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The interaction of eddies with variations in topography, together with a tendency 
for large-scale wave propagation, generates a systematic stress which acts upon 
large-scale mean flows. This stress resists the midlatitude tropospheric westerlies, 
resists the oceanic Antarctic Circumpolar Current, and may be a dominant mecha- 
nism in driving coastal undercurrents. Associated secondary circulation provides a 
systematic upwelling in coastal oceans, pumping deeper water onto continental shelf 
areas. The derivation rests in turbulence closure theory and is supported by numerical 
experiments. 

1. Introduction 
The role of variable topography is recognized to be important to circulation of 

Earth’s and other planetary atmospheres and of Earth’s oceans. Importance is made 
clear, in part, by the large anomalies of potential vorticity given by variation in total 
depth of fluid. This article is concerned with subinertial vorticity dynamics of 
eddy-topography interaction. Gravity lee wave phenomena are not included, though 
these may certainly be significant in many circumstances. The goal of the present 
article is to show that the vorticity interaction provides an effective rectification 
mechanism for large-scale mean flows. 

Section 2 provides heuristic motivation, followed in $3 by a specific derivation 
under the idealization of barotropic, quasi-geostrophic flow. When statistics of 
topographic roughness or of eddy energy are inhomogeneous, a mean torque is 
obtained in $4. Mean flow rectification is accompanied by secondary circulation which 
is particularly important for cases of coastal flow where secondary circulation appears 
as systematic upwelling of deeper water onto continental shelves, as discussed in $5.  
Statistical projection onto a low-order subsystem is considered in $6. The derivation 
is theoretical; results are illustrated in $7 from numerical experiments. A wide range 
of geophysical flows appear to exhibit phenomena much like those here derived; 
examples and some implications are discussed in $8. 

2. Heuristic motivation 
This section is a physically motivated overview with two purposes. First, one 

identifies important processes with a relatively simple argument which obtains 
qualitatively the rectification mechanism. This may provide some interpretation and 
guidance for the mathematical analysis in $3. Secondly, it may be that the physical 
processes described in this section are more robust than the limiting idealizations 
which are imposed in $3. 
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There are three processes involved : 
(a) Tendency for vorticity-topography correlation. Viewed simply, if eddy 

motions tend to randomize locations of water columns, then on average a water 
column which overlies a topographic elevation will be foreshortened and so tend to 
exhibit negative (CW) vorticity in the northern hemisphere. Tendency toward 
geostrophic compensation, even if incomplete, will induce positive pressure anomaly 
on a geopotential surface associated with negative vorticity. The overall result, 
valid in either hemisphere, is to induce a positive correlation between pressure 
anomaly on geopotential surface and local anomaly of topographic elevation. 

(b )  Large-scale vorticity wave propagation. If there is a background gradient in 
potential vorticity , perhaps due to meridional variation of Coriolis parameter or 
perhaps due to larger-scale changes in fluid depth, then there will occur a tendency 
for Rossby wave propagation. On a continental margin, such waves are sometimes 
called shelf waves. Vorticity perturbations will tend to phase propagate in a preferred 
direction, here labelled ‘forward ’. Nonlinear interaction, topographic scattering 
and any explicit dissipation will attenuate the vorticity perturbation in its forward 
phase propagation. Meanwhile, eddy processes tend to re-establish the vorticity- 
topography correlation. At statistical stationarity, the result is that negative 
vorticity (in northern hermisphere) and hence positive pressure anomaly (in either 
hemisphere) will tend to lie ‘forward ’ of topographic elevations. Negative pressure 
anomalies will tend to lie ‘forward’ of topographic depressions. 

(c) Momentum transfer by pressure-slope correlation. Positive pressure anomalies 
on ‘forward ’ topographic faces, with negative anomalies on ‘backward ’ faces, 
transfer ‘forward ’ momentum from solid earth into the overlying fluid. Momentum 
so transferred to the fluid may appear in different forms. The deep fluid may be driven 
to the right or left of ‘forward’ such that Coriolis reaction on the mass translation 
will accommodate the transferred momentum. Other external forces may be applied 
which will resist the transferred momentum. Finally, momentum transfer which 
cannot be accommodated otherwise will appear as a tendency to propel the fluid in 
the ‘forward’ direction. 

3. Derivation 
Processes described in the preceding section, including eddy-wave interaction, 

topographic scattering, etc., are not readily analytically tractable. For general 
environments and circumstances, resort to numerical simulation experiments will 
surely be required. In this section I adopt restrictive idealizations for reasons of 
tractability and clarity. 

Consider barotropic, quasi-geostrophic motion on an unbounded, rough-bottomed 
/?-plane, where /? is due to variation of Coriolis parameter and/or mean bottom slope. 
For sufficiently small amplitude topography and sufficiently gentle mean slope, 
horizontal velocity u(x ,  t )  is given by a stream function field u = f x V$ where 2 is the 
unit vertical and W is the horizontal gradient operator. Relative vorticity C = 2- W x u 
is 5 = Vz$ where V2 is the two-dimensional Laplacian in horizontal coordinates 
x = (2, y). In  addition to the variable velocity field u(x,t), we assume a temporally 
evolving but spatially uniform velocity V( t ) .  Variable velocity u and stream-function 
$ are defined by departure from spatially uniform motion. 

Following customary @-plane notation, increasing y is ‘north’ and increasing x is 
‘east ’. If /? is due to bottom slope then increasing y is ‘up-slope ’. 

Bottom roughness is given by a potential vorticity h(x)  such that the total depth 



Systematic forcing of large-scale geophysical Jlows 465 

H ( x )  is given by H = H,( 1 - h/ f,) where H ,  is an average depth and fo is reference 
value for Coriolis parameter assuming ,&plane approximation. Alternatively to 
B-plane, one may suppose total depth given by H = H ,  e-lY'fo (1 - h/f,) assuming 
constant Coriolis parameter f,. 

Under restrictions that By'/ f, 4 1, h'/f, 6 1 and c- ' / f0  4 1 where y' is the scale 
length of the flow domain in the y-coordinate, h' is the characteristic height of h, and 

is a characteristic scale for relative vorticity, the vorticity tendency equation is 

a,C+J(+-Uy,S+py+h) = q - D L  (1) 

J is the Jacobian determinant J ( A ,  B) = la(A, B)/a(z,  y)l, q expresses any externally 
applied torques and D is anoperator which may act to dissipate fluctuations of 6. Explicit 
forms for q and D will be given as needed. 

Convenient boundary conditions may be posed either 
(a) as a zonal channel requiring + be constant along two latitudes y1 and y,, with 

possible further conditions depending upon specific choice of D, and requiring 5 and 
h to be periodic in x over periodicity length L,, or 

(b) as a doubly periodic domain with C and h periodic both in x and in y. 
Concern in this paper will be directed toward the latter (b) formulation. In either 

case and if B =+ 0, velocity U is required to have no y-directed component. Only the 
x-directed component, denoted U ,  has been retained in (1). 

Evolution of U may be obtained from consideration of the x-directed momentum 
budget equation a, U = E(O-U)-+/,h, 

where EO is an externally imposed zonal momentum source. If we think of an 
idealized ocean, EO may be spatially uniform part of the x-directed surface wind 
stress. For simplicity, a linear frictional drag - EU is included, where E is an Ekman 
coefficient of surface drag. 

The essential term in (2) is -+a, h where the overbar denotes spatial average over 
the flow domain. Geostrophic stream function y? being proportional to pressure, 
-+a,h is the exchange of x-directed momentum across the bottom boundary by 
pressure forces. Imbalance on the right-hand side of (2) results in net tendency a, U ,  
cf. Hart (1979). 

Alternatively, an integration by parts gives - +a, h = ha, + under the condition 
of periodicity in x. With $ the velocity streamfunction, -ha,$ is y-directed 
geostrophic mass transport while EO and EU are ageostrophic transports associated 
with external force and a frictional Ekman layer. A t  stationary a, U = 0, a zero on 
the right-hand side of (2) is the statement of no net mass translation. 

With double periodicity in each of h, q and C, we Fourier expand on basis functions 
exp ik-x,  denoting the complex Fourier coefficients at wavelength k as hk, qk and Q. 
Equations (1) and (2) transform to 

-- 

( a ~ + i ~ k + ~ ~ ) ~ k + J k ( + , ~ + h ) + i ~ 2  u h k  = qk7 (3) 

where (5 )  

Dissipation operator D transforms to vk, a function of wavenumber k. Jk is the 
Fourier coefficient of the transformed Jacobian with arguments as listed. Stream- 



466 G. Holloway 

function coefficient +k is related to ck as Q = - k2+k. The asterisk denotes complex 
conjugation. 

Equations (3) and (4) express a range of physical phenomena including wave 
propagation as Wk, turbulent self-advection as J(+, y), and eddy-topography inter- 
action as J(+,h). Explicit solutions by numerical integration will be given in $7 
below. Details of each solution depend upon the particular h(x)  and upon the 
particular realization of q(x, t ) .  For these reasons, explicit solutions may not be of 
general interest beyond serving as illustrations. Instead our goal is to seek the 
statistical solution for the evolving statistics of (3), (4). 

Given the variance spectrum Hk = lhk12 of topographic fluctuation, given a spec- 
trum of external torques, given an explicit dissipation function vk, and given explicit 
parameters /3, E and U ,  we seek the statistical distribution of vorticity variance 
2, = ( 1&12), the vorticity-topography cross-correlation c k  = Rk + irk = ([t hk) 

and the average uniform translation (u>, hereinafter denoted U .  Angle brackets 
denote ensemble averages over realizations of hk and of qk.  An implicit assumption 
is that fluctuations may be close, in some sense, to multivariate Gaussian. Departure 
from random phase in the vorticity field will be taken into account; however, 
topographic fluctuations with far-from-Gaussian statistics should be regarded 
with caution. 

Approaches to such problems have fallen into two categories. If one strictly omits 
all external forcing and all dissipation while retaining a finite, though possibly quite 
large, number of Fourier modes, then methods of classical equilibrium statistical 
mechanics may be applied in the context of large-scale geophysical flows (Salmon, 
Holloway & Hendershott 1976). When forcing and dissipation are present, the 
problem is one of disequilibrium statistical mechanics which is, to date, unsolved in 
the context of geophysical flows. While equilibrium statistical mechanics provides 
valuable insights (Carnevale & Frederiksen 1987), omission of forcing and dissipation 
yields results which are systematically unrealistic. This paper addresses the dis- 
equilibrium problem, especially seeking to estimate the average topographic force, 
which would vanish under equilibrium statistical mechanics. 

I follow a line of research begun in turbulence theory by Kraichnan (1959) and 
abbreviated in plausible though ad hoc fashion by Orszag (1970). A number of 
geophysical applications were developed over recent years and are reviewed by 
Salmon (1982) or Holloway (1986). In particular I here draw upon the theories of 
Rossby wave turbulence (Holloway & Hendershott 1977) and of topographic 
turbulence (Herring 1977 ; Holloway 1978). 

From (3) 

(3, + 2uk) zk = x 2Akp Re <ck Cp Cq + Ck c p  hq) + 2 k ~  U1k -k Qk, (6) 
A 

Symbol xA indicates summation over wavevectors p and q satisfying k + p + q  = 0. 
Akp = p-2k xp.2 results from Jk. Qk is the effective source of vorticity variance due 
to external torques qk. We assume that qk are uncorrelated with hk. 

Equations (6) and (7),  together with (4) when Im ( $ z h k )  = -kP2Ik cannot be 
solved on account of unknown triple correlations of types (CCC), (c@) and (yhh). 
Further equations for the evolution of the triple correlations may be obtained from 
(3) but these equations will involve a variety of quadruple correlations. Algebraic 
burden increases rapidly. Continuation of this process leads to an unclosed hierarchy 
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in which equations for evolution of correlations of any order involve unknown 
correlations of higher order. 

Solution requires the introduction of a ‘ closure hypothesis ’. Extensive literature 
deals with this problem (e.g. Leslie 1973; Orszag 1977) which is not resolved 
satisfactorily. For present purposes I follow Holloway (1978). Suppressing algebraic 
detail, the procedure is as follows: 

Evolution equations for triple correlations may be obtained from (3) with explicit 
inclusion of quadruple correlations of types (cccc), (<[ch>, (cchh) and (chhh). In 
part such quadruple correlations may be expressed as binary products from 2, C and 
H; a part which cannot be so expressed defines ‘fourth cumulant’ statistics. The 
closure hypothesis involves two steps : 

(a)  it  is assumed that the net effect of fourth cumulants is to induce a tendency 
for triple correlations to relax toward vanishing, and 

(b) it is assumed that a characteristic relaxation time for triple correlations is short 
compared with evolution timescales of 2 or C. The latter assumption is only the 
restriction that we consider systems near statistical stationarity. 

For simplicity and tractability, assumption (a)  is modelled by a linear triple 
correlation process such that each triple correlation evaluated at wavevectors k,p ,  q 
will realize a relaxation timescale 6kpq.  Explicit specification of ekpq, following 
Holloway & Hendershott (1977) is 

and 6Jk is given by (5 ) .  Because of the condition k + p + q  = 0 in (3), U which appears 
in ( 5 )  does not affect (8). A turbulent decorrelation rate ,uk is adopted here as a 
compromise between a more complicated formulation after Kraichnan (1971) and 
a relatively simpler heuristic form after Pouquet et al. (1975). A contribution from 
H p  results from incoherent topographic wave propagation after Holloway (1978). h 
is a single, adjustable scalar coefficient. 

Under assumption (b), triple correlations achieve their stationary response to 
forcing by binary products from 2, C and H. Substitution of stationary values of triple 
correlations into (6) and (7) yields 

i a , z k + ( q k + V k ) Z k - k z  ulk+ykRk = s k + x k ,  (10) 

(11) 
where 
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In (12)-(14) contributions from c k  have been omitted, based in part upon CZ, small 
compared with z k  Hk and also upon the earlier evaluation of Holloway (1978, see 
especially figure 10) in which contributions due to R, were retained under circum- 
stances /3 = U = 0. Of central concern in this article is the x-directed force which 
the topography exerts upon the mean flow. From (4) this force is 

(15) F = Im x k, <$: h k )  = -x k, k-’Ik. 
k k 

If one writes F as a sum of contributions from each k, i.e. F = & Fk, then 

Consider the two contributions on the right-hand side of (17). Expression (12) for 
q k  is not necessarily positive at all k, depending upon the distributions of Zp and Hp.  
However calculations of Holloway (1978) show Tk to be positive and an increasing 
function with increasing k for a wide range of circumstances. Then the first term on 
the right-hand side of (17) takes a sign opposing U .  This is a form drag which is 
unsymmetrical with respect to U on account of the role of U in w i .  For U > 0, w i  
may be small whereas U < 0 yield larger wg for given magnitude of U .  The drag 
strongly resists U > 0, especially near U = /3/k2, but weakly resists U < 0. 

The second term on the right-hand side of (17) appears to be novel. This force takes 
the sign of wk k, and so is negative for all U < /3/k2. Importantly, in the absence of 
mean U ,  the second term tends to accelerate mean U to negative values. It is the 
role of this bias term which separates the present theory from that of Brink (1986) 
who argues that unsymmetric drag in the presence of time-periodic forcing results 
in non-zero mean flow. The sense of the mean flow anticipated by Brink (1986) is 
realized in numerical experiments by Haidvogel & Brink (1986) ; at issue however is 
whether topographic stress acts as ‘drag’, i.e. opposed in sense to U .  

A question arises concerning the relative magnitude of the two terms in (17). 
Especially, if U < 0 then the first term is positive while the second term is negative. 
Perhaps the net is insignificant ? A careful answer requires detailed evaluation of q k  

and y k  for assigned Hk and for u and z k ,  all self-consistently determined from (4), 
(10) and (1 1).  That is beyond the scope of the present effort. However, an interesting 
‘approximation’ can be made based upon previous evaluations by Holloway (1978) 
which indicated that ‘ roughly ’ 7 ,  x yk over a wide range of k and for some range 
of conditions. The actual skill of this ‘approximation ’ is not known but the suggestion 
is that the net in (17) may be given ‘roughly’ by 

where u k  = w k -  Uk, is the intrinsic wave frequency and explicit drag v ,  is here 
omitted. Fk takes the sign of gk k, < 0 and so tends to accelerate U toward more 
negative values independently of the sign of U .  This strange result is only approxi- 
mate; if U is more negative than the equilibrium value from the inviscid equipartition 
solution of Carnevale & Frederiksen (1987), then the net force will turn to positive 
after the H-theorem from Carnevale, Frisch & Salmon (1981). Also, the approximate 
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form (18) fails when /3+0 since cancellation of the two terms in (17) does not occur 
precisely. 

An important comment on this section is that it is inappropriate to speak of F as 
a ‘form drag’, since P may not oppose U at all. To the extent that (18) is a valid 
approximation, F as a ‘form stress’ is only weakly a function of U .  

4. Statistical inhomogeneity and ‘form torque’ 
A limitation of the foregoing derivation is the assumption of statistical homoge- 

neity in fluctuations of h and of 5. To some extent this limitation can be relaxed in 
the sense of a two-scale analysis. One supposes that fluctuations on ‘short’ length- 
scales 2, y are slowly modulated in their statistics on ‘ long’ lengthscales X, Y. Fourier 
transforming on the short scales, statistics z k  or c k  depend parametrically upon X, Y 
while /3 or U may be functions of X, Y. To make such substitutions into the full 
equations ( 1 )  and ( 2 )  is an imposing challenge for the theory of sheared, inhomogeneous 
turbulence. However, we may make some simple observations based upon a 
statistically inhomogeneous form stress ( 1  7 )  or approximately from ( 1  8). 

A mean torque acting on the large-scale flow will be given by r = -ay F = C k  r k  

where Fourier contributions r k  = -ayFk.  ‘Roughly’ from (18), 

where 7 ,  depends parametrically upon Y through the dependence of Z,, and Hp in 
(12) .  Terms on the right-hand side of (19) are grouped as those proportional to Hk 
and a term proportional to ay Hk. Terms multiplied by Hk include effects of statistical 
inhomogeneity of eddy properties expressed by ayqk,  effects of change in mean 
bottom slope a,B and mean shear effects aY U .  With respect to the relationship 
between form torque and mean shear, one ought to calculate ay Fk from (17)  with 
full evaluation of qk and Y k  rather than from (18). 

The contribution of ay Hk in (19) may be interesting. Even in a flow with constant 
B and homogeneous eddy statistics, gradients of topographic roughness are seen to 
act as torques on the mean circulation. A physical interpretation of the source of such 
torques can be given in terms of secondary circulation as described in the next section. 

5. Secondary circulation 
Following (2 )  it was noted that the form stress -$a, h may be written ha, $, given 

the condition of periodicity in x. The correlation of fluctuations of total fluid depth 
with fluctuations in y-directed geostrophic velocity supports a y-directed geostrophic 
mass translation - R a, $. If one requires no net y-directed mass translation, then 
ageostrophic transports E 0 and E U must compensate. 

Theoretical derivation in this article is given for barotropic flow. However the 
implied secondary circulations are quite structured in the vertical. Bottom topo- 
graphic fluctuations occur only in a small fraction, approximately h’lf,,, of the total 
fluid depth. A t  depths above the range of topographic fluctuations, the assumed 
x-periodicity of pressure assures no y-directed geostrophic mass transport. Therefore 
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the entire geostrophic mass transport -ha, @ occurs in the deep fluid over a depth 
range given by the envelope of topographic fluctuations. 

Properties that may be more concentrated in the deeper fluid will be preferentially 
transported. If /3 is determined by the gradient of Coriolis parameter, then - h a, y? 
has the sense of poleward transport in either hemisphere. If /3 is given by large-scale 
variation of fluid depth, as in oceans overlying continental margins, then - h a, y? has 
the sense of upslope or onshore transport of deep waters. The latter case may have 
considerable consequences since this mechanism has a systematic bias favouring 
upwelling of deeper, nutrient laden waters in coastal oceans. 

Lastly the ‘form torque’ obtained in 54 is easily understood in terms of secondary 
circulations. Where there are gradients of topographic fluctuation variance, the mass 
transport is divergent, exerting net torque on the water column. Likewise changes 
in large-scale slope result in divergent transport. A particularly interesting case is 
that of oceanic banks. These shoal regions are predicted from this theory to experience 
persistent upslope secondary circulation, the convergent flow inducing anticyclonic 
vorticity. 

6. Statistical projection 
One implication of present theory is that idealized models of planetary flows based 

upon highly truncated spectral equations may be systematically defective. A good 
deal of interest has been stimulated concerning possible multiple equilibrium 
solutions following original analyses by Charney & DeVore (1979), Hart (1979) or 
Wiin-Nielsen (1979). These analyses were based upon systems of only three degrees 
of freedom, raising the question of how well such idealization may reflect the actual 
atmosphere where some thousands to perhaps a million degrees of freedom are 
believed to be dynamically significant. While one approach is to increase the number 
of degrees of freedom from three to tens or hundreds in numerical models, an 
alternative is to seek a statistical projection of the large degrees of freedom system 
onto a small subsystem. One fixes attention on the subsystem, imagining that 
subsystem embedded in the larger system but with the couplings given only in 
probability. In this sense Egger (1981) sought to extend three component models of 
multiple equilibria to more realistic context by hypothesizing that couplings to other 
atmospheric motions would be realized as additive eddy noise. Also, the damping in 
three component models may be thought to reflect, in part, an eddy viscosity due 
to other motions. Amplitudes of eddy noise and of eddy damping have been chosen 
on phenomenological grounds. 

Closure theoretical development as 5 3 provides a systematic basis for assigning 
eddy noise and eddy damping. More importantly, $3  reveals an effect which has been 
overlooked in phenomenologically motivated models. Equations (lo)-( 14) were 
developed to approximate statistics of (3). We may observe that (10)-(14) are the 
exact equations for statistics of a stochastic model equation 

(a, + i ~ ,  + V &  +T,) gk +Y, h, +ik, uh, = Q,+ t,, (20) 

where 7, appears as eddy damping while i& is a random realization of an eddy noise 
withstatisticsgivenby (&( t ) (z ( t ’ )>  = X,&(t-t’). Onemighttakey,andX,from (12) 
and (14). 

The essentially ‘new’ term that appears in (20) is yk h, for which there was no 
corresponding term in (3), since y, is real whereas ik, U is imaginary. g, in (20) is not 
6, in (3); rather & is a stochastic model variable whose first and second moment 
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statistics are determined from (20) to approximate statistics of i& from (3). In this 
sense (20) is the statistical projection of (3), with its many degrees of freedom coupled 
by Jk terms, onto a single-mode (two degree of freedom) system. 

Corresponding to (20), the statistical projection for a, U is only (4) with F from (15) 
for the topographic stress. To construct a three component system in the style of 
Charney & DeVore (1979), Hart (1979) or Wiin-Nielsen (1979), extended to include 
statistically the effects of other degrees of freedom after Egger (1981), one could write 

( : + v + l ) N + o M + k ,  Uh = &, 

( g + E )  U - G h N  k = Et?+P,  

where we have considered only a particular k, say k,  and written & = M + i N .  
Subscripts k are implied in (21)-(23). 5, and ti are the real and imaginary parts of 
q i  + .&. P is F from (15) omitting the contribution from k.  

The suggestion is that, if one sought a probabilistic treatment of multiple equilibria 
in terms of three component systems, then (21)-(23) would be more appropriate. A 
deterministic calculation which might neglect &, k and P,  while seeking steady 
solutions, will resemble previous results in certain regards. Depending on parameter 
values, including 7 and y ,  there may be three solutions, two of which will be stable 
and one unstable. However, on account of the ‘new’ term yh  in (21), there will occur 
circumstances when t? > 0 when one of the stable solutions (corresponding to 
‘blocked’ flow) occurs at U < 0. The other stable (‘streaming’) solution occurs at  
o <  u< 0. 

7. Numerical experiments 
The statistical hypotheses leading from (3) to (lo), (1  1 )  are only hypotheses while 

the result (17) may seem peculiar, especially that the net stress may propel U toward 
more negative values even when U < 0. A straightforward approach to  this question 
is by direct modelling. 

Equations (3) and (4) have been integrated in a spectral domain truncated 
isotropically at radial wavenumber 30. Jacobian terms are evaluated by dealised 
pseudospectral method (Orszag 197 1) and timestepping is filtered leapfrog with exact 
evaluation of dissipative terms. Dissipation in the vorticity equation is given the form 
uk = E+Ak4.  Topographic fluctuations are assigned randomly such that expected 
modal variances are given by 

(lhklz) = Bk-l(k,,+k)-! with k, = 3. 

Two sets of experiments were performed. In the first set, steady forcing 0 is applied 
in (4) while no external torques qk are applied in (3). The flow is integrated to 
statistical stationarity and the stationary U is plotted against 0 in figure 1. In  a 
second set of experiments, fields of statistically homogeneous, isotropic torques qk are 
applied over a wavenumber band 4 < k < 7 .  This raises the eddy energy levels in the 
flow and results in more negative values of stationary U for given 0, as also shown 
in figure 1. 

Of particular interest are occurrences of negative U with positive 0, i.e. instances 
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FIG~RE 1. Numerical experimental values of mean flow U are plotted against mean driving force 
0. -, force d i s  applied with no other forcing. ----, random torques aa well as force Dare applied. 
_.- , variance of random torques is about twice that shown in the dashed trace. Time averaged 
U are plotted with bars indicating f one standard deviation a t  statistical stationarity. A light 
trace indicates the frictional solution U = d which would be realized in absence of topography. 

FIGURE 2. (a) A plan view of p y + h  where h is the same random topography used in figure 1 but 
here modulated aa cos’ y for -?iz < y < and zero elsewhere. (b) A plan view of instantaneous 
total streamfunction 9- U after the flow has achieved statistical stationarity in the presence of 
random torques and with d = 0. 

where the topographic stress drives persistent mean flow against the mean forcing. 
The random torques supply no mean momentum but only make up an energy source 
which must balance both internal dissipation and the energy sink Uodue to the mean 
force. Of interest also is the negative sign of topographic stress where U is negative, 
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supporting the argument after (17) that the topographic stress is not just an 
unsymmetrical drag but rather is biased to take negative values on either sign of U .  

Further experiments exhibit the form torque from $4, Random topographic 
roughness as described in the previous experiments is modulated by cos2y for 
-in < y < in and is zero elsewhere. No mean stress is applied, i.e. 0 = 0. Statistically 
homogeneous torques qk are applied as previously. Positive form torques arise along 
y x -in, while negative torques arise along y x in building a negatively x-directed 
jet along y x 0. Figure 2 shows a plan view of the modulated topographic roughness 
and of instantaneous total streamfunction @- U ,  when the flow achieved statistical 
stationarity . 

Numerical experiments described here do not provide detailed quantitative testing 
of the foregoing theory. Such effort, requiring full numerical evaluation of equations 
(8)-(15), lies outside the scope of present investigation. What is given here is a 
qualitative suggestion of phenomena predicted on closure theoretical grounds. 

8. Discussion 
The theory developed in this paper offers, I believe, a novel explanation for a wide 

variety of observed geophysical flows. Especially there are oce5nic observations of 
a propensity for coastal undercurrents overlying the continental margin to flow in 
the direction of shelf-wave propagation. Such regions are characterized (a) by 
gradients of f , / H ,  where H is mean depth averaged in the largescale longshore 
direction, (b) by substantial topographic ‘roughness’ in the forms of canyons, 
transverse ridges and other topographic irregularities, and (c) substantial eddy 
activity. 

In the northern hemisphere, predicted currents should tend to circulate in 
counterclockwise sense around ocean basin peripheries. Since the driving force is 
topographic stress at the bottom of the water column, the phenomenon should be 
more apparent in the deeper circulation which may sometimes be of opposite sense 
to surface circulation. An example is the northward flowing California Undercurrent 
(Kundu & Allen 1976) which is but one example of prevalent occurrences of 
poleward-flowing eastern margin undercurrents. Along western margins of ocean 
basins, the present theory suggests a tendency for equatorward flows, as seen for 
example in the Mid-Atlantic Bight (Beardsley & Winant 1979). In  the Arctic Ocean, 
the predicted tendency is for eastward flow on the basin margins, as might be 
evidenced by a suggested Beaufort Undercurrent (Aagaard 1984). In  the southern 
hemisphere, the predicted tendency is for westward circulation on the Antarctic 
margin, (Carmack 1977) opposed to the sense of the Antarctic Circumpolar Current. 
Evidence for upwelled water associated with a canyon topography on a continental 
margin is discussed by Freeland & Denman (1982). 

Agreement or disagreement in sense only between theory and observation is not 
a very strong test. However, several of the examples mentioned above flow in a sense 
opposite to the more apparent driving forces such as wind forcing. For cases of coastal 
undercurrents, there is often appeal to possible longshore pressure gradients since 
direct observation of the near longshore tilt of sea surface with respect to geopotential 
level is difficult. Uncertainty concerning the role of longshore pressure gradients 
might be ameliorated either in the Arctic Ocean or around Antarctica where one could 
consider mean flow along a closed path which is smoothly deformed to follow an 
average isobath. 

Another class of oceanic observations is the propensity to find anticyclonic 
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circulation around offshore banks such as the Georges Bank. The form torque 
obtained in $4 was seen to induce such flows. Again there are other possible 
explanations, mostly in terms of tidal rectification processes such as Wright & Loder 
(1985). 

A last comment from oceanic observations would concern abyssal circulations 
where present theory predicts slope currents at the base of continental margins as 
well as on flanks of mid-ocean ridges following the sense of cyclonic circulation around 
the peripheries of deep basins (Dickson et al. 1985). A number of deep currents are 
known from their distinctive bottom-water characteristics and it is usually supposed 
that these are gravity-driven flows, constrained by rotation. If the frictional 
retardation can be estimated, then a streamwise momentum balance may indicate 
the role of theorized topographic stress in driving such flows. It is also in the abyssal 
ocean that one might test for mean westward circulation due to topographic stress 
associated with planetary B. 

In  each of the examples mentioned, the outstanding question is the quantitative 
one : is the expected amplitude of the form stress sufficient to account for the observed 
flow? At  the present stage of development, this important question remains 
unanswered. However, it is possible to address a more limited question, namely a 
‘rough ’ calculation might already show if the stress derived here is inconsequentially 
small. Let us begin at (18), already leaving aside the question of how well (18) 
approximates (17). For lengthscales near a dominant eddy scale, takes values 
‘roughly’ as 5‘ (the typical vorticity). If Doppler shift wk-ak  is not too great, the 
expression va(w2+v2)-l  in (18) will find its maximum value a t  the scale for which 
(akl x v k .  If Iakl x B / k ,  that scale is ks = B/C. In their analysis of flat bottom, 
B-plane turbulence, Holloway & Hendershott (1977) find ks to be a transitional scale 
between wavelike behaviour at larger scales and more turbulent behaviour at shorter 
scales, with ks tending to approach the dominant energetic eddy scale. In more 
weakly turbulent environments, q a / ( w 2  + v2)  will be dominated nearer the stationary 
wave resonance o = 0 at scale ki = /3/U where U > 0. For present purpose of gross 
estimation I adopt ks, taking Fk ‘roughly’ as +kilHks where 4 reflects an approximate 
maximum of y a / ( W 2 + v 2 ) .  Summed over k, F may be given roughly as +kjlHs where 
Hs is the sum of all Hk for which !jks < lkl < 2kb, say. Since F is acceleration of the 
depth-averaged flow, stress is +kFIHs multiplied by fluid depth H,, taking fluid 
density to be lo3 kg . m-3 for oceanic examples. 

Consider the Antarctic Circumpolar Current for which the mean wind stress is 
eastwardat order of 1 dyn/cm20r m2 at lo3 kg . k i l ,  baseduponplanetary 
/3, is roughly an abyssal eddy Rossby number, say times earth radius. Hence 
ks x 6 x lo4 m. Ha is the topographic variance as fractional depth of fluid, say 
for 50 r.m.8. fluctuations in 5000 m depth, times fC2 as defined before (1). Hence 
HI x 10-l2 s - ~ .  With H ,  x 5000 m, the westward topographic stress is estimated as 
+ki l  Ha H ,  x m2 s - ~ .  There is no pretence to quantitative precision here, only 
the remark that the theoretically predicted stress is feasibly sufficient to close a 
momentum budget (Munk t Palmen 1951). A caution is that baroclinic effects will 
certainly need to be considered in a more complete treatment (Cox 1975). 

Consider a coastal circulation, seaward of the shelf break at, say, H,  x 300 m. 
k i 1  is again an eddy Rossby number, perhaps of order but multiplied by 
a lengthscale characteristic of offshore variation of lnH,, say lo5 m. Hence 
k i l  x lo4 m. Suppose the fractional topographic variance is corresponding to 
30 m r.m.8. fluctuations in 300 m. Then Hs x lo-’, sW2. The mean stress acting in the 
direction of shelf wave propagation is then m2 s-2 or 1 dyn/cm2. Such a mean 
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stress would dominate many coastal current regimes. Again I emphasize that 
calculations in this section are not meant to be precise. Neglect of Doppler shift is 
certainly not tolerable for many coastal currents, especially those exhibiting U < 0 
in the deeper water column, for which w2 B u2. Then the stress will be significantly 
reduced in magnitude; however the negative sign of stress is expected to remain 
despite U < 0. Also, I may have chosen uncharacteristically large Rossby number 
or topographic variance. The present point is only to estimate that the theoretical 
stress may indeed be large enough to account for the variety of observations 
mentioned previously. 

To close with a more speculative remark, let us recall the discussion of secondary 
circulation from 95. It was seen that topographic form stress on continental margins 
provides a Systematic upwelling tendency. Implications for biological productivity 
are apparent. Another major concern in ocean science is the formation of bottom 
waters at high latitude with the question of mechanisms to raise subsequently the 
denser fluid, maintaining the mean gravitational potential energy of the ocean mass. 
such mechanisms are usually considered with respect either to interior mixing, 
possibly by internal wave breaking, or to turbulent mixing in the benthic boundary 
layer. Present theory suggests that systematic upwelling on continental margins may 
be another mechanism. While a barotropic derivation in $3 does not address such 
a question, an inference is that form stress driven upwelling represents a conversion 
from horizontal eddy kinetic energy to gravitational mean potential energy. 

I am grateful to Billie Mathias for typing, to Jane Eert for numerical computations, 
and to Patricia Kimber for drafting. This research was supported in part under Office 
of Naval Research contract N00014-85-C-0440. 
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