

s

✓
@2

x b0

N2

◆◆
, (5.2)

with homogeneous boundary conditions for b0 because T 0(x, 0) ⇡ 0 in (3.10). This
is a linear system for b0, which could in principle be solved directly. Instead,
we solve it iteratively as Lb0n = R[b0n�1; ✏], n = 2, 3, . . . , starting with b01 = 0.
Iteration convergence is aided for finite ✏ by additionally incrementing the value
of ✏k = k1✏ in the right-side evaluation, for k = 1, . . . , K and 1✏ = ✏/K. For
larger values of ✏, convergence is further aided by relaxation at each iterative step;
i.e. b0n  (1 � ↵)b0n + ↵b0n�1 for ↵ > 0. For very large values of ✏, the iteration
does not converge. An advantage of iteration is that the same elliptic solvers in
§§ 4.1 and 4.2 can be applied to the inversion of L. As before, we consider
Ss > 0, but in this case the sign symmetry with respect to Ss is more complicated
because the right-hand side of (5.2) is nonlinear in Stokes shear. The finite-✏ sign
symmetry is (x, z, � , b0, v0, v0, Ss)$ (�x, z, � ,�b0, v0, v0,�Ss), where � is defined
following (5.5). This symmetry also holds for ✏ = 0, along with the simpler symmetry
(b0, v0, v0, Ss)$ (�b0,�v0, v0,�Ss) discussed in § 4.

The generalization of the v0 evaluation (4.6) is

v0 =�
Z x

�1


@z

✓
b0

N2

◆
+ Ss

N2
@zv0 + ✏Ss

@xb0

N2

�
dx0. (5.3)

The parcel-displacement evaluations (4.1)–(4.2) are unchanged. Thus, the fields
v0, ⇣ 0, ⇠ 0 and � 0 can be evaluated explicitly once the solution for b0 is available.

Finite-✏ wave-adjustment solutions are rather similar to the leading-order solutions
in § 4. They are illustrated in figures 12 and 13 for a front and filament, respectively.
There is remarkably little change in the peak amplitudes of b0 and v0, even for ✏
as large as 2, but their patterns are deformed by tilting leftward toward negative
x while descending from the surface in comparison with the adjustment fields for
✏ = 0 in figures 6–7. Similar behaviour is found for the finite-✏ effect with constant
N (not shown). Notice that finite ✏ breaks the simple x-symmetry of wave-adjusted
fronts and filaments, quite substantially in these examples. Because ✏(b0, v0) are
large compared to (b0, v0), the wave-adjusted states look very different from the
geostrophic–hydrostatic initial states.

We can explain the tilt by rewriting (5.2)–(5.3) as

@2
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2

✓
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2
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(5.4)

v0 =�
Z x

�1


(@z + ✏Ss@x)

✓
b0

N2

◆
+ Ss

N2
@xb0

�
dx0. (5.5)

Notice that this system only has the derivatives @x and @� = @z + ✏Ss(z)@x. In this
regard (5.5) is isomorphic to the ✏ = 0 system in § 4 except that the derivatives
are transformed from the orthogonal (x, z) coordinates to the non-orthogonal (x, � ).
The isomorphism is not complete, however, because the right-side field b0 remains a
function of (x, z), rather than (x, � ). Nevertheless, a line passing through the origin
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with homogeneous boundary conditions for b0 because T 0(x, 0) ⇡ 0 in (3.10). This
is a linear system for b0, which could in principle be solved directly. Instead,
we solve it iteratively as Lb0n = R[b0n�1; ✏], n = 2, 3, . . . , starting with b01 = 0.
Iteration convergence is aided for finite ✏ by additionally incrementing the value
of ✏k = k1✏ in the right-side evaluation, for k = 1, . . . , K and 1✏ = ✏/K. For
larger values of ✏, convergence is further aided by relaxation at each iterative step;
i.e. b0n  (1 � ↵)b0n + ↵b0n�1 for ↵ > 0. For very large values of ✏, the iteration
does not converge. An advantage of iteration is that the same elliptic solvers in
§§ 4.1 and 4.2 can be applied to the inversion of L. As before, we consider
Ss > 0, but in this case the sign symmetry with respect to Ss is more complicated
because the right-hand side of (5.2) is nonlinear in Stokes shear. The finite-✏ sign
symmetry is (x, z, � , b0, v0, v0, Ss)$ (�x, z, � ,�b0, v0, v0,�Ss), where � is defined
following (5.5). This symmetry also holds for ✏ = 0, along with the simpler symmetry
(b0, v0, v0, Ss)$ (�b0,�v0, v0,�Ss) discussed in § 4.

The generalization of the v0 evaluation (4.6) is
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The parcel-displacement evaluations (4.1)–(4.2) are unchanged. Thus, the fields
v0, ⇣ 0, ⇠ 0 and � 0 can be evaluated explicitly once the solution for b0 is available.

Finite-✏ wave-adjustment solutions are rather similar to the leading-order solutions
in § 4. They are illustrated in figures 12 and 13 for a front and filament, respectively.
There is remarkably little change in the peak amplitudes of b0 and v0, even for ✏
as large as 2, but their patterns are deformed by tilting leftward toward negative
x while descending from the surface in comparison with the adjustment fields for
✏ = 0 in figures 6–7. Similar behaviour is found for the finite-✏ effect with constant
N (not shown). Notice that finite ✏ breaks the simple x-symmetry of wave-adjusted
fronts and filaments, quite substantially in these examples. Because ✏(b0, v0) are
large compared to (b0, v0), the wave-adjusted states look very different from the
geostrophic–hydrostatic initial states.

We can explain the tilt by rewriting (5.2)–(5.3) as
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Notice that this system only has the derivatives @x and @� = @z + ✏Ss(z)@x. In this
regard (5.5) is isomorphic to the ✏ = 0 system in § 4 except that the derivatives
are transformed from the orthogonal (x, z) coordinates to the non-orthogonal (x, � ).
The isomorphism is not complete, however, because the right-side field b0 remains a
function of (x, z), rather than (x, � ). Nevertheless, a line passing through the origin
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FIGURE 13. Wave-adjustment fields for the cold filament (4.11) with the same parameters
and stratification as in figure 7 except for ✏ = 2. The fields are normalized by their extreme
magnitudes (i.e. 4.1 and 11.2, respectively) and contoured as before. Stokes drift is directed
toward positive y. The dark solid line is the � coordinate axis passing through the origin;
see (5.7).

complete anti-Stokes flow would result. The other part is a localized adjustment in
the neighbourhood of a front or filament that has the opposite horizontal symmetry
from the initial fields (to leading order in ✏) and thus induces a change of shape
in the buoyancy and flow fields. The local wave-adjustment magnitude is relatively
small for a uniformly stratified ocean, but it can be quite large for a mixed-layer
stratification somewhat deeper than the vertical scale of the initial fields (i.e. the
sweet-spot condition). For typical Stokes drift profiles that are stronger than the initial
flow and have a shallower vertical scale, the parameter ✏ is not necessarily small,
and fronts and filaments lose their horizontal symmetry during adjustment. The wave
adjustment problem is posed for an arbitrary Rossby number R, but solutions are
obtained here only for R ⌧ 1, i.e. more representative of the mesoscale and larger
submesoscale than of the strongest submesoscale fronts and filaments.

In the ocean, fronts and filaments are more likely to be found in an already
adjusted state than actively undergoing adjustment to suddenly arriving surface waves
(which would be completed in a short interval of order f �1 ⇡ h). This means that
the before-and-after shape comparisons exploited here will usually not be available
from measurements. Rather, an observational validation of wave-balanced adjustment
is best done by diagnosing the force balances in the local buoyancy and flow fields:
significant Stokes vortex and Coriolis forces within the thin Stokes layer and thermal
wind balance below. Field detection is further complicated by the usual presence of
active boundary layer turbulence (e.g. a wind-driven Ekman layer), so non-conservative
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magnitudes (i.e. 4.1 and 11.2, respectively) and contoured as before. Stokes drift is directed
toward positive y. The dark solid line is the � coordinate axis passing through the origin;
see (5.7).

complete anti-Stokes flow would result. The other part is a localized adjustment in
the neighbourhood of a front or filament that has the opposite horizontal symmetry
from the initial fields (to leading order in ✏) and thus induces a change of shape
in the buoyancy and flow fields. The local wave-adjustment magnitude is relatively
small for a uniformly stratified ocean, but it can be quite large for a mixed-layer
stratification somewhat deeper than the vertical scale of the initial fields (i.e. the
sweet-spot condition). For typical Stokes drift profiles that are stronger than the initial
flow and have a shallower vertical scale, the parameter ✏ is not necessarily small,
and fronts and filaments lose their horizontal symmetry during adjustment. The wave
adjustment problem is posed for an arbitrary Rossby number R, but solutions are
obtained here only for R ⌧ 1, i.e. more representative of the mesoscale and larger
submesoscale than of the strongest submesoscale fronts and filaments.

In the ocean, fronts and filaments are more likely to be found in an already
adjusted state than actively undergoing adjustment to suddenly arriving surface waves
(which would be completed in a short interval of order f �1 ⇡ h). This means that
the before-and-after shape comparisons exploited here will usually not be available
from measurements. Rather, an observational validation of wave-balanced adjustment
is best done by diagnosing the force balances in the local buoyancy and flow fields:
significant Stokes vortex and Coriolis forces within the thin Stokes layer and thermal
wind balance below. Field detection is further complicated by the usual presence of
active boundary layer turbulence (e.g. a wind-driven Ekman layer), so non-conservative
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FIGURE 6. Wave-adjustment fields for the front (4.8) with � = 2 and a mixed layer N(z)
from (4.13) with Bm = 0.01, hm = 1.7, and �m = 3 at leading order in (✏, R): (a) b0(x, z);
(b) v0(x, z). The fields are normalized by their extreme magnitudes (i.e. 9.1 and 7.1,
respectively) and contoured with an interval of 0.1 straddling zero. Positive and negative
contours are solid and dashed, respectively, when the along-filament Stokes drift is directed
toward positive y.

required in evaluating first-order relations, such as (4.6), because two endpoints in x
are located at infinity. For this reason, first-order equation solutions must be performed
in (x0, z0) and then transformed to (x, z) by a change of variables. The method in § 5
employs the same rescaled coordinates using an iterative method when ✏ 6= 0.

Frontal and filamentary adjustment solutions to the leading-order approximation to
(3.4) with variable N(z) show a remarkable degree of pattern similarity to the constant-
N solutions in § 4.1, even across a wide range of the stratification profile parameters
in (4.13). N2(z) deforms and modulates the adjustment patterns but essentially does not
change their gross shape; e.g. b0(x, z) is a positive, subsurface monopole for a front
with either a uniform or mixed-layer stratification profile. In general terms, a small
mixed-layer value of Bm widens and deepens the adjustment response, analogous to
the overall B dependence for constant N. This is a modest effect for hm < 1 (a shallow
mixed layer compared to frontal depth scale), but it becomes quite strong for hm > 1
and Bm ⌧ 1, i.e. fronts shallower than the mixed layer but wider than the mixed
layer deformation radius. The perturbation fields (b0, v0) are wider with a mixed layer
(figures 6–7) than with the interior stratification uniform up to the surface (figures 3
and 5). In both fronts and filaments, v0(x, z) is strong with weak vertical shear all
across the mixed layer, and b0(x, z) amplifies from zero at the surface to a strong
response within the transition zone between the mixed layer and pycnocline (figures 6
and 7 for Bm = 0.01 and hm = 1.7). In an initial value problem, where waves arrive
at a front suddenly and then adjustment follows over the next inertial periods, this

buoyancy velocity
drift layer

“mixed layer”

✏ ⌧ 1

✏ = 2
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FIGURE 3. Wave-adjustment fields for the front (4.8) with B = 1 and � = 2 and constant N:
(a) b0(x, z); (b) v0(x, z); (c) � 0(x, z). The fields are normalized by their extreme magnitudes
(i.e. 0.21, 0.12, and 0.25, respectively) and contoured with an interval of 0.1 straddling zero.
Positive and negative contours are solid and dashed, respectively. The along-front Stokes drift
is directed toward positive y. All signs reverse if the along-front Stokes drift is reversed.

the wave-adjusted buoyancy peaks near z = 1/�, and it decays slowly below, as does
the wave-adjusted velocity. The pattern in b0 relates to the vertical displacement ⇣ 0
as buoyancy conservation of the mean stratification b(z), as expressed in (4.1); the
displacement contributions from b0(x, z) would arise at O(R).

Where the right-side forcing is small, the homogeneous b0 and v0 solutions of the
left-side elliptic operator (4.5) that decay to zero in the far field have the form of
r�n times either cos[n✓ ] or sin[n✓ ], where r and ✓ are cylindrical coordinates in the
(x,B1/2z) plane. For the frontal flow, as can be derived by expanding the logarithmic
argument in (4.7) for large r, the leading-order solutions vary as the n = 1 solution,

b0 ⇠ sin[✓ ]
r

= B1/2z

r2
, v0 ⇠ cos[✓ ]

r
= x

r2
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f!1 and L k Uf!1. In the weakly stratified ML, Ri "
O(1) selects Ro " O(1) and small (L # Uf!1) and fast
(T # f!1) ageostrophic MLIs. For these modes the QG
approximation is inappropriate. Ageostrophic effects
increase the growth rates and the spatial scales of the
instabilities compared to QG approximation to MLIs,
with the fastest-growing-mode scales enlarging as
L/LQG $ %1 & Ri!1 (Stone 1966, 1971).

b. Shallow baroclinic instabilities and ML
restratification

The literature on shallow baroclinic instabilities in
the ML is vast, but largely ignores their effect on ML

restratification (Samelson 1993; Barth 1994; Young and
Chen 1995; Beron-Vera and Ripa 1997; Spall 1997).
Notable exceptions are the works of Jones and Mar-
shall (1997) and Haine and Marshall (1998) that focus
on the role of baroclinic instability in restratifying the
water column after deep convection at high latitudes.
However, the high-latitudes convective chimneys they
consider span a large fraction of the water column and
there is no clear separation between submesoscale ML
dynamics and interior mesoscale dynamics.

The literature on ML restratification, on the other
hand, largely ignores the role of baroclinic instabilities.
Ou (1984) and Tandon and Garrett (1994, 1995) study

FIG. 1. Potential density along a straight section between (32.5°N, 122°W) and (35°N, 132°W), i.e., between the California Current
and the middle of the subtropical Pacific gyre, as measured by a sawtooth SeaSoar tow. Longitude is shown in the lower x axis and the
corresponding along-track distance in km is shown at the top of the figure. Data are averaged in bins of 3 km in the horizontal by 8
m in the vertical and contoured every 0.2 kg m!3. An ML of weak stratification is evident in the upper 100 m. The ML base is marked
by a region of enhanced stratification above the permanent thermocline. The ML is also characterized by lateral density gradients. The
data were collected as part of an upper-ocean study of the North Pacific (Ferrari and Rudnick 2000).
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FIGURE 3. Wave-adjustment fields for the front (4.8) with B = 1 and � = 2 and constant N:
(a) b0(x, z); (b) v0(x, z); (c) � 0(x, z). The fields are normalized by their extreme magnitudes
(i.e. 0.21, 0.12, and 0.25, respectively) and contoured with an interval of 0.1 straddling zero.
Positive and negative contours are solid and dashed, respectively. The along-front Stokes drift
is directed toward positive y. All signs reverse if the along-front Stokes drift is reversed.

the wave-adjusted buoyancy peaks near z = 1/�, and it decays slowly below, as does
the wave-adjusted velocity. The pattern in b0 relates to the vertical displacement ⇣ 0
as buoyancy conservation of the mean stratification b(z), as expressed in (4.1); the
displacement contributions from b0(x, z) would arise at O(R).

Where the right-side forcing is small, the homogeneous b0 and v0 solutions of the
left-side elliptic operator (4.5) that decay to zero in the far field have the form of
r�n times either cos[n✓ ] or sin[n✓ ], where r and ✓ are cylindrical coordinates in the
(x,B1/2z) plane. For the frontal flow, as can be derived by expanding the logarithmic
argument in (4.7) for large r, the leading-order solutions vary as the n = 1 solution,

b0 ⇠ sin[✓ ]
r

= B1/2z

r2
, v0 ⇠ cos[✓ ]

r
= x

r2
. (4.10)
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FIGURE 3. Wave-adjustment fields for the front (4.8) with B = 1 and � = 2 and constant N:
(a) b0(x, z); (b) v0(x, z); (c) � 0(x, z). The fields are normalized by their extreme magnitudes
(i.e. 0.21, 0.12, and 0.25, respectively) and contoured with an interval of 0.1 straddling zero.
Positive and negative contours are solid and dashed, respectively. The along-front Stokes drift
is directed toward positive y. All signs reverse if the along-front Stokes drift is reversed.

the wave-adjusted buoyancy peaks near z = 1/�, and it decays slowly below, as does
the wave-adjusted velocity. The pattern in b0 relates to the vertical displacement ⇣ 0
as buoyancy conservation of the mean stratification b(z), as expressed in (4.1); the
displacement contributions from b0(x, z) would arise at O(R).

Where the right-side forcing is small, the homogeneous b0 and v0 solutions of the
left-side elliptic operator (4.5) that decay to zero in the far field have the form of
r�n times either cos[n✓ ] or sin[n✓ ], where r and ✓ are cylindrical coordinates in the
(x,B1/2z) plane. For the frontal flow, as can be derived by expanding the logarithmic
argument in (4.7) for large r, the leading-order solutions vary as the n = 1 solution,
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FIGURE 4. Initial cold filamentary fields b0(x, z) and v0(x, z) from (4.11). The contours have
an interval of 0.1 and straddle zero. Positive and negative contours are solid and dashed,
respectively.

dominant n = 2 structure of

b0 ⇠ sin[2✓ ]
r2

= 2B1/2xz

r4
, v0 ⇠ cos[2✓ ]

r
= x2 � Bz2

r4
, (4.12)

i.e. ⇠1/r2 as r ! 1. Even so, the decay is much slower than the decay of Ss or the
initial filament fields. The B and � dependences for the filament are similar to those
for the front (see also § 4.3).

4.2. Variable N2(z)

We choose canonical upper-ocean stratification as a simple, monotonic profile for a
nearly mixed layer above a broad pycnocline:

N2(z) = Bm + B � Bm

2
(1 � tanh[�m(z + hm)]). (4.13)

Within the mixed layer, N2 ⇡ Bm, and at depth N2 ! B. For a mixed layer above a
sharp transition to the pycnocline at z ⇡ �hm, we take 0 6 Bm ⌧ B and �mhm � 1 for
a sharp transition between the mixed layer and pycnocline.

The PDE system (3.4) and its boundary conditions are solved numerically in
the limit of ✏R ! 0 by expanding in Chebyshev basis functions algebraically
mapped from x0 2 [�1, 1] to x 2 [�1, 1] using basis functions TBn(x) and from
z0 2 [�1, 1] to z 2 [�1, 0] using TLn(z), as laid out by Boyd (2000). A similar
infinite half-plane approach was used for atmospheric linear instability calculations
by Lin & Pierrehumbert (1988). This representation is well suited to localized
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f!1 and L k Uf!1. In the weakly stratified ML, Ri "
O(1) selects Ro " O(1) and small (L # Uf!1) and fast
(T # f!1) ageostrophic MLIs. For these modes the QG
approximation is inappropriate. Ageostrophic effects
increase the growth rates and the spatial scales of the
instabilities compared to QG approximation to MLIs,
with the fastest-growing-mode scales enlarging as
L/LQG $ %1 & Ri!1 (Stone 1966, 1971).

b. Shallow baroclinic instabilities and ML
restratification

The literature on shallow baroclinic instabilities in
the ML is vast, but largely ignores their effect on ML

restratification (Samelson 1993; Barth 1994; Young and
Chen 1995; Beron-Vera and Ripa 1997; Spall 1997).
Notable exceptions are the works of Jones and Mar-
shall (1997) and Haine and Marshall (1998) that focus
on the role of baroclinic instability in restratifying the
water column after deep convection at high latitudes.
However, the high-latitudes convective chimneys they
consider span a large fraction of the water column and
there is no clear separation between submesoscale ML
dynamics and interior mesoscale dynamics.

The literature on ML restratification, on the other
hand, largely ignores the role of baroclinic instabilities.
Ou (1984) and Tandon and Garrett (1994, 1995) study

FIG. 1. Potential density along a straight section between (32.5°N, 122°W) and (35°N, 132°W), i.e., between the California Current
and the middle of the subtropical Pacific gyre, as measured by a sawtooth SeaSoar tow. Longitude is shown in the lower x axis and the
corresponding along-track distance in km is shown at the top of the figure. Data are averaged in bins of 3 km in the horizontal by 8
m in the vertical and contoured every 0.2 kg m!3. An ML of weak stratification is evident in the upper 100 m. The ML base is marked
by a region of enhanced stratification above the permanent thermocline. The ML is also characterized by lateral density gradients. The
data were collected as part of an upper-ocean study of the North Pacific (Ferrari and Rudnick 2000).
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approximation is inappropriate. Ageostrophic effects
increase the growth rates and the spatial scales of the
instabilities compared to QG approximation to MLIs,
with the fastest-growing-mode scales enlarging as
L/LQG $ %1 & Ri!1 (Stone 1966, 1971).

b. Shallow baroclinic instabilities and ML
restratification

The literature on shallow baroclinic instabilities in
the ML is vast, but largely ignores their effect on ML

restratification (Samelson 1993; Barth 1994; Young and
Chen 1995; Beron-Vera and Ripa 1997; Spall 1997).
Notable exceptions are the works of Jones and Mar-
shall (1997) and Haine and Marshall (1998) that focus
on the role of baroclinic instability in restratifying the
water column after deep convection at high latitudes.
However, the high-latitudes convective chimneys they
consider span a large fraction of the water column and
there is no clear separation between submesoscale ML
dynamics and interior mesoscale dynamics.

The literature on ML restratification, on the other
hand, largely ignores the role of baroclinic instabilities.
Ou (1984) and Tandon and Garrett (1994, 1995) study

FIG. 1. Potential density along a straight section between (32.5°N, 122°W) and (35°N, 132°W), i.e., between the California Current
and the middle of the subtropical Pacific gyre, as measured by a sawtooth SeaSoar tow. Longitude is shown in the lower x axis and the
corresponding along-track distance in km is shown at the top of the figure. Data are averaged in bins of 3 km in the horizontal by 8
m in the vertical and contoured every 0.2 kg m!3. An ML of weak stratification is evident in the upper 100 m. The ML base is marked
by a region of enhanced stratification above the permanent thermocline. The ML is also characterized by lateral density gradients. The
data were collected as part of an upper-ocean study of the North Pacific (Ferrari and Rudnick 2000).
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McWilliams and Kemper’s conclusions

• waves disturb hydrostatic balance 

• wave-averaged terms contribute to potential 
vorticity balance  

- important for strong, shallow Stokes drift fields 

• effect of the waves resembles 
inhomogeneous boundary condition at 
surface 

• weaker stratification implies deeper response 

• with a mixed layer, response is trapped
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FIGURE 5. Wave-adjustment fields for the cold filament (4.11) with B = 1 and � = 2
and constant N: (a) b0(x, z); (b) v0(x, z); (c) � 0(x, z). The fields are normalized by their
extreme magnitudes (i.e. 0.21, 0.24, and 0.24, respectively) and contoured with interval of 0.1
straddling zero. Positive and negative contours are solid and dashed, respectively, when the
along-filament Stokes drift is directed toward positive y.

functions that vanish in the far field. The mapping functions are x = Lxx0/
p

1 � x02
and z = �Lz(1 + z0)/(1 � z0) and the collocation points are at x0

i = cos(⇡i/M)
and z0

j = cos(⇡j/N), with their respective truncation numbers of M and N ranging
from 30 to 60 depending on the parameter choices. Results presented here are
qualitatively robust to doubling the truncation numbers and varying the mapping
function coefficients (Lx = 2, Lz = 4) by a factor of 3. The primary advantages to this
approach are: (i) spectral accuracy in differentiation; (ii) high collocation resolution
near the upper boundary where the Stokes drift varies rapidly; (iii) high collocation
resolution near the centre of the front or filament feature; and (iv) bounded behaviour
at infinity. The stratification N2(z) and the pseudo-spectral collocation of right-side
‘forcing’ terms are evaluated on the Gauss–Lobatto ‘endpoints’ grid. Some care is
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Now consider a general adjustment problem between two states: initial and final. The initial
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The states have the same PV so that Q1 = Q0. Why don’t McWilliams and Fox-Kemper
proceed from here? I’m not sure. We lose the superscript L’s below because they are onerous.
Consider that the balance conditions are
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This is an elliptic equation with constant coe�cients for p1, the pressure in the adjusted
state. Q1 is the source term and is known by imposing Q0 = Q1, as in ordinary adjustment
problems.

6 A perturbed final state

For whichever reason, McWilliams and Fox-Kemper decide they don’t want to solve this
equation, and instead make the assumption that the final state is an O(✏) perturbation on
the initial state. This means that we essentially take an intermediate limit where
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FIGURE 1. (Colour online) Estimated ratio ✏/R ⇡ (|us ·u|h) /(|u|2hs) governing the relative
importance of Stokes effects versus nonlinearity. Eulerian velocity (u) is taken as the
AVISO weekly satellite geostrophic velocity or �us (for anti-Stokes flow) if |us| > |u|. The
front/filament depth (h) is estimated as the mixed layer depth from the de Boyer Montégut
et al. (2004) climatology. An exponential fit to the Stokes drift of the upper 9 m projected
onto the AVISO geostrophic velocity provides us · u and hs. Stokes drift is taken from the
Wave Watch 3 simulation described in Webb & Fox-Kemper (2011). u,us, and hs are all for
the year 2000, while h is from a climatology of observations over 1961–2008. The year 2000
average of ✏/R is shown.

by neglecting the locally horizontal projection of Earth’s rotation vector; ! = r ⇥ u

is the vorticity; us(z) is the waves’ Lagrangian-mean Stokes-drift profile, and u + us

is the total wave-averaged Lagrangian-mean velocity for waves and currents; z is the
vertical coordinate parallel to gravity and the rotation axis, and ẑ is its unit vector;
the total buoyancy field is b† = �(⇢ � ⇢0)g/⇢0, and ⇡† is a generalized pressure field
that additionally includes the Bernoulli head from averaging over the wave fluctuations,
normalized by a spatially constant mean density ⇢0. These equations can be combined
to yield Lagrangian-advective conservation of Ertel potential vorticity q,

@tq + (u + us) ·rq = 0, q = (f ẑ + !) ·rb†, (2.2)

as a complement to the advective conservation of b† in (2.1).
A well-known and importantly oceanic steady solution of (2.1) is a geostrophic,

hydrostatic, parallel flow, u = v0(x, z)ŷ, with associated ⇡0(x, z) and b0(x, z), when
there are no waves (i.e. us = 0):

f v0 = @x⇡0, @z⇡0 = b0 ) f @zv0 = @xb0. (2.3)

The last relation is derived from the first two and is called thermal wind balance.
Here (x, y, z) and (u, v, w) are Cartesian coordinates and velocities. We assume f is
spatially uniform and oriented in the vertical for simplicity. We further assume that b0

is additive on top of a background stratification profile, b(z) = R
z N2(z0) dz0, where N(z)

is the buoyancy frequency, which is in hydrostatic balance with a mean background
pressure, ⇡(z). Henceforth we denote by b the dynamical buoyancy increment to b in a
decomposition of the total buoyancy, b† = b + b (ditto for ⇡). We restrict our attention
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Now let’s “average” (integrate) over the rapidly varying scale of vS
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The two final terms are the largest. So the “modified” QG is
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Ultimately, we want to put the e↵ect of surface waves into the QG boundary condition.
Notice that the averaged buoyancy is

6 A perturbed final state

For whichever reason, McWilliams and Fox-Kemper decide they don’t want to solve this
equation, and instead make the assumption that the final state is an O(✏) perturbation on
the initial state. This means that we essentially take an intermediate limit where
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If the final state is a small perturbation on the initial state, we can propose the perturbation
fields

b1 = b0 + ✏ b0 , and v1 = v0 + ✏ v0 . (50)

6
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f!1 and L k Uf!1. In the weakly stratified ML, Ri "
O(1) selects Ro " O(1) and small (L # Uf!1) and fast
(T # f!1) ageostrophic MLIs. For these modes the QG
approximation is inappropriate. Ageostrophic effects
increase the growth rates and the spatial scales of the
instabilities compared to QG approximation to MLIs,
with the fastest-growing-mode scales enlarging as
L/LQG $ %1 & Ri!1 (Stone 1966, 1971).

b. Shallow baroclinic instabilities and ML
restratification

The literature on shallow baroclinic instabilities in
the ML is vast, but largely ignores their effect on ML

restratification (Samelson 1993; Barth 1994; Young and
Chen 1995; Beron-Vera and Ripa 1997; Spall 1997).
Notable exceptions are the works of Jones and Mar-
shall (1997) and Haine and Marshall (1998) that focus
on the role of baroclinic instability in restratifying the
water column after deep convection at high latitudes.
However, the high-latitudes convective chimneys they
consider span a large fraction of the water column and
there is no clear separation between submesoscale ML
dynamics and interior mesoscale dynamics.

The literature on ML restratification, on the other
hand, largely ignores the role of baroclinic instabilities.
Ou (1984) and Tandon and Garrett (1994, 1995) study

FIG. 1. Potential density along a straight section between (32.5°N, 122°W) and (35°N, 132°W), i.e., between the California Current
and the middle of the subtropical Pacific gyre, as measured by a sawtooth SeaSoar tow. Longitude is shown in the lower x axis and the
corresponding along-track distance in km is shown at the top of the figure. Data are averaged in bins of 3 km in the horizontal by 8
m in the vertical and contoured every 0.2 kg m!3. An ML of weak stratification is evident in the upper 100 m. The ML base is marked
by a region of enhanced stratification above the permanent thermocline. The ML is also characterized by lateral density gradients. The
data were collected as part of an upper-ocean study of the North Pacific (Ferrari and Rudnick 2000).
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FIGURE 3. Wave-adjustment fields for the front (4.8) with B = 1 and � = 2 and constant N:
(a) b0(x, z); (b) v0(x, z); (c) � 0(x, z). The fields are normalized by their extreme magnitudes
(i.e. 0.21, 0.12, and 0.25, respectively) and contoured with an interval of 0.1 straddling zero.
Positive and negative contours are solid and dashed, respectively. The along-front Stokes drift
is directed toward positive y. All signs reverse if the along-front Stokes drift is reversed.

the wave-adjusted buoyancy peaks near z = 1/�, and it decays slowly below, as does
the wave-adjusted velocity. The pattern in b0 relates to the vertical displacement ⇣ 0
as buoyancy conservation of the mean stratification b(z), as expressed in (4.1); the
displacement contributions from b0(x, z) would arise at O(R).

Where the right-side forcing is small, the homogeneous b0 and v0 solutions of the
left-side elliptic operator (4.5) that decay to zero in the far field have the form of
r�n times either cos[n✓ ] or sin[n✓ ], where r and ✓ are cylindrical coordinates in the
(x,B1/2z) plane. For the frontal flow, as can be derived by expanding the logarithmic
argument in (4.7) for large r, the leading-order solutions vary as the n = 1 solution,

b0 ⇠ sin[✓ ]
r

= B1/2z

r2
, v0 ⇠ cos[✓ ]

r
= x

r2
. (4.10)
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f!1 and L k Uf!1. In the weakly stratified ML, Ri "
O(1) selects Ro " O(1) and small (L # Uf!1) and fast
(T # f!1) ageostrophic MLIs. For these modes the QG
approximation is inappropriate. Ageostrophic effects
increase the growth rates and the spatial scales of the
instabilities compared to QG approximation to MLIs,
with the fastest-growing-mode scales enlarging as
L/LQG $ %1 & Ri!1 (Stone 1966, 1971).

b. Shallow baroclinic instabilities and ML
restratification

The literature on shallow baroclinic instabilities in
the ML is vast, but largely ignores their effect on ML

restratification (Samelson 1993; Barth 1994; Young and
Chen 1995; Beron-Vera and Ripa 1997; Spall 1997).
Notable exceptions are the works of Jones and Mar-
shall (1997) and Haine and Marshall (1998) that focus
on the role of baroclinic instability in restratifying the
water column after deep convection at high latitudes.
However, the high-latitudes convective chimneys they
consider span a large fraction of the water column and
there is no clear separation between submesoscale ML
dynamics and interior mesoscale dynamics.

The literature on ML restratification, on the other
hand, largely ignores the role of baroclinic instabilities.
Ou (1984) and Tandon and Garrett (1994, 1995) study

FIG. 1. Potential density along a straight section between (32.5°N, 122°W) and (35°N, 132°W), i.e., between the California Current
and the middle of the subtropical Pacific gyre, as measured by a sawtooth SeaSoar tow. Longitude is shown in the lower x axis and the
corresponding along-track distance in km is shown at the top of the figure. Data are averaged in bins of 3 km in the horizontal by 8
m in the vertical and contoured every 0.2 kg m!3. An ML of weak stratification is evident in the upper 100 m. The ML base is marked
by a region of enhanced stratification above the permanent thermocline. The ML is also characterized by lateral density gradients. The
data were collected as part of an upper-ocean study of the North Pacific (Ferrari and Rudnick 2000).
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O(1) selects Ro " O(1) and small (L # Uf!1) and fast
(T # f!1) ageostrophic MLIs. For these modes the QG
approximation is inappropriate. Ageostrophic effects
increase the growth rates and the spatial scales of the
instabilities compared to QG approximation to MLIs,
with the fastest-growing-mode scales enlarging as
L/LQG $ %1 & Ri!1 (Stone 1966, 1971).

b. Shallow baroclinic instabilities and ML
restratification

The literature on shallow baroclinic instabilities in
the ML is vast, but largely ignores their effect on ML

restratification (Samelson 1993; Barth 1994; Young and
Chen 1995; Beron-Vera and Ripa 1997; Spall 1997).
Notable exceptions are the works of Jones and Mar-
shall (1997) and Haine and Marshall (1998) that focus
on the role of baroclinic instability in restratifying the
water column after deep convection at high latitudes.
However, the high-latitudes convective chimneys they
consider span a large fraction of the water column and
there is no clear separation between submesoscale ML
dynamics and interior mesoscale dynamics.

The literature on ML restratification, on the other
hand, largely ignores the role of baroclinic instabilities.
Ou (1984) and Tandon and Garrett (1994, 1995) study

FIG. 1. Potential density along a straight section between (32.5°N, 122°W) and (35°N, 132°W), i.e., between the California Current
and the middle of the subtropical Pacific gyre, as measured by a sawtooth SeaSoar tow. Longitude is shown in the lower x axis and the
corresponding along-track distance in km is shown at the top of the figure. Data are averaged in bins of 3 km in the horizontal by 8
m in the vertical and contoured every 0.2 kg m!3. An ML of weak stratification is evident in the upper 100 m. The ML base is marked
by a region of enhanced stratification above the permanent thermocline. The ML is also characterized by lateral density gradients. The
data were collected as part of an upper-ocean study of the North Pacific (Ferrari and Rudnick 2000).
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effect of the waves resembles inhomogeneous 
boundary condition at surface 

 is it possible to derive this effective boundary condition?
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(69)

There’s a lot going on. Maybe it can be simplified. Note that the top two terms form an
inversion relation for the wave-induced mean flow when b is weak. The wave-averaged QGPV
is materially conserved, such that

Q
t

+ J( , Q) = 0 . (70)

10.3 Generalized energy conservation

If we multiply (81) with  and integrate over the domain of interest, we obtain an energy
conservation, or perhaps non-conservation principle. Energy will not be conserved because
of the pure wave term. I believe it will be conserved in the interaction terms.

10.4 Generalized comments

For an ordinary low Rossby number scaling, the first wave term is the only one to appear
alongside the O(R) mean terms. Note that it is the second derivative of a horizontal dis-
placement term. It is zero for a unidirectional plane wave, because we can choose a frame
in which one of v or ⇠ is zero? In McWilliams and Fox-Kemper (2013) it is a term from the
second quantity, b
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, which comprises the wave contribution to
PV balance.

Perhaps we can consider a more general quasigeostrophic theory. For example, we found
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All the components of h can be non-zero. It seems though that the z-derivatives must be
the most important. Perhaps we keep
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9

in 3D, the “strong, infinite wave” CL-QG theory generalizes to

where

7 Illustrative examples of wave-adjustment

8 Sanity checks

Depth of Stokes drift field for ordinary waves? Buoyancy frequency in the (upper) mixed
layer? What does it mean that we know waves are always present? I suppose we should ask
Sean.

9 Energy conservation

We found that the wave modified quasigeostrophic potential vorticity takes the form
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where we have corrected a rogue factor of f . To obtain energy conservation we take pQ
t

and
integrate over the domain. The final two terms can be combined by appropriate application
of integration by parts, and we find
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10 Generalizations

10.1 Generalized balance
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The low Rossby number, small vertical Stokes-drift approximation to these equations yields
the balance conditions,

fvL = p
x

, (55)

�fuL = p
y

, (56)

b = p
z

+ vLvS
z

� uLuS
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. (57)

If we define the geostrophic streamfunction as

 
def

= f�1p , (58)

then we have

vL =  
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, (59)

�uL =  
y

, (60)
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10 Generalizations to “infinite” wave fields

When we allow general Lagrangian-mean flows, we find a modified QG theory,
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11 Generalizations to 3D and wave-induced mean flows
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+ f ẑ ⇥ u

L +rp� b ẑ =
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definition of potential vorticity
imbalance conditions

Generalization?Under the low Rossby number, strong, shallow scaling, the PV becomes
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If we assume that R ⌧ 1, we can easily derive the QGPV equation for this system. The

result is that
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The wave-averaged Boussinesq momentum equations yield the balance conditions, which are
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Further questions:

1. What is the energy non-conservation law for this system?

2. Does this system somehow predict the possibility of a sort of “surface Rossby wave”?

In other words, it permits wave-like solutions somehow because of terms like  xLvS.
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There’s a lot going on. Maybe it can be simplified. Note that the top two terms form an
inversion relation for the wave-induced mean flow when b is weak. The wave-averaged QGPV
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ŷ +

�
vS
x

� uS

y

�
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where we have corrected a rogue factor of f . To obtain energy conservation we take pQ
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and
integrate over the domain. The final two terms can be combined by appropriate application
of integration by parts, and we find
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11.1 Generalized balance

DL

u

L

Dt
+ f ẑ ⇥ u
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The low Rossby number, small vertical Stokes-drift approximation to these equations yields
the balance conditions,

fvL = p
x

, (57)

�fuL = p
y

, (58)

b = p
z

+ vLvS
z

� uLuS

z

. (59)

7



Two branches in the solution
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FIGURE 8. A comparison of frontal wave-adjustment profiles for a front with B = 1 and
� = 2 and constant N (cf. figure 3): the one-dimensional (1D) semi-separable profiles, b̃(z)
(a) and ṽ(z) (b), and their two-dimensional (2D) counterparts, b0(0, z) and
limx!0[v0(x, z)/(�2x)], as determined from (4.14).
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with boundary conditions b̃(0) = 0 and vanishing amplitudes as z ! �1.
For constant buoyancy frequency, N(z) = B, we have closed-form analytic solutions

to (4.15):
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Both fields exhibit two vertical decay rates: 1 + � associated with the frontal and
Stokes flows and

p
2B associated with the vertical stratification. These show the

contraction of the vertical scale of the adjustment for a shallower Stokes profile (larger
�) and a stronger stratification (larger B), and vice versa, as described in § 4.1.1.
Here b̃(z) is always positive and convex in shape with a subsurface maximum; ṽ(z)
is usually negative at the surface (note that this occurs in the thin surface layer of
reverse flow in figure 3) except when B < 0.5, but ṽ(z) is always positive at depth, so
ṽ too has a subsurface maximum. (Note that the zero of the denominators in (4.16) atp

2B = � + 1 is not a singularity.)
How accurate is the semi-separable solution? We assess it compared to the complete

solution (4.7) in figure 8 at the centre of the front. It is very accurate near the surface,
and it is reasonably accurate, within 10 % or so, down through the peaks in b0 and
z0 near the base of the frontal flow. However, it becomes inaccurate at depth, with
algebraic decay in z in the complete solution (4.10) and exponential decay in the
semi-separable one (4.16). This is a consequence of the non-locality in the elliptical
boundary-value problem (4.5) and its Green’s function solution (4.7): in the upper
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B Deriving the PV equation

When the Stokes drift field is uS = uS(z)x̂+ vS(z) ŷ, the exact PV and buoyancy equations
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To leading-order in Rossby number, the momentum equations yield the “imbalance” condi-
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fvL = px , (98)

�fuL = py , (99)
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The balance conditions imply the leading-order velocity has no divergence. Note also that
we can define a geostrophic streamfunction in terms of which the entire problem can be
formulated. At O(1) the buoyancy equation implies that wL

g = 0 (“g” for geostrophic). At
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We can then use the buoyancy equation to eliminate wL
a . After dividing by N2, we have a

nice result:
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I don’t think the term with a minus is an issue; note that it cancels with the 4th term if we
were to expand that one all the way out.
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Wave-averaged quasigeostrophy
Because wL

g

= 0, we find nothing at leading order. At first-order we have
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Now consider a general adjustment problem between two states: initial and final. The initial
state has no waves; therefore the balance is

Q0 = v0x +
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The final state has waves, so that

Q1 = vL1x +
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. (30)

The states have the same PV so that Q1 = Q0. Why don’t McWilliams and Fox-Kemper
proceed from here? I’m not sure. We lose the superscript L’s below because they are onerous.
Consider that the balance conditions are

fv1 = p1x , (31)

b1 = p1z + vS
z

v1 ,

= p1z + f�1vS
z

p1x .
(32)

We can therefore cast the problem for the final state in terms of pressure, since Q1 becomes
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This is an elliptic equation with constant coe�cients for p1, the pressure in the adjusted
state. Q1 is the source term and is known by imposing Q0 = Q1, as in ordinary adjustment
problems.

6 A perturbed final state

For whichever reason, McWilliams and Fox-Kemper decide they don’t want to solve this
equation, and instead make the assumption that the final state is an O(✏) perturbation on
the initial state. This means that we essentially take an intermediate limit where
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This is an elliptic equation with constant coe�cients for p1, the pressure in the adjusted
state. Q1 is the source term and is known by imposing Q0 = Q1, as in ordinary adjustment
problems.

6 A perturbed final state

For whichever reason, McWilliams and Fox-Kemper decide they don’t want to solve this
equation, and instead make the assumption that the final state is an O(✏) perturbation on
the initial state. This means that we essentially take an intermediate limit where
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prescribed, with

This equation assumes steady Stokes drift so that uS
t

= 0. I think it would be very interesting
to think about the e↵ect of non-steady Stokes drift. I think it both explains why Langmuir
circulations are only seen in unsteady situations and also provides an inviscid mechanism for
the generation of internal waves. But we will leave that for later. Another useful form is

DL
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The potential vorticity equation associated with (1) through (4) is
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where
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and !
def
= ẑ ·!. Note that, cast in the Lagrangian-mean, q and b† are materially conserved.

That means we should be able to define an available potential vorticity for this system.
Finally, I insist on using (uL, b) as my dependent variables. I’m sticking to my guns.

Greg’s note: the identity r ⇥ u
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h is useful for writing (6) in terms of u
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In the above I have used the fact that h = 2
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w⌘ x̂ + u⇠ ŷ + v⇠ ẑ

�
For an ordinary low

Rossby number scaling, the first wave term is the only one to appear alongside the O(R)
mean terms. Note that it is the second derivative of a horizontal displacement term. It is

zero for a unidirectional plane wave, because we can choose a frame in which one of v or

⇠ is zero? In McWilliams and Fox-Kemper (2013) it is a term from the second quantity,
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, which comprises the wave contribution to PV balance.

3 A disturbing observation

McWilliams and Fox-Kemper begin with an observation. They point out that when u

S = 0,
(4) has a simple, exact solution associated with some parallel flow u

L = v0(x, z) ŷ:

fv0 = p0x and p0z = b0 ; (8)

in other words, geostrophic and hydrostatic balance. Thermal wind is fv0z = b0x. Yet
something disturbing occurs when you superpose this flow with a steadily propagating wave-
field associated with a non-zero Stokes drift field u

S = (uS(z), vS(z), 0). To be steady the
wave field has u

L = 0, but nevertheless the fact remains that uS 6= 0. Note the advection
term is zero and does not interfere. We do find, however,
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Final wavy state
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Now consider a general adjustment problem between two states: initial and final. The initial
state has no waves; therefore the balance is
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Q1 = vL1x +

✓
fb1
N2

◆

z

+
vS
z

b1x
N2

. (30)

The states have the same PV so that Q1 = Q0. Why don’t McWilliams and Fox-Kemper
proceed from here? I’m not sure. We lose the superscript L’s below because they are onerous.
Consider that the balance conditions are
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This is an elliptic equation with constant coe�cients for p1, the pressure in the adjusted
state. Q1 is the source term and is known by imposing Q0 = Q1, as in ordinary adjustment
problems.

6 A perturbed final state

For whichever reason, McWilliams and Fox-Kemper decide they don’t want to solve this
equation, and instead make the assumption that the final state is an O(✏) perturbation on
the initial state. This means that we essentially take an intermediate limit where
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This is an elliptic equation with constant coe�cients for p1, the pressure in the adjusted
state. Q1 is the source term and is known by imposing Q0 = Q1, as in ordinary adjustment
problems.
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the initial state. This means that we essentially take an intermediate limit where
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Now consider a general adjustment problem between two states: initial and final. The initial
state has no waves; therefore the balance is
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The states have the same PV so that Q1 = Q0. Why don’t McWilliams and Fox-Kemper
proceed from here? I’m not sure. We lose the superscript L’s below because they are onerous.
Consider that the balance conditions are
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We can therefore cast the problem for the final state in terms of pressure, since Q1 becomes
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This is an elliptic equation with constant coe�cients for p1, the pressure in the adjusted
state. Q1 is the source term and is known by imposing Q0 = Q1, as in ordinary adjustment
problems.

6 A perturbed final state

For whichever reason, McWilliams and Fox-Kemper decide they don’t want to solve this
equation, and instead make the assumption that the final state is an O(✏) perturbation on
the initial state. This means that we essentially take an intermediate limit where
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Wave-averaged quasigeostrophy
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The states have the same PV so that Q1 = Q0. Why don’t McWilliams and Fox-Kemper
proceed from here? I’m not sure. We lose the superscript L’s below because they are onerous.
Consider that the balance conditions are

fv1 = p1x , (31)
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This is an elliptic equation with constant coe�cients for p1, the pressure in the adjusted
state. Q1 is the source term and is known by imposing Q0 = Q1, as in ordinary adjustment
problems.

6 A perturbed final state

For whichever reason, McWilliams and Fox-Kemper decide they don’t want to solve this
equation, and instead make the assumption that the final state is an O(✏) perturbation on
the initial state. This means that we essentially take an intermediate limit where
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Now consider a general adjustment problem between two states: initial and final. The initial
state has no waves; therefore the balance is
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The states have the same PV so that Q1 = Q0. Why don’t McWilliams and Fox-Kemper
proceed from here? I’m not sure. We lose the superscript L’s below because they are onerous.
Consider that the balance conditions are

fv1 = p1x , (31)

b1 = p1z + vS
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We can therefore cast the problem for the final state in terms of pressure, since Q1 becomes
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This is an elliptic equation with constant coe�cients for p1, the pressure in the adjusted
state. Q1 is the source term and is known by imposing Q0 = Q1, as in ordinary adjustment
problems.

6 A perturbed final state

For whichever reason, McWilliams and Fox-Kemper decide they don’t want to solve this
equation, and instead make the assumption that the final state is an O(✏) perturbation on
the initial state. This means that we essentially take an intermediate limit where
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prescribed, with

This equation assumes steady Stokes drift so that uS
t

= 0. I think it would be very interesting
to think about the e↵ect of non-steady Stokes drift. I think it both explains why Langmuir
circulations are only seen in unsteady situations and also provides an inviscid mechanism for
the generation of internal waves. But we will leave that for later. Another useful form is

DL
u

L

Dt
+ f ẑ ⇥ u

L +rp� b ẑ =
�
r⇥ u

S
�
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The potential vorticity equation associated with (1) through (4) is

q
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where
q = fN2 +N2! + fb

z

+ ! ·rb . (6)

and !
def
= ẑ ·!. Note that, cast in the Lagrangian-mean, q and b† are materially conserved.

That means we should be able to define an available potential vorticity for this system.
Finally, I insist on using (uL, b) as my dependent variables. I’m sticking to my guns.

Greg’s note: the identity r ⇥ u

S = �r2
h is useful for writing (6) in terms of u

L
and

b. For example, we have
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In the above I have used the fact that h = 2
�
w⌘ x̂ + u⇠ ŷ + v⇠ ẑ

�
For an ordinary low

Rossby number scaling, the first wave term is the only one to appear alongside the O(R)
mean terms. Note that it is the second derivative of a horizontal displacement term. It is

zero for a unidirectional plane wave, because we can choose a frame in which one of v or

⇠ is zero? In McWilliams and Fox-Kemper (2013) it is a term from the second quantity,
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, which comprises the wave contribution to PV balance.

3 A disturbing observation

McWilliams and Fox-Kemper begin with an observation. They point out that when u

S = 0,
(4) has a simple, exact solution associated with some parallel flow u

L = v0(x, z) ŷ:

fv0 = p0x and p0z = b0 ; (8)

in other words, geostrophic and hydrostatic balance. Thermal wind is fv0z = b0x. Yet
something disturbing occurs when you superpose this flow with a steadily propagating wave-
field associated with a non-zero Stokes drift field u

S = (uS(z), vS(z), 0). To be steady the
wave field has u

L = 0, but nevertheless the fact remains that uS 6= 0. Note the advection
term is zero and does not interfere. We do find, however,
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Final wavy state
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= 0, we find nothing at leading order. At first-order we have
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which we can manipulate in the usual way to obtain
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Now consider a general adjustment problem between two states: initial and final. The initial
state has no waves; therefore the balance is
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The final state has waves, so that
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The states have the same PV so that Q1 = Q0. Why don’t McWilliams and Fox-Kemper
proceed from here? I’m not sure. We lose the superscript L’s below because they are onerous.
Consider that the balance conditions are

fv1 = p1x , (31)

b1 = p1z + vS
z

v1 ,

= p1z + f�1vS
z

p1x .
(32)

We can therefore cast the problem for the final state in terms of pressure, since Q1 becomes
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This is an elliptic equation with constant coe�cients for p1, the pressure in the adjusted
state. Q1 is the source term and is known by imposing Q0 = Q1, as in ordinary adjustment
problems.

6 A perturbed final state

For whichever reason, McWilliams and Fox-Kemper decide they don’t want to solve this
equation, and instead make the assumption that the final state is an O(✏) perturbation on
the initial state. This means that we essentially take an intermediate limit where
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Now consider a general adjustment problem between two states: initial and final. The initial
state has no waves; therefore the balance is
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The states have the same PV so that Q1 = Q0. Why don’t McWilliams and Fox-Kemper
proceed from here? I’m not sure. We lose the superscript L’s below because they are onerous.
Consider that the balance conditions are

fv1 = p1x , (31)

b1 = p1z + vS
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We can therefore cast the problem for the final state in terms of pressure, since Q1 becomes
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This is an elliptic equation with constant coe�cients for p1, the pressure in the adjusted
state. Q1 is the source term and is known by imposing Q0 = Q1, as in ordinary adjustment
problems.

6 A perturbed final state

For whichever reason, McWilliams and Fox-Kemper decide they don’t want to solve this
equation, and instead make the assumption that the final state is an O(✏) perturbation on
the initial state. This means that we essentially take an intermediate limit where
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Now consider a general adjustment problem between two states: initial and final. The initial
state has no waves; therefore the balance is
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The final state has waves, so that
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The states have the same PV so that Q1 = Q0. Why don’t McWilliams and Fox-Kemper
proceed from here? I’m not sure. We lose the superscript L’s below because they are onerous.
Consider that the balance conditions are

fv1 = p1x , (31)

b1 = p1z + vS
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We can therefore cast the problem for the final state in terms of pressure, since Q1 becomes
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This is an elliptic equation with constant coe�cients for p1, the pressure in the adjusted
state. Q1 is the source term and is known by imposing Q0 = Q1, as in ordinary adjustment
problems.

6 A perturbed final state

For whichever reason, McWilliams and Fox-Kemper decide they don’t want to solve this
equation, and instead make the assumption that the final state is an O(✏) perturbation on
the initial state. This means that we essentially take an intermediate limit where
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Now consider a general adjustment problem between two states: initial and final. The initial
state has no waves; therefore the balance is
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The final state has waves, so that
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The states have the same PV so that Q1 = Q0. Why don’t McWilliams and Fox-Kemper
proceed from here? I’m not sure. We lose the superscript L’s below because they are onerous.
Consider that the balance conditions are

fvL1 = p1x , (31)
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We can therefore cast the problem for the final state in terms of pressure, since Q1 becomes
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This is an elliptic equation with constant coe�cients for p1, the pressure in the adjusted
state. Q1 is the source term and is known by imposing Q0 = Q1, as in ordinary adjustment
problems.

6 A perturbed final state

For whichever reason, McWilliams and Fox-Kemper decide they don’t want to solve this
equation, and instead make the assumption that the final state is an O(✏) perturbation on
the initial state. This means that we essentially take an intermediate limit where
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