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ON THE THEORY OF OSCILLATORY WAVES.

[Read March 1, 1847.]

IN the Report of the Fourteenth Meeting of the British

Association for the Advancement of Science it is stated by Mr
Russell, as a result of his experiments, that the velocity of pro

pagation of a series of oscillatory waves does not depend on the

height of the waves*. A series of oscillatory waves, such as that

observed by Mr Russell, does not exactly agree with what it is

most convenient, as regards theory, to take as the type of oscil

latory waves. The extreme waves of such a series partake in

some measure of the character of solitary waves, and their height
decreases as they proceed. In fact it will presently appear that

it is only an indefinite series of waves which possesses the pro

perty of being propagated with a uniform velocity, and without

change of form : at least this is the case when the waves are

such as can be propagated along the surface of a fluid which was

previously at rest. The middle waves, however, of a series such

as that observed by Mr Russell agree very nearly with oscillatory

waves of the standard form. Consequently, the velocity of pro

pagation determined by the observation of a number of waves,

according to Mr Russell s method, must be very nearly the same
as the velocity of propagation of a series of oscillatory waves of

the standard form, and whose length is equal to the mean length
of the waves observed, which are supposed to differ from each

other but slightly in length.
*
Page 369 (note), and page 370.
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On this account I was induced to investigate the motion of

oscillatory waves of the above form to a second approximation,

that is, supposing the height of the waves finite, though small.

I find that the expression for the velocity of propagation is in

dependent of the height of the waves to a second approximation.

With respect to the form of the waves, the elevations are no

longer similar to the depressions, as is the case to a first ap

proximation, but the elevations are narrower than the hollows,

and the height of the former exceeds the depth of the latter.

This is in accordance with Mr Russell s remarks at page 448 of

his first Report*. I have proceeded to a third approximation

in the particular case in which the depth of the fluid is very

great, so as to find in this case the most important term, de

pending on the height of the waves, in the expression for the

velocity of propagation. This term gives an increase in the

velocity of propagation depending on the square of the ratio of

the height of the waves to their length.

There is one result of a second approximation which may

possibly be of practical importance. It appears that the forward

motion of the particles is not altogether compensated by their

backward motion
;
so that, in addition to their motion of oscil

lation, the particles have a progressive motion in the direction

of propagation of the waves. In the case in which the depth of

the fluid is very great, this progressive motion decreases rapidly

as the depth of the particle considered increases. Now when a

ship at sea is overtaken by a storm, and the sky remains overcast,

so as to prevent astronomical observations, there, is nothing to

trust to for finding the ship s place but the dead reckoning. But

the estimated velocity and direction of motion of the ship are

her velocity and direction of motion relatively to the water. If

then the whole of the water near the surface be moving in the

direction of the waves, it is evident that the ship s estimated

place will be erroneous. If, however, the velocity of the water

can be expressed in terms of the length and height of the waves,

both which can be observed approximately from the ship, the

motion of the water can be allowed for in the dead reckoning.

As connected with this subject, I have also considered the

motion of oscillatory waves propagated along the common surface

of two liquids, of which one rests on the other, or along the upper
*

Reports of the British Association, Vol. vi.
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surface of the upper liquid. In this investigation there is no

object in going beyond a first approximation. When the specific

gravities of the two fluids are nearly equal, the waves at their

common surface are propagated so slowly that there is time to

observe the motions of the individual particles. The second case

affords a means of comparing with theory the velocity of pro

pagation of oscillatory waves in extremely shallow water. For by

pouring a little water on the top of the mercury in a trough we
can easily procure a sheet of water of a small, and strictly uniform

depth, a depth, too, which can be measured with great accuracy

by means of the area of the surface and the quantity of water

poured in. Of course, the common formula for the velocity of

propagation will not apply to this case, since the motion of the

mercury must be taken into account.

1. In the investigations which immediately follow, the fluid

is supposed to be homogeneous and incompressible, and its depth

uniform. The inertia of the air, and the pressure due to a column

of air whose height is comparable with that of the waves are also

neglected, so that the pressure at the upper surface of the fluid

may be supposed to be zero, provided we afterwards&quot; add the at

mospheric pressure to the pressure so determined. The waves

which it is proposed to investigate are those for which the motion

is in two dimensions, and which are propagated with a constant

velocity, and without change of form. It will also be supposed
that the waves are such as admit of being excited, independently of

friction, in a fluid which was previously at rest. It is by these

characters of the waves that the problem will be rendered de

terminate, and not by the initial disturbance of the fluid, supposed
to be given. The common theory of fluid motion, in which the

pressure is supposed equal in all directions, will also be em

ployed.

Let the fluid be referred to the rectangular axes of x, y, z,

the plane xz being horizontal, and coinciding with the surface

of the fluid when in equilibrium, the axis of y being directed

downwards, and that of x taken in the direction of propagation
of the waves, so that the expressions for the pressure, &c. do not

contain z. Let p be the pressure, p the density, t the time, u, v

the resolved parts of the velocity in the directions of the axes
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of x, y ; g the force of gravity, h the depth of the fluid when in

equilibrium. From the character of the waves which was men
tioned last, it follows by a known theorem that udx + vdy is an

exact differential d(p. The equations by which the motion is to

be determined are well known. They are

=
0, wheny = A .................... (3);

_ 0)Wl

where (3) expresses the condition that the particles in contact with

the rigid plane on which the fluid rests remain in contact with

it, and (4) expresses the condition that the same surface of par
ticles continues to be the free surface throughout the motion,

or, in other words, that there is no generation or destruction of

fluid at the free surface.

If c be the velocity of propagation, u, v and p will be by

hypothesis functions of x ct and y. It follows then from the

equations u dfy/dx, v = dfyjdy and (1), that the differential

coefficients of
(f&amp;gt;

with respect to x, y and t will be functions of

x ct and y ;
and therefore

&amp;lt;f&amp;gt;

itself must be of the form

f(x-ct, y)+Ct.

The last term will introduce a constant into (1) ;
and if this

constant be expressed, we may suppose &amp;lt;/&amp;gt;

to be a function of

x ct and y. Denoting x ct by x
,
we have

dp _ dp dp _ dp
dx~d^ft

~dt~ da/

and similar equations hold good for
^&amp;gt;.

On making these sub

stitutions in (1) and (4), omitting the accent of x, and writing

gk for (7, we have

. c + = 0, wbenp-O (G).
dx dy dy

wry
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Substituting in (6) the value of p given by (5), we have

d$_ ff -(dff$ ,d d^\
J
dy da?

~*

{dot do?
*
dy dxdyl

_
dxdx* dxdydxdy \dydf~

......... (8).

The equations (7) and (8) are exact; but if we suppose the

motion small, and proceed to the second order only of approxima

tion, we may neglect the last three terms in (7), and we may
easily eliminate y between (7) and (8). For putting &amp;lt;

,
&amp;lt;,,

&c.

for the values of d(f)/dx, dfy/dy, &c. when y = 0, the number of

accents above marking the order of the differential coefficient

with respect to x, and the number below its order with respect
to y, and observing that & is a small quantity of the first order

at least, we have from (8)

g (y + fc) + c (f + &amp;lt;/&amp;gt;

-
i[ (f +

&amp;lt;#&amp;gt;/)

=
0,

whence y = -*-jU +%/(&+ -f\ + _L
y y \ y * y

Substituting the first approximate value of y in the first two

terms of (7), putting # = in the next two, and reducing, we
have

+2c

&amp;lt;f&amp;gt;

will now have to be determined from the general equation (2)

with the particular conditions (3) and (10). When $ is known,
?/, the ordinate of the surface, will be got from (9), and k will

then be determined by the condition that the mean value of y
shall be zero. The value of p, if required, may then be obtained

from (5).

2. In proceeding to a first approximation we have the equa
tions (2), (3) and the equation obtained by omitting the small

terms in (10), namely,

* The reader will observe that the y in this equation is the ordinate of the

surface, whereas the y in (1) and (2) is the ordinate of any point in the fluid. The
context will always shew in which sense y is employed.

wry
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The general integral of (2) is

the sign S extending to all values of A, m and n, real or imagi

nary, for which m2 + n2 =
: the particular values of

&amp;lt;/&amp;gt;,

Cx + G
,

Dy + D , corresponding respectively to n = Q, ra = 0, must also be

included, but the constants C
,
D may be omitted. In the

present case, the expression for &amp;lt; must not contain real ex

ponentials in x, since a term containing such an exponential

would become infinite either for x = GO
,
or for x = + oo

,
as well

as its differential coefficients which would appear in the ex

pressions for u and v; so that m must be wholly imaginary.

Replacing then the exponentials in x by circular functions, we

shall have for the part of &amp;lt; corresponding to any one value

of m,

(Ae
mv +^ e~

wy
)
sin mx + (Bt

mv + B e~
mv

)
cos mx,

and the complete value of &amp;lt; will be found by taking the sum of

all possible particular values of the above form and of the par

ticular value Cx + Dy. When the value so formed is substituted

in (3), which has to hold good for all values of x, the coefficients

of the several sines and cosines, and the constant term must be

separately equated to zero. We have therefore

D = 0, A = e*
mh
A, B = &*B

;

so that if we change the constants we shall have

&amp;lt;p

= Cue + S (e
m(h ~rt + e~m (

h
-rt] (A sin mx + B cos mx)...(12),

the sign S extending to all real values of m, A and B, of which

in may be supposed positive.

3. To the term Cx in (12) corresponds a uniform velocity

parallel to x, which may be supposed to be impressed on the

fluid in addition to its other motions. If the velocity of pro

pagation be defined merely as the velocity with which the wave

form is propagated, it is evident that the velocity of propagation

is perfectly arbitrary. For, for a given state of relative motion

of the parts of the fluid, the velocity of propagation, as so defined,

can be altered by altering the value of C. And in proceeding to

the higher orders of approximation it becomes a question what

we shall define the velocity of propagation to be. Thus, we might

define it to be the velocity with which the wave form is propa-
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gated when the mean horizontal velocity of a particle in the

upper surface is zero, or the velocity of propagation of the wave

form when the mean horizontal velocity of a particle at the

bottom is zero, or in various other ways. The following two

definitions appear chiefly to deserve attention.

First, we may define the velocity of propagation to be the

velocity with which the wave form is propagated in space, when

the mean horizontal velocity at each point of space occupied by the

fluid is zero. The term &quot;mean&quot; here refers to the variation of

the time. This is the definition which it will be most convenient

to employ in the investigation. I shall accordingly suppose (7=0
in (12), and c will represent the velocity of propagation according
to the above definition.

Secondly, we may define the velocity of propagation to be the

velocity of propagation of the wave form in space, when the mean
horizontal velocity of the mass of fluid comprised between two

very distant planes perpendicular to the axis of x is zero. The

mean horizontal velocity of the mass means here the same thing
as the horizontal velocity of its centre of gravity. This appears
to be the most natural definition of the velocity of propagation,

since in the case considered there is 110 current in the mass of

fluid, taken as a whole. I shall denote the velocity of propagation

according to this definition by c. In the most important case

to consider, name]y, that in which the depth is infinite, it is

easy to see that c = c, whatever be the order of approximation.
For when the depth becomes infinite, the velocity of the centre

of gravity of the mass comprised between any two planes parallel

to the plane yz vanishes, provided the expression for u contain

no constant term.

4. We must now substitute in (11) the value of &amp;lt;.

&amp;lt;/&amp;gt;

=2 (

m
tt-0&amp;gt; + e--tf) (A siumx + I? cos m#)... (13);

but since (11) has to hold good for all values of #, the coefficients

of the several sines and cosines must be separately equal to zero :

at least this must be true, provided the series contained in (11)
are convergent. The coefficients will vanish for any one value

of m, provided
fj gm _ ~

t *-!



204 ON THE THEORY OF OSCILLATORY WAVES.

Putting for shortness 2mh = p, we have

^logc
a

= _l 2

dp fl e* - -*

which is positive or negative, p being supposed positive, according
as

and is therefore necessarily negative. Hence the value of c given

by (14) decreases as
jj,

or m increases, and therefore (11) cannot

be satisfied, for a given value of c, by more than one positive

value of m. Hence the expression for
&amp;lt;f&amp;gt;

must contain only one

value of m. Either of the terms A cos mcc, B sin mx may be

got rid of by altering the origin of sc. We may therefore take,

for the most general value of
&amp;lt;,

&amp;lt;

= ^(e
w
^-^+e-^-2/&amp;gt;)sinra^ (15).

Substituting in (8), we have for the ordinate of the surface

D? A (*

y =--( h + e- h
)cosmx (16),

u

k being = 0, since the mean value of y must be zero. Thus

everything is known in the result except A and m, which are

arbitrary.

5. It appears from the above, that of all waves for which

the motion is in two dimensions, which are propagated in a fluid

of uniform depth, and which are such as could be propagated
into fluid previously at rest, so that udx + vdy is an exact differ

ential, there is only one particular kind, namely, that just con

sidered, which possesses the property of being propagated with

a constant velocity, and without change of form
;

so that a

solitary wave cannot be propagated in this manner. Thus the

degradation in the height of such waves, which Mr Russell ob

served, is not to be attributed wholly, (nor I believe chiefly,) to

the imperfect fluidity of the fluid, and its adhesion to the sides

and bottom of the canal, but is an essential characteristic of a

solitary wave. It is true that this conclusion depends on an

investigation which applies strictly to indefinitely small motions

only : but if it were true in general that a solitary wave could be

propagated uniformly, without degradation, it would be true in



ON THE THEORY OF OSCILLATORY WAVES. 205

the limiting case of indefinitely small motions
;
and to disprove a

general proposition it is sufficient to disprove a particular case.

6. In proceeding to a second approximation we must sub
stitute the first approximate value of

&amp;lt;j&amp;gt;, given by (15), in the

small terms of (10). Observing that k = to a first approximation,
and eliminating g from the small terms by means of (14), we
find

9&amp;lt;t&amp;gt;,-c

2

&amp;lt;j&amp;gt;&quot;

- 6A*m*c sin 2mx= ............ (17).

The general value of &amp;lt; given by (13), which is derived from (2)
and (3), must now be restricted to satisfy (17). It is evident that

no new terms in &amp;lt; involving sin mx or cos mx need be introduced,
since such terms may be included in the first approximate value,
and the only other term which can enter is one of the form

Substituting this term in (17), and simplifying by means of (14),
we find

~
C

(

Moreover since the term in
&amp;lt;p containing sin. ma must disappear

from (17), the equation (14) will give c to a second approxi
mation.

If we denote the coefficient of cosmic in the first approximate
value of y, the ordinate of the surface, by a, we shall have

A _ go* ca

me (e
mh + e

~ mh
) (

6w&-_ e -mh)
&amp;gt;

and substituting this value of A in that of
&amp;lt;j&amp;gt;,

we have

em(h
-
y)

_|_ 6
- m(h -

y) 2m(h - y)
_|_ e

- 2m(h - y)=
-

- sin

...... (18).

The ordinate of the surface is given to a second approximation

by (9). It will be found that

I

e -mh\ (f2mh i f -2mh _i_ /f\

ma

7. The equation to the surface is of the form

mx Ka? cos 2w# (20),
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where K is necessarily positive, and a may be supposed to be

positive, since the case in which it is negative may be reduced to

that in which it is positive by altering the origin of x by the

quantity TT/W or X/2, X being the length of the waves. On re

ferring to (20) we see that the waves are symmetrical with respect

to vertical planes drawn through their ridges, and also with

respect to vertical planes drawn through their lowest lines. The

greatest depression of the fluid occurs when % = or = + X, &c.,

and is equal to aa?K: the greatest elevation occurs when

# = X/2 or = + 3X/2, &c., and is equal to a + a*K. Thus the

greatest elevation exceeds the greatest depression by Za*K. When
the surface cuts the plane of mean level, cos mx aKcos 2mx = 0.

Putting in the small term in this equation the approximate value

mx = 7T/2, we have cos mx - aK= cos (?r/2 + aK], whence

x = + (x/4 + a/a/2&amp;lt;7r),
= (5X/4 + aKX/Zir), &c.

We see then that the breadth of each hollow, measured at the

height of the plane of mean level, is X/2 + aK\/7r, while the

breadth of each elevated portion of the fluid is X/2
-
aK\/7r.

It is easy to prove from the expression for K, which is given

in (19), that for a given value of X or of m, K increases as h

decreases. Hence the difference in form of the elevated and

depressed portions of the fluid is more conspicuous in the case

in which the fluid is moderately shallow than in the case in

which its depth is very great compared with the length of the

waves.

8. When the depth of the fluid is very great Compared with

the length of a wave, we may without sensible error suppose h to

be infinite. This supposition greatly simplifies the expressions

already obtained. WT
e have in this case

sin mx.................................... (21),

y =a cos mx

m TT

(22),

the y in (22) being the ordinate of the surface.

It is hardly necessary to remark that the state of the fluid at

any time will be expressed by merely writing x-ct in place of x

in all the preceding expressions.
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9. To find the nature of the motion of the individual par

ticles, let x + f be written for x, y + 77 for y, and suppose x and y
to be independent of t, so that they alter only in passing from one

particle to another, while f and 77 are small quantities depending
on the motion. Then taking the case in which the depth is in

finite, we have

~sau 7wace~ m^ +1?)cosm(# + f ct) mace~my cosm(# ct)
dt

+ m?ac~ my sin m(x ct).% + m*ace~my cos m (x ct) . 77, nearly,

-^
= v = mace~ m(-y+^ sin m (x + f ctf)

= mace~my sin 7?2(# c)

+ m*ace~ my cos m(x ct).% m2
ace~ my sin m(# c) . 77, nearly.

To a first approximation

% = ae~my sin w (a? ct), rj
= ae~my cos m (x ct),

the arbitrary constants being omitted. Substituting these values

in the small terms of the preceding equations, and integrating

again, we have

= ae~ my sin m(x ct) + m*a?cte~ 2my,

77
= ae~my cos m(x ct).

Hence the motion of the particles is the same as to a first

approximation, with one important difference, which is that in

addition to the motion of oscillation the particles are transferred

forwards, that is, in the direction of propagation, with a constant

velocity depending on the depth, and decreasing rapidly as the

depth increases. If U be this velocity for a particle whose depth
below the surface in equilibrium is y, we have

re-?. (23).

The motion of the individual particles may be determined in

a similar manner when the depth is finite from (18). In this case

the values of f and r
t
contain terms of the second order, involving

respectively sin 2m (x ct) and cos %m(x ct), besides the term in

f which is multiplied by t. The most important thing to consider

is the value of U, which is

-h) \ e -1m(y-li)

_ mh (24).
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Since U is a small quantity of the order a2
,
and in proceeding

to a second approximation the velocity of propagation is given to

the order a only, it is immaterial which of the definitions of velo

city of propagation mentioned in Art. 3 we please to adopt.

10. The waves produced by the action of the wind on the

surface of the sea do not probably differ very widely from those

which have just been considered, and which may be regarded as

the typical form of oscillatory waves. On this supposition the

particles, in addition to their motion of oscillation, will have a

progressive motion in the direction of propagation of the waves,

and consequently in the direction of the wind, supposing it not to

have recently shifted, and this progressive motion will decrease

rapidly as the depth of the particle considered increases. If the

pressure of the air on the posterior parts of the waves is greater

than on the anterior parts, in consequence of the wind, as un

questionably it must be, it is easy to see that some such progres

sive motion must be produced. If then the waves are not break

ing, it is probable that equation (23), which is applicable to deep

water, may give approximately the mean horizontal velocity of

the particles ;
but it is difficult to say how far the result may be

modified by friction. If then we regard the ship as a mere parti

cle, in the first instance, for the sake of simplicity, and put f/ for

the value of U when y = 0, it is easy to see that after sailing for

a time t, the ship must be a distance UQ
t to the lee of her estimated

place. It will not however be sufficient to regard the ship as a

mere particle, on account of the variation of the factor e~ 2w% as y

varies from to the greatest depth of the ship below the surface

of the water. Let 8 be this depth, or rather a depth something

less, in order to allow for the narrowing of the ship towards the

keel, and suppose the effect of the progressive motion of the water

on the motion of the ship to be the same as if the water were

moving with a velocity the same as all depths, and equal to the

mean value of the velocity U from y = to y = 8. If U
l
be this

mean velocity,

ma?c

On this supposition, if a ship be steered so as to sail in a direc

tion making an angle 6 with the direction of the wind, supposing

the water to have no current, and if F be the velocity with which



ON THE THEORY OF OSCILLATORY WAVES. 209

the ship moves through the water, her actual velocity will be the

resultant of a velocity V in the direction just mentioned, which,
for shortness, I shall call the direction of steering, and of a velocity
Z7

X
in the direction of the wind. But the ship s velocity as esti

mated by the log-line is her velocity relatively to the water at the

surface, and is therefore the resultant of a velocity V in the direc

tion of steering, and a velocity U U
t
in a direction opposite to

that in which the wind is blowing. If then E be the estimated

velocity, and if we neglect U
2
,

But the ship s velocity is really the resultant of a velocity V+
in the direction of steering, and a velocity Ul

sin 6 in the perpen
dicular direction, while her estimated velocity is E in the direction

of steering. Hence, after a time t, the ship will be a distance

U t cos 6 ahead of her estimated place, and a distance Uj sin 6

aside of it, the latter distance being measured in a direction per

pendicular to the direction of steering, and on the side towards

which the wind is blowing.

I do not suppose that the preceding formula can be employed
in practice ;

but I think it may not be altogether useless to call

attention to the importance of having regard to the magnitude
and direction of propagation of the waves, as well as to the wind,

in making the allowance for lee-way.

11. The formula of Art. 6 are perfectly general as regards the

ratio of the length of the waves to the depth of the fluid, the only
restriction being that the height of the waves must be sufficiently

small to allow the series to be rapidly convergent. Consequently,

they must apply to the limiting case, in which the waves are sup

posed to be extremely long. Hence long waves, of the kind con

sidered, are propagated without change of form, and the velocity
of propagation is independent of the height of the waves to a

second approximation. These conclusions might seem, at first

sight, at variance with the results obtained by Mr Airy for the

case of long waves *. On proceeding to a second approximation,
Mr Airy finds that the form of long waves alters as they proceed,
and that the expression for the velocity of propagation contains a

*
Encyclopedia Metropolitana, Tides and Waves, Articles 198, &c.

S. 14
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term depending on the height of the waves. But a little attention

will remove this apparent discrepancy. If we suppose mh very

small in (19), and expand, retaining only the most important

terms, we shall find for the equation to the surface

3a2

a cos mx -. r cos zmx.

Now, in order that the method of approximation adopted may be

legitimate, it is necessary that the coefficient of cos Zmx in this

equation be small compared with a. Hence a/m
zh3

,
and therefore

X2

a/A
3

,
must be small, and therefore a/h must be small compared

with (h/\y. But the investigation of Mr Airy is applicable to the

case in which \/h is very large ;
so that in that investigation a/h

is large compared with (/t/\)
2

. Thus the difference in the results

obtained corresponds to a difference in the physical circumstances

of the motion.

12. There is no difficulty in proceeding to the higher orders

of approximation, except what arises from the length of the for

mulas. In the particular case in which the depth is considered

infinite, the formulae are very much simpler than in the general

case. I shall proceed to the third order in the case of an infinite

depth, so as to find in that case the most important term, depend

ing on the height of the waves, in the expression for the velocity

of propagation.

For this purpose it will be necessary to retain the terms of

the third order in the expansion of (7). Expanding this equation

according to powers of y, and neglecting terms of the fourth, &c.

orders, we have

t

- c
2

&amp;lt;/&amp;gt;,&quot;) y + (g^r &amp;lt;ty,,&quot;)
+ 2c (ff

(25).

In the small terms of this equation we must put for
&amp;lt;f&amp;gt;

and y

their values given by (21) and (22) respectively. Now since the

value of
&amp;lt;f&amp;gt;

to a second approximation is the same as its value to a

first approximation, the equation g$ C
2
&amp;lt;&quot;=0 is satisfied to terms

of the second order. But the coefficients of y and y
2

/2,
^n tne

first line of (25), are derived from the left-hand member of the

wry
Typewritten Text
Third order
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preceding equation by inserting the factor G~mv, differentiating

either once or twice with respect to y, and then putting y = 0.

Consequently these coefficients contain no terms of the second

order, and therefore the terms involving y in the first line of (25)

are to be neglected. The next two terms are together equal to

But

which does not contain oc, so that these two terms disappear. The

coefficient of y in the second line of (25) may be derived from the

two terms last considered in the manner already indicated, and

therefore the terms containing y will disappear from (25). The

only small terms remaining are the last three, and it will easily

be found that their sum is equal to raVc3
sin mx, so that (25) be

comes

#(/&amp;gt;,-
c
2

&amp;lt;/&amp;gt;

+ raVc3
sin m# = ..................... (26).

The value of &amp;lt; will evidently be of the form Ae~my sin mx. Sub

stituting this value in (26), we have

(mV - mg}A + mVc3 = 0.

Dividing by mA, and putting for A and c
2
their approximate values

ac, g/m respectively in the small term, we have

g + mV&amp;lt;7,

The equation to the surface may be found without difficulty. It

is

y = a cos mx J ma
2
cos 2mx + f mV cos Smx* ......... (27) :

we have also

k = 0, &amp;lt;

= ac (1 fmV)

*
It is remarkable that this equation coincides with that of the prolate cycloid,

if the latter equation be expanded according to ascending powers of the distance of

the tracing point from the centre of the rolling circle, and the terms of the fourth

order be omitted. The prolate cycloid is the form assigned by Mr Russell to waves
of the kind here considered. Reports of the British Association, Vol. vi. p. 448.

When the depth of the fluid is not great compared with the length of a wave, the

form of the surface does not agree with the prolate cycloid even to a second

approximation.

142
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The following figure represents a vertical section of the waves

propagated along the surface of deep water. The figure is drawn

for the case in which a = . The term of the third order in (27)

is retained, but it is almost insensible. The straight line represents
a section of the plane of mean level.

13. If we consider the manner in which the terms introduced

by each successive approximation enter into equations (7) and (8),

we shall see that, whatever be the order of approximation, the

series expressing the ordinate of the surface will contain only
cosines of mx and its multiples, while the expression for

&amp;lt;f&amp;gt;

will

contain only sines. The manner in which y enters into the

coefficient of cos rmx in the expression for
&amp;lt;f&amp;gt;

is determined in the

case of a finite depth by equations (2) and (3). Moreover, the

principal part of the coefficient of cos rmx or sin rmx will be of

the order ar
at least. We may therefore assume

&amp;lt;

=
T&amp;gt;,&quot;a

rA
r (&quot;&amp;lt;*-&amp;gt;

+ e-rmUi-vY) sm rmXt

y = a cos mx + 22
ar

.Z?
r
cos rmx,

and determine the arbitrary coefficients by means of equations

(7) and (8), having previously expanded these equations according

to ascending powers of y. The value of c
2
will be determined by

equating to zero the coefficient of sin mx in (7).

Since changing the sign of a comes to the same thing as

altering the origin of x by \ X, it is plain that the expressions

for A r ,
Br and c

2
will contain only even powers of a. Thus

the values of each of these quantities will be of the form

oo+ cx + cx + ---

It appears also that, whatever be the order of approximation,

the waves will be symmetrical with respect to vertical planes

passing through their ridges, as also with respect to vertical planes

passing through their lowest lines.

14 Let us consider now the case of waves propagated at

the common surface of two liquids, of which one rests on the
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other. Suppose as before that the motion is in two dimensions,

that the fluids extend indefinitely in all horizontal directions,

or else that they are bounded by two vertical planes parallel to

the direction of propagation of the waves, that the waves are

propagated with a constant velocity, and without change of form,
and that they are such as can be propagated into, or excited

in, the fluids supposed to have been previously at rest. Suppose
first that the fluids are bounded by two horizontal rigid planes.
Then taking the common surface of the fluids when at rest for

the plane xz, and employing the same notation as before, we
have for the under fluid

= wheny=a ................ (29),

neglecting the squares of small quantities. Let h
/
be the depth

of the upper fluid when in equilibrium, and let p t , p,, &amp;lt;f&amp;gt;,, C, be
the quantities referring to the upper fluid which correspond to

P, p&amp;gt; & referring to the under : then we have for the upper
fluid

d* df
-

(
3

)&amp;gt;

^P
= when y = -h, (31),

We have also, for the condition that the two fluids shall not

penetrate into, nor separate from each other,

Lastly, the condition answering to (11) is

-he
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Since C C is evidently a small quantity of the first order at

least, the condition is that (33) shall be satisfied when # = 0.

Equation (34) will then give the ordinate of the common surface

of the two liquids when y is put = in the last two terms.

The general value of
&amp;lt;j&amp;gt;

suitable to the present case, which

is derived from (28) subject to the condition (29), is given by (13)

if we suppose that the fluid is free from a uniform horizontal

motion compounded with the oscillatory motion expressed by (18).

Since the equations of the present investigation are linear, in

consequence of the omission of the squares of small quantities,

it will be sufficient to consider one of the terms in (13). Let

then
m(h-^smmx......... (35).

The general value of
&amp;lt;f&amp;gt; t

will be derived from (13) by merely

writing h
l
for h. But in order that (32) may be satisfied, the

value of
&amp;lt;/&amp;gt; y

must reduce itself to a single term of the same form

as the second side of (35). We may take then for the value

offc

y
= A,(et(h +rt + e-mVt +v }

)&in.mx............ (36).

Putting for shortness

and taking $,, D, to denote the quantities derived from 8, D by

writing A, for h, we have from (32)

DA + D
4
A

t

= ...................... (37),

and from (33)

P (gD-mc*S)Ai-p l (gD, + mc*S)A, = ........ (38).

Eliminating A and A
t
from (37) and (38), we have

The equation to the common surface of the liquids will be

obtained from (34). Since the mean value of y is zero, we have

in the first place

C = C.................................. (40).

We have then, for the value of y,

mx ............................. (41),
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where

_-
g p-p,

Substituting in (35) and (36) the values of A and A
f
derived from

(37) and (42), we have

=-^ (*- &amp;gt;

+--*&amp;gt;) sin wa?....... .,...(43),

rt *

(44).

Equations (39), (40), (41), (43) and (44) contain the solution

of the problem. It is evident that C remains arbitrary. The

values ofp and p t may be easily found if required.

If we differentiate the logarithm of c
2 with respect to m, and

multiply the result by the product of the denominators, which

are necessarily positive, we shall find a quantity of the form

Pp+Pt p,, where P and P
t
do not contain p or pr It may be

proved in nearly the same manner as in Art. 4, that each of the

quantities P, Pt
is necessarily negative. Consequently c will

decrease as m increases, or will increase with X. It follows from

this that the value of
&amp;lt;/&amp;gt;

cannot contain more than two terms,

one of the form (35), and the other derived from (35) by replacing

sin mx by cos mx, and changing the constant A : but the latter

term may be got rid of by altering the origin of x.

The simplest case to consider is that in which both h and ti

are regarded as infinite compared with X. In this case we have

&amp;lt;j&amp;gt;

= - ace
~ y sin mx, &amp;lt;,

= acemy sin mx,

P P Q
c
2 = r \LL &amp;lt;L. y a cos mx,

p + p,m

the latter being the equation to the surface.

15. The preceding investigation applies to two incompressible

fluids, but the results are applicable to the case of the waves

propagated along the surface of a liquid exposed to the air, pro

vided that in considering the effect of the air we neglect terms

which, in comparison with those retained, are of the order of

the ratio of the length of the waves considered to the length of
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a wave of sound of the same period in air. Taking then p for

the density of the liquid, p t
for that of the air at the time, and

supposing h
t
= oo

,
we have

If we had considered the buoyancy only of the air, we should

have had to replace g in the formula (14) by -
g* We should

have obtained in this manner

t_s_(?-PJV-m pS mS\
/A
p)

Hence, in order to allow for the inertia of the air, the correction

for buoyancy must be increased in the ratio of 1 to 1 + D/S.

The whole correction therefore increases as the ratio of the length

of a wave to the depth of the fluid decreases. For very long

waves the correction is that due to buoyancy alone, while in

the case of very short waves the correction for buoyancy is

doubled. Even in this case the velocity of propagation is altered

by only the fractional part pjp of the whole
;
and as this quantity

is much less than the unavoidable errors of observation, the effect

of the air in altering the velocity of propagation may be neglected.

16. There is a discontinuity in the density of the fluid mass

considered in Art. 14, in passing from one fluid into the other;

and it is easy to shew that there is a corresponding discontinuity

in the velocity. If we consider two fluid particles in contact

with each other, and situated on opposite sides of the surface

of junction of the two fluids, we see that the velocities of these

particles resolved in a direction normal to that surface are the

same
;
but their velocities resolved in a direction tangential to

the surface are different. These velocities are, to the order of

approximation employed in the investigation, the values of
d&amp;lt;j&amp;gt;/dx

and dfyjdcc when y = 0. We have then from (43) and (44),

for the velocity with which the upper fluid slides along the

under,

8 S\
mac I -W- -f -=: cos moc.
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17. When the upper surface of the upper fluid is free, the

equations by which the problem is to be solved are the same

as those of Art. 14, except that the condition (31) is replaced by

= - h
&amp;gt;

.......... (45);

and to determine the ordinate of the upper surface, we have

where y is to be replaced by h
t
in the last term. Let us con

sider the motion corresponding to the value of $ given by (35).

We must evidently have

&amp;lt;,

= (A f
e
mv -f B

t
e-my) sin ma?,

where A
t
and B

t
have to be determined. The conditions (32),

(33) and (45) give

p (gD - mc*S) A+p,(g + mcz

) A, -p,(g- me2

) Bt

= 0,

(g + me2

)
e~ mh A

t -(g- me2

)
e&quot;*&amp;gt;B

t

= 0.

Eliminating A, A f
and B

t
from these equations, and putting

m
we find

The equilibrium of the fluid being supposed to be stable, we

must have p,
&amp;lt;

p. This being the case, it is easy to prove that

the two roots of (46) are real and positive. These two roots

correspond to two systems of waves of the same length, which

are propagated with the same velocity.

In the limiting case in which p/pt

= oo
, (46) becomes

SSf - (8Dt
+ SD) +DD

t

=
0,

the roots of which are D/8 and D]St ,
as they evidently ought

to be, since in this case the motion of the under fluid will not

be affected by that of the upper, and the upper fluid can be in

motion by itself.

When p,
=
p one root of (46) vanishes, and the other becomes

_ f-m(h+ht )_ !
. The former of these roots cor-

88
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responds to the waves propagated at the common surface of the

fluids, while the latter gives the velocity of propagation belonging
to a single fluid having a depth equal to the sum of the depths
of the two considered.

When the depth of the upper fluid is considered infinite,

we must put DJS, = \ in (46). The two roots of the equation
f f\ 7~)

so transformed are 1 and
^ITTJ-J) &amp;gt;

the former corresponding to

waves propagated at the upper surface of the upper fluid, and the

latter agreeing with Art. 15.

When the depth of the under fluid is considered infinite, and
that of the upper finite, we must put D/S=l in (46). The two

roots will then become 1 and ^~^ . The value of the

former root shews that whatever be the depth of the upper fluid,

one of the two systems of waves will always be propagated with

the same velocity as waves of the same length at the surface of a

single fluid of infinite depth. This result is true even when the

motion is in three dimensions, and the form of the waves changes
with the time, the waves being still supposed to be such as could

be excited in the fluids, supposed to have been previously at rest,

by means of forces applied at the upper surface. For the most

general small motion of the fluids in this case may be regarded
as the resultant of an infinite number of systems of waves of the

kind considered in this paper. It is remarkable that when the

depth of the upper fluid is very great, the root f= 1 is that which

corresponds to the waves for which the upper fluid is disturbed,

while the under is sensibly at rest; whereas, when the depth of

the upper fluid is very small, it is the other root which corresponds
to those waves which are analogous to the waves which would

be propagated in the upper fluid if it rested on a rigid plane.

When the depth of the upper fluid is very small compared
with the length of a wave, one of the roots of (46) will be very

small
;
and if we neglect squares and products of mh

i
and f, the

equation becomes %pD 2 (p /&amp;gt;,) mhfl = 0, whence

(47).

These formulae will not hold good if mh be very small as well as

inh
/t
and comparable with it, since in that case all the terms of
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(46) will be small quantities of the second order, mh, being re

garded as a small quantity of the first order. In this case, if we

neglect small quantities of the third order in (46), it becomes

4pf
2 - 4mp (h + \) f+ 4 (p

-
Pt) ra

2

M, = 0,

whence

(48).

Of these values of c
2
,
that in which the radical has the negative

sign belongs to that system of waves to which the formula (47)

apply when Ji
t
is very small compared with h.

If the two fluids are water and mercury, p/p, is equal to about

13*57. If the depth of the water be very small compared both

with the length of the waves and with the depth of the mercury,

it appears from (47) that the velocity of propagation will be less

than it would have been, if the water had rested on a rigid plane,

in the ratio of 9624 to 1, or 26 to 27 nearly.

APPENDIX.

[A. On the relation of the preceding investigation to a case of wave

motion of the oscillatory kind in which the disturbance can be

expressed in finite terms.

In the Philosophical Transactions for 1863, p. 127, is a paper

by the late Professor Rankine in which he has shewn that it is

possible to express in finite terms, without any approximation,

the motion of a particular class of waves of the oscillatory kind.

It is remarkable that the results for waves of this kind were

given as long ago as in 1802, by Gerstner*, whose investigation

however seems to have been but little noticed for a long time.

This case of motion has latterly attracted a good deal of atten*

tion, partly no doubt from the facility of dealing with it, but

partly, it would seem, from misconceptions as to its intrinsic

importance.

* See Weber s Wcllenlehrc auf Experimente gcgriindet, p. 338,
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The investigation may be presented in very short compass in

the following manner.

Let us confine our attention to the case of a mass of liquid, re

garded as a perfect fluid of a depth practically infinite, in which
an indefinite series of regular periodic waves is propagated along
the surface, the motion being in two dimensions, and vanishing at

an infinite depth. Taking the plane of motion for the plane of xy,

y being measured vertically downwards, let us seek to express the

actual co-ordinates x, y of any particle in terms of two parameters
h, k particularising that particle, and of the time t. Let us assume
for trial

x = h +Ksm m(h- ct), y = k + Kcos m(h ct) (49),

where m, c are two constants, and K a function of k only. It

will be easily seen that these equations, regarded merely as

expressing the geometrical motion of points, and apart from the

physical possibility of the motion, represent a wave disturbance

of periodic character travelling in the direction of OX with a

velocity of propagation c.

As the disturbance is in two dimensions, we may speak of areas

as representing volumes. Let us consider first the condition of

constancy of the mass. The four loci corresponding to constant

values h, h + dh, k, k + dk, of the two parameters respectively en

close a quadrangular figure which is ultimately a parallelogram,
the area of which must be independent of the time. Now the

area is Sdhdk where
*

~ _ dx dy dx dy
dh dk dk dh

On performing the differentiations we find

S=l + (mk +K )cQ$m(h-ct) +mKK (51),

where K stands for dKfdk. In order that this may be indepen
dent of the time it is necessary and sufficient that

mK +K =
(52),

whence

K= ae-mk (52 ^

and
S= 1 -m2#2 = 1 -mVe- 2^

(53).
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The dynamical equations give

dp , (d*x d

gdy + m*c*K (sin in (h ct) dx -f cos m (h ct) dy}

= gdy + wV {(x-h)d(a)-h) + (y-k)d(y- k)}

+ m*c
2

{(x -h)dh+(y- k) dk}.

The last line becomes by (49) and (52),

mc2

{mKsm m(h ct) dh K cos m(h ct) dk},

or mc*d . K cos m (h ct).

The dynamical equations are therefore satisfied, the expression for

dp being a perfect differential, and we have

V
{(as

-
h)* + (y

-
k)

2

}
- mc*K cos m(h-ct) + C

- mcz

)
K cos m(h- ct) + G.

It remains to consider the equations of condition at the boun

daries of the fluid. The expression for K satisfies the condition of

giving a disturbance which decreases indefinitely as the depth in

creases, and we have only to see if it be possible to satisfy the

condition at the free surface. Now the particles at the free sur

face differ only by the value of the parameter h, as follows from

the fundamental conception of wave motion, and therefore for some

one value of k we must have p = independently of the time.

This requires that

*=_=&.
m 2-7T

and if we please to take k = at the surface, and determine C

accordingly, we have

(I --**) ......... (54).

Since p is independent of the time, not merely for k = 0, but

for any constant value of k, it follows that when the wave motion

is converted into steady motion by superposing a velocity equal

and opposite to that of propagation, it is not merely the line of

motion or stream-line which forms the surface but all the stream

lines that are lines of constant pressure. This is undoubtedly no

necessary property of wave-motion converted into steady motion,

which only requires that the particular stream-line at the surface
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shall be one for which the pressure is constant, though Gerstner

has expressed himself as if he supposed it necessarily true
;

it is

merely a character of the special case investigated by Gerstner

and Kankine. Nevertheless in the case of deep water it must be

very approximately true. For in the first place it is strictly true

at the surface, and in the second place, it must be sensibly true

at a very moderate depth and for all greater depths, since the

disturbance very rapidly diminishes on passing from the surface

downwards; so that unless the amount of disturbance be excessive

the supposition that all the stream-lines are lines of constant

pressure will not be much in error.

In the case investigated by the mathematicians just mentioned,

each particle returns periodically to the position it had at a given

instant
;

there is no progressive motion combined with a periodic

disturbance, such as was found in the case investigated in the pre

sent paper : and for deep water the absence of progressive motion

is doubtless peculiar to the former case, as will presently more

clearly appear.

If we suppose a regular periodic wave motion to be going on,

and then suppose small suitable pressures applied to the surface in

such a manner as to check the motion, we may evidently produce

a secular subsidence of the wave disturbance while still leaving it

at any moment regular and periodic, save as to secular change,

provided the opposing pressures are suitably chosen. The wave

length will be left unchanged, but not so, in general, the periodic

time. If the amount of disturbance in one wave period be insen

sible, the particles which at one time have a common mean depth
must at any future time have a common mean depth, and must

ultimately lie in a horizontal plane when the wave motion has

wholly subsided. In this condition therefore there can be no

mption except a horizontal flow with a velocity which is some

function of the depth. By a converse process we may imagine a

regular periodic wave motion of given wave-length excited in a

fluid in which there previously was none; and according to the

nature of the arbitrary flow with which we start, we shall obtain

as the result a wave motion of such or such a kind*.

In any given case of wave motion, the flow which remains

* To prevent possible misconception I may observe that I am not here con

templating the actual mode of excitement of waves by wind, which in some respects

is essentially different.
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when the waves have been caused to subside in the manner above

explained is easily determined, since we know that in the motion

of a liquid in two dimensions the angular velocity is not affected

by forces applied to thd surface. If a) be the angular velocity

dv du _ 1 (dy dv dy dv dx du dx du}~
dx dy~ S (dk dh dh dk dk dh dh dk)

S being denned by (50). In Gerstner and Rankine s solution

u = mace~mk cos m(h ct), v = mace~mk sin m(h ct),

and on effecting the differentiations and substituting for S from

(53) we find

Let y be the depth and u the horizontal velocity, after the

wave-motion has been destroyed as above explained, of the line of

particles which had k for a parameter ;
then we must have

,.
(oC) -

Since in a horizontal length which may be deemed infinite com

pared with X the area between the ordinates y , y + dy must

be the same as between the lines of particles which have k} k + dk

for their ^-parameter

dy = Sdk,

S being defined by (50). Putting for S its value given by (53)

we have

dy =(l-m*a?-*mk)dk..................... (57),

y
f = k-lma?(l-e-*mk}

.................. (58).

We have then from (56) by (55) and (57),

u = 2wVcJe-
2m*cta = - wiVce&quot;

21 &quot;*

............ (59),

since u vanishes when k oo .

It appears then that in order that it should be possible to

excite these waves in deep water previously free from wave dis

turbance, by means of pressures applied to the surface, a prepara
tion must be laid in the shape of a horizontal velocity decreasing
from the surface downwards according to the value of e~ 2mk, where

k is a function of the depth y determined by the transcendental

equation in k (58), and moreover a velocity decreasing downwards

according to this law will serve for waves of the present kind of
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only one particular height depending on the coefficient of the ex

ponential in the expression for the flow. Under these conditions

the horizontal velocity depending (when we adopt approximations)
on the square and higher powers of the elevation, which belongs to

the wave-motion, is exactly neutralized by the pre-existing hori

zontal velocity in a contrary direction, pre-existing, that is, when
we think of the waves as having been excited in a fluid previously

destitute of wave-motion, not as having gone on as they are from

a time indefinitely remote. The absence of any forward horizontal

motion of the individual particles in waves of this kind, though
attractive at first sight, is not of any real physical import,

because we are not concerned with the biographies so to speak of

the individual particles.

The oscillatory waves which most naturally present themselves

to our attention are those which are excited in the ocean or on

a lake by the action of the wind, or those which having been so

excited are propagated into (practically, though not in a rigorous

mathematical sense) still water. Of the latter kind are the surf

which breaks upon our western coasts as a result of storms out in

the Atlantic, or the grand rollers which are occasionally observed

at St Helena and Ascension Island. The motion in these cases

having been produced from rest, by forces applied to the surface,

there is no molecular rotation, and therefore the investigation of

the present paper strictly applies. Moreover, if we conceive the

waves gradually produced by suitable forces applied to the surface,

in the manner explained at p. 222, the investigation applies to the

waves (secular change apart) at any period of their growth, and

not merely when they have attained one particular height.

There can be no question, it seems to me, that this is the class

of oscillatory waves which on merely physical grounds we should

naturally select for investigation. The interest of the solution first

given by Gerstner, and it is of great interest, arises not from any

physical pre-eminence of the class of waves to which it relates, but

from the imperfection of our analysis, which renders it important

to discuss a case in which all the circumstances of the motion can

be simply expressed in mathematical terms without any approxima
tion. And though this motion is not exactly that which on purely

physical grounds we should prefer to investigate, namely, that in

which the molecular rotation is nil, yet unless the height of the
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waves be extravagant, it agrees so nearly with it that for many
purposes the simpler expressions of Rankine may be used without

material error, even when we are investigating wave motion of

the irrotational kind.

B. Considerations relative to the greatest height of oscillatory

irrotational waves which can be propagated without change

of form.

In a paper published in the Philosophical Magazine, Vol. xxix.

(1865), p. 25, Rankine gave an investigation which led him to

the conclusion that in the steepest possible oscillatory waves of

the irrotational kind, the crests become at the vertex infinitely

curved in such a manner that a section of the crest by the plane
of motion presents two branches of a curve which meet at a right

angle*.

In this investigati6n it is assumed in the first place that the

steepness may be pushed to the limit of an infinite curvature

at a particular point, and in the second place that the variations

*
It is not quite clear whether Rankine supposed his proposition, that &quot;all

waves in which molecular rotation is null, begin to break when the two slopes of

the crest meet at right angles,&quot; to apply only to free waves, or to forced waves as

well. One would have supposed the former, were it not that a figure is referred to

representing forced waves of one particular kind. It is readily shewn that the

contour of a forced wave is arbitrary, even though the motion be restricted to be

irrotational. Let U=C (p. 4) be the general equation of the stream lines when the

wave motion is converted into steady motion. Then in the general case of a finite

depth, which includes as a limiting and therefore particular case that of an infinite

depth, the parameter C has one constant value at the upper surface, and another at

the bottom, and it satisfies the partial differential equation (5) of p. 4. Hence the

problem of finding U is the same as that of determining the permanent tem

perature, varying in two dimensions only, of a homogeneous isotropic solid the

section of which is bounded below by a horizontal line at a finite or infinite depth,

and above by a given arbitrary contour, the bounding surfaces being at two given

constant temperatures. The latter problem is evidently determinate, and therefore

also the former, so that forced waves may present in their contour sharp angles,

not merely of 90, but of any value we please to take.

s. 15
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of the components of the velocity, in passing from the crest to

a point infinitely close to it, may be obtained by differentiation,

or in other words from the second terms of the expansion by

Taylor s Theorem applied to infinitely small increments of the

variables.

The first assumption might perhaps be called in question,
but it would appear likely to give at any rate a superior limit

to the steepest form possible, if not the steepest form itself.

But as regards the second it would seem a priori very likely

that the crest might just be one of those singular points where

Taylor s Theorem fails; and that such must actually be the case

may be shewn by simple considerations.

Let us suppose that a fluid of either finite or infinite depth
is disturbed by a wave motion which is propagated uniformly
without change, the motion of the fluid being either rotational

or not, and let us suppose further that the crests are perfectly

sharp, so that a crest is formed by two branches of a curve which

either meet at a finite angle (their prolongations belonging to the

region of space where the fluid is not), or else touch, forming
a cusp.

Reduce the wave motion to steady motion by superposing
a velocity equal and opposite to that of propagation. Then

a particle at the surface may be thought of as gliding along a

fixed smooth curve: this follows directly from physical considera

tions, or from the ordinary equation of steady motion. On

arriving at a crest the particle must be momentarily at rest, and

on passing it must be ultimately in the condition of a particle

starting from rest down an inclined or vertical plane. Hence the

velocity must vary ultimately as the square root of the distance

from the crest.

Hitherto the motion has been rotational or not, Jet us now

confine ourselves to the case of irrotational motion. Place the

origin at the crest, refer the function $ to polar co-ordinates r, 6
;

6 being measured from the vertical, and consider the value of
&amp;lt;/&amp;gt;

very near the origin, where
&amp;lt;/&amp;gt;
may be supposed to vanish, as the

arbitrary constant may be omitted. In general &amp;lt;j&amp;gt;

will be of the

form ^Anr
n s\unO + ^Bn

cosn0. In the present case &amp;lt; must con

tain sines only on account of the symmetry of the motion, as
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already shewn (p. 212), so that retaining only the most important
term we may take

(j&amp;gt;

= Arn
sin n6. Now for a point in the section

of the profile we must have dfy/dO = 0, and dfyjdr varying

ultimately as ?A This requires that n = %, and for the profile

that \Q ^TT, so that the two branches are inclined at angles of

60 to the vertical, and at an angle of 120 to each other, not

of 90 as supposed by Rankine.

This however leaves untouched the question whether the

disturbance can actually be pushed to the extent of yielding crests

with sharp edges, or whether on the other hand there exists

a limit, for which the outline is still a smooth curve, beyond which

no waves of the oscillatory irrotational kind can be propagated
without change of form.

After careful consideration I feel satisfied that there is no

such earlier limit, but that we may actually approach as near

as we please to the form in which the curvature at the vertex

becomes infinite, and the vertex becomes a multiple point where

the two branches with which alone we are concerned enclose an

angle of 120. But whether in the limiting form the inclination

of the wave to the horizon continually increases from the trough
to the summit, and is consequently limited to 30, or whether on

the other hand the points of inflexion which the profile presents
in the general case remain at a finite distance from the summit

when the limiting form is reached, so that 011 passing from the

trough to the summit the inclination attains a maximum from

which it begins to decrease before the summit is reached, is a

question which I cannot certainly decide, though I feel little doubt

that the former alternative represents the truth.

In Rankine s case of wave motion the limiting form presents

crests which are cusped. For the maximum wave ma = 1 or

a = A/27T. We see from (55) that in this case the angular velo

city becomes infinite at the surface, where 7c vanishes; and if

we suppose such waves excited in the manner already explained
in a fluid initially destitute of wave motion, the horizontal velocity

u
r

which must exist in preparation for the waves must be such that

dujdy becomes infinite at the surface. It appears to be this cir

cumstance which renders it possible for even rotational waves to

attain in the limit to an infinite thinness of crest without losing

the property of uniform propagation.

152
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When swells are propagated towards a smooth, very gently

shelving shore, the height increases when the finiteness of depth

begins to take effect. Presently the limiting height for uniformly

propagated irrotational waves is passed, and then the form of the

wave changes independently of the mere secular change due to

diminishing depth. The tendency is now for the high parts to

overtake the less high in front of them, and thereby to become

higher still, until at last the crest topples over and the wave

finally breaks. The breaking is no doubt influenced by friction

against the bottom (denoting by
&quot;

friction&quot; the effect of the eddies

produced), but I do not believe that it is wholly or even mainly
due to this cause. Before the wave breaks altogether the top

gets very thin, but the maximum height for uniform propaga
tion is probably already passed by a good deal, so that we must

guard against being misled by this observation as to the character

of the limiting form.

In watching many years ago a grand surf which came rolling

in on a sandy beach near the Giant s Causeway, without any storm

at the place itself, I recollect being struck with the blunt wedge-
like form of the waves where they first lost their flowing outline,

and began to show a little broken water at the very summit. It is

only I imagine on an oceanic coast, and even there on somewhat

rare occasions, that the form of waves of this kind, of nearly the

maximum height, can be studied to full advantage. The observer

must be stationed nearly in a line with the ridges of the waves

where they begin to break.

C. Remark on the method of Art. I.

There appears to be a slight advantage in employing the

function U or ^ (= j(udy
- vdx) )

instead of
&amp;lt;,

the wave motion

having been reduced to steady motion as is virtually done in

Art. 1. The general equation for
i/r

is the same as for
&amp;lt;/&amp;gt;, (2), and

the general expression for ty answering to that given for &amp;lt; on

p. 212 is

C erm h-ri - -(k-ti cos rmx.

The expression for p in terms of ty is almost identical with that in

terms of
c/&amp;gt;.

So far there is nothing to choose between the two. But
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for the two equations which have to be satisfied simultaneously at

the surface, instead of p = and the somewhat complicated equa
tion (7), we have ^ = and ^r

= const., which constant we may
take =0 if we leave open the origin of y. The substitution of

this equation of simpler form for (7) is a gain in proceeding to

higher orders of approximation. I remember however thinking
as I was working at the paper that as far as the approximation
there went the gain was not such as to render it worth while to

make the change.
But while these sheets were going through the press I devised

a totally different method of conducting the approximation, which

I find possesses very substantial advantages in proceeding to

higher orders of approximation. The reader will find this new

method after the paper &quot;on the critical values of the sums of

periodic series.&quot;]



[From the Report of the British Association for 1847, Part n. p. 6.]

ON THE RESISTANCE OF A FLUID TO Two OSCILLATING

SPHERES.

THE object of this communication was to shew the application
of Professor Thomson s method of images to the solution of certain

problems in hydrodynamics. Suppose that there exists in an in

finite mass of incompressible fluid a point from which, or to which
the fluid is flowing with a velocity alike in all directions. Con
ceive now two such points, of intensities equal in magnitude and

opposite in sign, to coexist in the fluid
;
and then suppose these

points to approach, and ultimately coalesce, their intensities varying

inversely as the distance between them. Let the resulting point be

called a singular point of the second order. The motion of a fluid

about a solid, oscillating sphere is the same as if the solid sphere
were replaced by fluid, in the centre of which existed such a point.

It is easy to shew that the motion of the fluid due to a point of

this kind, when the fluid is interrupted by a sphere having its

centre in the axis of the singular point, is the same as if the

sphere s place were occupied by fluid containing one singular point
of the second order. By the application of this principle may be

found the resistance experienced by a sphere oscillating in presence

of a fixed sphere or plane, or within a spherical envelope, the

oscillation taking place in the line joining the centres, or perpen
dicular to the plane. In a similar manner may be found the resist

ance to two spheres which touch, or are connected by a rod, or to

the solid made up of two spheres which cut, provided the exterior

angle of the surfaces be a submultiple of two right angles, the

oscillation in these cases also taking place in the line joining the

centres. The numerical calculation is very simple, and may be

carried to any degree of accuracy.
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The investigation mentioned in the preceding paper arose out

of the communication to me by Sir William Thomson of his

beautiful method of electrical images before he had published it.

Having myself paid more attention to the motion of fluids than

to electricity, I endeavoured to find if it would in any manner

apply to the solution of problems in the motion of fluids. I found

that what is called above a singular point of the second order had

a perfect image in a sphere when its axis was in the direction of

a radius, which led to a complete solution of the problem men
tioned in the paper when one sphere lay wholly outside or inside

the other. I shewed this to Professor Thomson, who pointed out

to me that a solution was also attainable, and that in finite

terms, when the spheres intersected, provided the angle of inter

section was a submultiple of two right angles. He saw that the

property of a singular point of the second order of giving a perfect

image in the case mentioned, admitted of an application to the

theory of magnetism, which he has published in a short paper in

the second volume of the Cambridge and Dublin Mathematical

Journal, (1847) p. 240.

Although the mathematical result is contained in the paper

just mentioned, I subjoin the process by which I found it out.

The expression (see p. 41) for the function &amp;lt; around a sphere

which moves in a perfect fluid previously at rest may be thought
of as applying to the whole of an infinite mass of fluid, provided
we conceive what has here been called a singular point of the

second order to exist at the origin. Let us conceive a spherical

surface S with its centre at and having a radius a to exist in

the fluid
;

let P be the singular point, lying either within or with

out the sphere S, and having its axis in the line OP. Let /, & be

polar co-ordinates originating at P, & being measured from OP
produced, and let r, 6 be polar co-ordinates originating at

;
let

m be a constant, and OP c, then
&amp;lt;/&amp;gt;

being the function due to the

singular point we have

mcos# m.r cos0 rcos# c

Now if e be less than 1,

m-j- (r
2

2cr cos 6 + c
2

/
etc
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where P , Px ,
P

2
... are Laplace s, or in this case more properly

Legendre s, coefficients*. Hence by expanding and differentiating

with respect to c, we have

(1),

We are not of course concerned with the constant term in the

latter of these two expressions. For the normal velocity (v) at

the surface of the sphere we get by differentiating with respect

to r, and then putting r a

/1 . 2P
t

2 . 3cP
2

3 . 4c
2P

8 ,

\ . , ,Q ,

v = m( ^ L
-] 1 H 5 -+ ... ), if a&amp;gt; c (3),

\ a a CL /

First suppose the point P outside the sphere, let the sphere be

thought of as a solid sphere, and consider the motion &quot;reflected
&quot;

(p. 28) from it. The reflected motion being symmetrical about

the axis, we must have for it

where Q , Qlf Qt
... are Laplace s functions involving 6 only. This

gives for the normal velocity (v) in the reflected motion at the

surface of the sphere

and since we must have v = v we get from (4) and (6)

la P. 2a5P
2

3a7P
3

Q = 0, Q^wjH, Q2
=
m-^-

2
, Q9

=
n*gp

which reduces (5) to

a3 /!P 2a2P 3a4P

* The functions which in Art. 9 of the paper
&quot; On some Cases of Fluid Motion&quot;

(p. 38) I called &quot;Laplace s coefficients,&quot; following the nomenclature of Pratt s

Mechanical Philosophy, are more properly called &quot;

Laplace s functions
;&quot;

the term

&quot;Laplace s coefficients&quot; being used to mean the coefficients in the expansion of

[1
- 2e

{ cos 6 cos & + sin sin ff cos (w
- w ) } + c

2
]&quot;^,

to be understood according to the usual notation and not as in the text.



TO TWO OSCILLATING SPHERES. 233

This is identical with what (1) becomes on writing w ,
c for m, C

provided that
a3

, a2

m =- m -
3) c=-.

Hence the reflected motion is perfectly represented by sup

posing the sphere s place occupied by fluid within which, at the

point P in the line OP determined by OP = c, there exists a

singular point of the same character as P, but of opposite sign,

and of intensity less in the ratio of a
3
to c

3
.

The case of a spherical mass of fluid within a rigid enclosure

and containing a singular point of the second order with its axis

in a radial direction might be treated in a manner precisely similar,

by supposing the space exterior to the sphere filled with fluid,

taking to represent the reflected motion in this case, instead of (5),

the corresponding expression according to ascending powers of r,

and comparing the resulting normal velocity at the surface of the

sphere with (3) instead of (4). This is however unnecessary, since

we see that the relation between the two singular points P, P is

reciprocal, so that either may be regarded as the image of the

other.

Suppose now that we have two solid spheres, S, S ,
exterior to

each other, immersed in a fluid. Suppose that S is at rest, and

that S moves in the direction of the line joining the centres, the

fluid being at rest except as depends on the motion of S. The

motion of the fluid may be determined by the method of successive

reflections (p. 28), which in this case becomes greatly simplified

in consequence of the existence of a perfect image representing

each reflected motion, so that the process is identical with that of

Thomson s method of images, except that the decrease of intensity

of the successive images takes place according to the cubes of the

ratios of the successive quantities such as a, c, instead of the first

powers.

If a sphere move inside a spherical envelope, in the direction

of the line joining the centres, the space between being filled with

fluid which is otherwise at rest, the motion may be determined in

a precisely similar manner.

If two spheres outside each other, or just touching, be con

nected by an infinitely thin rod, and move in a fluid in the direction

of the line joining their centres, we have only to find the motion
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due to the motion of each sphere supposing the other at rest, and

to superpose the results.

I should probably not have thought of applying the method
to the solid bounded by the outer portions of two intersect

ing spheres, had not Professor Thomson shewn me that it was

not limited to the cases in which each sphere is complete ;
and

that although it fails from non-convergence when the spheres

intersect, yet when the exterior angle of intersection is a sub-

multiple of two right angles the places of the successive images
recur in a cycle, and a solution of the problem may be obtained

in finite terms by placing singular points of the second order at

the places of the images in a complete cycle.

The simplest case is that in which the spheres are generated

by the revolution round their common axis of two circles which

intersect at right angles. In this case if $, S f

are the spheres,

0, their centres, Ol
the middle point of the common chord of

the circles, the image of in $ will be at O
lt

and the image
of O in S will be at .

Let a, b be the radii of the spheres ;
c the distance V(

2

of their centres
; e, f the distances a?/c, tf/c of O

l
from 0, ;

C the velocity of the spheres ; r, 6 the polar co-ordinates of any

point measured from 0; r\, t
the co-ordinates measured from

4 ;

r, & the co-ordinates measured from
; 0, 6

lt
& being all

measured from the line 00 . If S were away, we should have

for the fluid exterior to 8

n 3
cos 6

+ -&amp;lt;&-&-

For the image of this in S we have a singular point at 6)
x

for

which
,

Ca*b* cosfl,
* =

~&amp;lt;T ^&amp;gt;

and for the image of this again in 8 we have a singular point at

for which

3COS0
7

9 = - oo
-gpr

&amp;gt;

which is precisely what is required to give the right normal

velocity at the surface of S . Moreover all the singular points

lie inside the space bounded by the exterior portions of the inter-



TO TWO OSCILLATING SPHERES. 235

secting spheres. Hence the three motions together satisfy all the

conditions of the problem, so that for the complete solution we
have

. , (a* cos d as
b
3
cos O

l
cos ff\

0= -*V\?r- -ff*- -?r-}

Just as in the case of a sphere, if a force act on the solid in

the direction of its axis, causing a change in the velocity C, the

only part of the expression for the resistance of the fluid which

will have a resultant will be that depending upon dC/dt. This

follows at once, as at pp. 50, 51, from the consideration that when
there is no change of C the vis viva is constant, and therefore the

resultant pressure is nil. If we denote by M dC/dt the resultant

pressure acting backwards, we get for the part of M due to the

pressure of the fluid on the exposed portion of the surface of S
t

72 ffa
3 cos0 cWcosfl, , ,,/!

.

vrpb I

j

--
2
---

3-72 + # cos
f
cos # sin

taken between proper limits. Putting b cos & x
t
we have

r cos 6 = c + x, ?\ cos
A =/+ x,

Expressing cos 0, cos0
t ,

cos & in terms of x and r, x and r
lt x,

and changing the independent variable, first to x
y
and then in the

first term to r and in the second to r
lt
we have for the indefinite

integral with sign changed

which is to be taken between the limits r = a to r = c + b, r^ ab/c

to f+b, x f to 6. The part of M due to the integral over

the exposed part of the surface of 8 will be got from the above

by interchanging; and on adding the two expressions together,

and putting/= b
2

/c, c = V(
2 + &

2

)&amp;gt;

we get for the final result

- 26
6

}.

When one of the radii, as b, vanishes, we get M =
fTrpa

3
as

it ought to be.



[From the Transaction* of the Cambridge Philosophical Society,

Vol. vin. p. 533.]

ON THE CRITICAL VALUES OF THE SUMS OF PERIODIC SERIES.

[Read December 6, 1847.]

THERE are a great many problems in Heat, Electricity, Fluid

Motion, &c., the solution of which is effected by developing an

arbitrary function, either in a series or in an integral, by means of

functions of known form. The first example of the systematic

employment of this method is to be found in Fourier s Theory

of Heat. The theory of such developements has since become an

important branch of pure mathematics.

Among the various series by which an arbitrary function f(x)
can be expressed within certain limits, as and a, of the variable

#, may particularly be mentioned the series which proceeds accord

ing to sines of TTX/O, and its multiples, and that which proceeds

according to cosines of the same angles. It has been rigorously

demonstrated that an arbitrary, but finite function of #, /(#), may
be expanded in either of these series. The function is not

restricted to be continuous in the interval, that is to say, it may

pass abruptly from one finite value to another
;
nor is either the

function or its derivative restricted to vanish at the limits and a.

Although however the possibility of the expansion of an arbitrary

function in a series of sines, for instance, when the function does

not vanish at the limits and a, cannot but have been contem

plated, the utility of this form of expansion has hitherto, so far as

I am aware, been considered to depend on the actual evanescence

of the function at those limits. In fact, if the conditions of the

problem require that /(O) and f(a) be equal to zero, it has been
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considered that these conditions were satisfied by selecting the

form of expansion referred to. The chief object of the following

paper is to develope the principles according to which the expan
sion of an arbitrary function is to be treated when the conditions

at the limits which determine the particular form of the expansion
are apparently violated

;
and to shew, by examples, the advantage

that frequently results from the employment of the series in such

cases.

In Section I. I have begun by proving the possibility of the

expansion of an arbitrary function in a series of sines. Two
methods have been principally employed, at least in the simpler

cases, in demonstrating the possibility of such expansions. One,

which is that employed by Poisson, consists in considering the

series as the limit of another formed from it by multiplying its

terms by the ascending powers of a quantity infinitely little less

than 1
;
the other consists in summing the series to n terms, that

is, expressing the sum by a definite integral, and then considering

the limit to which the sum tends when n becomes infinite. The

latter method certainly appears the more direct, whenever the

summation to n terms can be effected, which however is not always
the case; but the former has this in its favour, that it is thus

that the series present themselves in physical problems. The

former is the method which I have followed, as being that which

I employed when I first began the following investigations, and

accordingly that which best harmonizes with the rest of the paper.

I should hardly have ventured to bring a somewhat modified

proof of a well-known theorem before the notice of this Society,

were it not for the doubts which some mathematicians seem to

feel on this subject, and because there are some points which

Poisson does not seem to have treated with sufficient detail.

I have next shewn how the existence and nature of the dis

continuity of /(&)
and its derivatives may be ascertained merely

from the series, whether of sines or cosines, in which f(x) is

developed, even though the summation of the series cannot be

effected. I have also given formulae for obtaining the develope -

ments of the derivatives of f(x) from that of f(x) itself. These

developements cannot in general be obtained by the immediate

differentiation of the several terms of the developement of f(x),
or in other words by differentiating under the sign of summa
tion.




