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ABSTRACT 

McWilliams, J.C., Holland, W.R. and Chow, J.H.S., 1978. A description of numerical 
Antarctic Circumpolar Currents. Dyn. Atmos. Oceans, 2: 213--291. 

A sequence of numerical calculations has been made for the equilibrium balances of 
eddies and mean currents in open and partially blocked, periodic channels. The physical 
model employed is a two-layer, quasigeostrophic, wind-driven one, with important 
bot tom friction and weak lateral friction. The resolved eddies provide the interior fluxes 
of momentum and potential vorticity which allow the mean state to be a balanced one. 
The set of calculations does not  provide a parameter study as such, but  does provide 
examples of the influences of alternative physical processes and geometrical constraints. 
These alternatives include the presence or absence of a partial barrier across the channel, 
the length of the channel, the addition of a transient component to the wind-driving, and 
the addition of a topographic sill across the channel gap. Particular at tention is focused 
upon the steadily driven general circulation of a/3-plane channel, because of the struc- 
tural simplicity of the solution. The results may be broadly summarized as follows. The 
eddies are generated by a baroclinic instability of the mean flow. They act to intensify 
the upper layer mean jet and mean cross-jet potential vorticity gradient (through eddy 
horizontal Reynolds stress and relative vorticity flux divergence, respectively) and to 
transfer downwards mean zonal momentum, energy, and potential vorticity gradient 
(through eddy interfacial pressure drag, vertical pressure work, and vortex stretching flux 
divergence, respectively). In the case of a zonally uniform channel, the meridional heat 
flux is found not  to conform closely to previously proposed parameterizations. The pres- 
ence of a partial meridional barrier and a topographic obstacle are found to strongly 
influence the equilibrium solution, while neither a change in the basin length nor the 
presence of a transient wind component  appear to importantly alter the solution. 

1. INTRODUCTION 

The general circulation of the world's oceans can, to some extent, be sep- 
arated into distinct and perhaps only weakly related current systems. The 
most prominent separate systems would be the subtropical gyres (such as the 
Gulf Stream gyre in the North Atlantic Ocean), the zonally banded equato- 
rial current systems (the countercurrents, the undercurrents), and the 
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Antarctic Circumpolar Current. The present s tudy is based upon isolated and 
idealized models of  the latter. The foundations of  the models comprise two 
related hypotheses,  and the plausibility of  the model results can be viewed as 
indirectly confirming them. The first hypothesis is that, apart from 
small-scale, turbulent  boundary  regions (whose contributions will be param- 
eterized in our models), the important  components  of  the general circulation 
are geostrophic. The second is that  interior, homogeneous,  down-gradient 
diffusions from small-scale turbulence are weak in the ocean, and that the 
inhomogeneous geostrophic eddy field, by itself, can provide the vertical and 
horizontal fluxes needed to maintain the mean currents. 

The character of  geostrophic (mesoscale) eddies and their probable role in 
the general circulation are research topics which are currently being actively 
pursued. In this decade several large, cooperative, mesoscale experiments 
have been or are being performed -- Polygon (Brekhovskikh et al., 1971), 
MODE (W. Simmons et al., 1977), and POLYMODE (USPMOC, 1976), for 
example. In addition, a variety of  other observations have demonstrated that 
mesoscale eddies are globally ubiquitous, though not  with spatially uniform 
characteristics (e.g., Wyrtki et al., 1976). The greatest abundance of  
mesoscale observations occurs in the northern hemisphere subtropical gyres. 
The region of  the Antarctic Circumpolar Current has especially sparse data, 
but  they do support  the existence of  energetic mesoscale variability (Baker 
et al., 1977; T.J. Harris, personal communication,  1977). Because of the data 
sparseness, however, extensive comparisons between our model eddies and 
observed ones will not  be possible. 

Eddy-resolving, general circulation studies with numerical models have 
occurred in parallel with the mesoscale observations. The earliest work was 
that of  Holland and Lin (1975a, b), which demonstrated that mesoscale 
eddies can develop from fluid instabilities of  the more systematic currents 
and, in turn, provide significant Reynolds '  stresses upon those currents. More 
recently, several additional numerical calculations have been reported, either 
within the geostrophic approximation (Haidvogel, 1976; Holland, 1977, 1978) 
or using primitive equation models (Robinson et al., 1977; Semtner and 
Mintz, 1977). A particular comparison by Semtner and Holland (1978) indi- 
cates that  the differences between these two classes of  models are unimpor- 
tant for the circumstances examined to date. 

The present s tudy lies well within the preceding line of  development.  The 
numerical models which we use are among the simplest and, in our opinion, 
most  fundamental of  those above; that is, they are quasigeostrophic, two- 
layer, and wind-driven and have minimal explicit diffusion processes. None 
of  these basic constraints are  examined here; rather, they are accepted in 
order to efficiently examine a new geographical regime. The previous numer- 
ical calculations have been made for enclosed ocean basins, modeled after 
the subtropical gyres, where the mean currents are circular and flow in direc- 
tions oblique to the winds; their motive force is at least partially through a 
Sverdrup vorticity balance (Sverdrup, 1947). In an open basin (a zonally 
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cont inuous circumpolar region), however, the mean currents can be recti- 
linear and more directly driven by  momentum transfer from the winds. The 
calculations reported below are intended to illustrate the nature of  equilib- 
rium balances between geostrophic eddies and mean currents in the open 
basin regime. 

Two further restrictions of  scope have been adopted.  Firstly, we only 
intend here to describe the solutions, not  completely "explain" them. This 
latter is inevitably a lengthier process than simply performing the calcula- 
tions, and, in a complicated turbulent  system, is perhaps most  usefully done 
by developing simpler analogs of  the behavior exhibited in the general cir- 
culation model. There are as ye t  too  few useful and apt  analogs for eddy- 
resolving numerical mode l  results, though, as examples, we cite Rhines 
(1975),  Bretherton and Haidvogel (1976), Salmon et al. (1976), and 
McWflliams (1977a). Nevertheless, a reasonably unbiased description of  the 
results should serve as a target for developing these analogs -- much as a 
purely descriptive observational paper might. Secondly, the set of  calcula- 
tions is intended only as a survey of  various processes which influence the 
Circumpolar Current, not  as a comprehensive parameter study. To do the 
latter properly,  one would have to identify all of  the possible physical 
regimes and document  the nature of  the transitions between them. Thus, our  
purpose here is a more preliminary one. If the results of  the present phenom- 
enological survey warrant it, a careful parametric s tudy could follow. 

2. THE MODEL EQUATIONS AND SELECTED BUDGETS 

The equations of  the numerical model  are those appropriate to a hydro- 
static, adiabatic, quasigeostrophic, two-Iayer (or tw0-1eve!; the two formula- 
tions are indistinguishable in the quasigeostrophic approximation) fluid which 
is driven b y  a body  force in the upper  layer (a dePth-distributed surface 
stress) and dissipated by  a fourth order lateral friction and a Rayleigh fric- 
tion (a b o t t o m  drag) in the lower layer. These equations will simply be 
stated here; for a derivation the reader is referred to MeWilliams (1977b).  

The basic equations of  the model  are potential vorticity balances in each 
layer: 

aq--A + J ( ~ l ,  q l )  = curl ~ - -  A 4 H 1 V 6 ~ 1  
~t 

(i) 
aq__33 + J(@3, q3) = --eHsV2@3 --A4H3V6@3 
~t 

In these equations, the two layers are indicated by  subscripts 1 and 3, the @i 
are velocity streamfunctions (ui = --V/y, vi = @ix; i = 1,  3) ,  t h e  Hi  are average 
layer thicknesses, r is a surface wind stress divided by  the water density, e is 
a coefficient of  bo t tom friction, and A4 is a coefficient of a fourth order 
lateral viscosity. The rationale behind using a scale-selective, higher order  
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lateral viscosity is discussed in Holland (1978). The qi are potential vortici- 
ties multiplied by H~: 

ql = H I V 2 ~ I  - -  (f2/g')(@l -- @3) + Hlf  
(2) 

q3 = H3V2@3 + (f2/g')(@l-- @3) + H3f + foB 

where f = fo + ~(Y -- Yo), B(x, y) is the elevation of the bottom above its 
mean level, and g' = g Ap/p is the reduced gravitational constant based upon 
the relative change in density between the fluid layers. 

The fluid domain is that of a zonal channel with an imposed length of 
zonal periodicity Lx. In addition, in most cases there is a partial barrier 
across the channel, extending over the full fluid depth where it is present, 
but leaving a gap in the walls along x = 0 and Lx. This domain is the Carte- 
sian approximation to an annulus with radial barriers extending towards each 
other from the inner and outer walls. This, in turn, is an idealization of the 
geometry of the Antarctic Circumpolar region where the Drake Passage pro- 
vides the greatest constriction of the flow. 

The boundary conditions for (1) are: 

= I CiN(t) on the northern solid wall 5~N 

[ Cis(t ) on the southern solid wall 5~ s (3) 

V2@i = V4@i = 0 on both solid walls 

(for i = 1, 3) with all quantities periodic in the gap. The conditions (3) are 
appropriate to no flow through the walls, no flux of tangential momentum 
through the walls (i.e., free slip of the fluid), and no external energy sources 
for the fluid as a result of the fourth order friction. The functions of time 
only (CiN and Cis) must be determined from auxiliary conditions (McWil- 
liams, 1977b). For the geometry described above, the southern wall can be 
thought of as bounding an interior island (i.e., Antarctica), and four aux- 
iliary conditions are required (one for each c). The following ones have been 
adopted for our model: 

(~HlClN+H3C3N=O o n S ~  N 

.ff - d y  = 0 
12 

~ ( H l ~ 1 + H a ~ a ) + H l ~ l , ~ l , . v  +H3~3,,~3,, ,  + ~ ' e x  (4) 
o 

+ foB@a.x + H3e~3,y + A4(H1V4~I,y + HaVa@a.y)/ dx = 0 
) 

- -  T " ~ / H 1  d s  = O 

5 f2 S 
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Condition (~) is an arbitrary elimination o f  the barotropic pressure signal on 
8~N ; condition (~) prevents net  mass exchange be tween  the layers; condit ion 
(~) is a transport  circulation integral around the southern boundary (i.e., 
Antarctica); and condit ion (~), together  with (~) and Q ,  assures mass conser- 
vation for the upper layer. In (4), ~ is the entire fluid domain (x, y l0 < x 
Lx, 0 < y < Ly),  y is the meridional coordinate of  a zonal line centered in 
the gap [i.e., y = 1/2(YN + YS) where Ys and YN define the meridional  
extremes of  the gap], 5 ~ s  and 8~N define the island and exterior solid walls 
respectively [e.g., 8 ~ s  = {x, y l(x = 0, 0 ~ y ~ Ys) u (0 ~< x ~< Lx, y = 0) u 
(x = Lx, 0 ~ x ~ Ys)) ], and s and n (with unit  vectors gand  h) define coor- 
dinates parallel and outwardly normal to the boundary.  The integrals in (4), 
as well as all o ther  ones in this paper, should be interpreted as integral aver- 
ages. 

The equations (1)--(4) are sufficient to  fully determine the evolution of  
the streamfunctions in eachlayer .  For numerical integrations, o f  course, par- 
ticular discretizations must  be applied. The formulas we have used are  stan- 
dard, second-order, centered finite differences which are spatially consistent 
and spatially conservative in the  sense of  Arakawa (1966). Fo r  explicit 
formulas the reader is referred to Appendix A. 

Various integral budgets of  the equations will be useful in analyzing the  
numerical solutions. In particular, we shall record here the budget equations 
for an area and time average of  energy, and zonal and time averages of  zonal 
momen tum and potential vorticity. The reader might prefer to skip ahead to 
section 3 and return to the budget equations where necessary. 

For  an energy budget over the whole domain, we partition the flow into 
t ime averaged and fluctuating (eddy) components;  for example: 

- -  t 

to+T 

to 

where t o is a t ime within the equilibrium period for the solutions and T is 
the averaging interval (recall our convention of  writing integral averages sim- 
ply as integrals). We shall discuss first the budget for six types of  energy, 
composed of  mean and eddy,  layer integrated kinetic and potential energies: 

K, = ½H i f f v ~" i • V'~'~ dx dy 1 
s~ i=1,3 

K~ ½Hi f fv i d~ dy)  
fl  

(5) 

(6) 
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The balance equations for these energies can be written in the following form: 

Ki t  = (T, g l}  -- {K1, A4} + (K~, K 1 } -- {K1, P} 

= K '  K3t --(K3, P} -- (K3, A4) -- (K3, e} + ( 3, K3) 

K'it = {T, K'I} -- (K'I, A4} -- {K~, KI} + {P', K~} 
](7) 

' = ' g '  ' 
Kat --(K3, A4} -- { 3, e } -- {K3, K3} + {P', K~} 

Pt = (KI, P} + {K3, P} -- {P, P') 

P't = --(P', K'I) -- (P', K'3) + (P, P') 

where the transfer terms on the right-hand sides of (7) are written in a nota- 
tion which indicates the type of transfer which can occur. Explicitly, these 
transfer terms are: 

(T, K1} = --ez ' f f  Y× V~l  

{K,, A4} = H,A,,ff v(V2~)  ~ 

(El, d4} = HiA4 f f  v ( v 2 ¢ ~ )  2 

(g~, g i}  = Hi f f  J(¢~, V2¢~) 
(8) 

{K,, P} = (--1)(i+I)/2fo 

(P', K;} = (--1)(~-1~/2 fo ff~.'¢; 
{Ka, e) =Hae f f  v N  

{g'3, e} = Haef f v ¢'3 2 

(P ,P ' )  : f o  

Various integrations by parts have been performed to obtain (6)--(8); also 
several applications of (4) were required. The vertical velocities which appear 
in (8) are: 

= fo /g ' [ (¢3-  l~l)t + d(¢l, C3) + d(¢l, ¢3)] 
(9) 

o~' = fo/g'[( ¢'3 -- ¢'~)t + J( ¢i,  ¢'3) + J( ¢~, 43)] 
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The budget equations (7) and (8) are equivalent to those of Holland (1978), 
with one exception. Holland defined (K1, K3} and {K~, K~} exchanges in 
addition to kinetic-potential exchanges; in (7), these six exchanges have been 
absorbed into four kinetic-potential exchanges. Conversion formulas 
between the two representations are the following: 

{Ki .P} Ht I = ~ -  ( (K1, P} + {K3, P} ) (i = 1, 3) 

f ~  w / " / /  (P , K~} = -~  ({P', K~} + {P', K~})} 

_ Ha H1 
{ E l . K 3 }  - - ~ -  {K1, P} ---~- {K3, P} 

H1 " - '  K' rK' ^K' ~ - Ha (P', K~} + ~ - t r ,  a) 7. 1, 3J -- - - ~ -  

(10) 

where H = H 1 + H 3 and the caret indicates the transfer terms in Holland 
(1978). In a primitive equation model the six left-hand side terms in (10) are 
independent quantities; in a quasigeostrophic model, they are partially 
redundant as indicated in (10). All of these terms are pressure work terms 
(of the general form ,yf pw), as discussed in Holland (1978). 

For finite time averages, there are possible contributions to these budgets 
on the left sides of (7) from trends in the data set (i.e., the time average of a 
time derivative does not vanish). An example is: 

Kit- = ----f-H1 f/'~l[VS~'l(to + T ) -  V 2 ~ ( t o ) ]  dx dy 
g2 

(11) 

which indicates an intermediate form, prior to integration by parts, in the 
derivation of the KI budget. In what follows, only the larger terms in (7) will 
be reported, and trend terms such as (11) are never among the larger ones. 
Therefore, we shall not systematically record the trend terms -- neither for 
(7) nor the other integral budgets below. 

In the predominately zonal geometry of our domain, it willalso prove 
useful to further decompose the time mean field into a zonal average and a 
standing eddy component: 

Lx 

f 
o 

(12) 
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K~i : ½Hi / / (  ~-i)2 dx dy 

fly-2 ---- ~/*i 

The various energies appropriate to such a decomposit ion are given by: 

l (i = 1, 3) 

P z = l ~ / g '  f f  ( (Tl>-<Ta>)2 

p ,  = 1 ¢2 i.~' ff  ~10/,5 (~-*1 - -  ~ - .3 )  2 

(13) 

where K 1 = Kzl  + K ,  1 ,  etc. The budget equations are: 

Kzl , t  = (T, Kz l )  -- (Kz l ,  A4) + (K'I, K~I) + (K,1,  Kzl}  -- (Kz l ,  P~) 

= -- K' Kz3) -Kz3,t --{Kz3, A 4) {Kza, e) + ( 3, Kz3) + ( K . 3 ,  

- -  ( K ~ 3 ,  Pz} --  (Kz3,  B} 

K , l , t  = ( T , K , 1 )  - -  (K. 1,A4) -- { K . 1 , K z l )  + ( K ' I , K . 1 )  -- (K.  1 ,P . )  

= K' K.3,t - - (K .a ,  A4} -- (K.3,  e} -- {K.3, Kz3} + { a , K . 3 )  

-- (K,3,  P , )  + {Kz3, B) 

Pz.t = (Kz l ,  Pz) + {K~3,/~) -- (Pz, P , )  -- (Pz, P') 

P , , t  = { g , l , P , )  + {K ,3 ,P , )  + (Pz, P , )  -- ( P , , P ' )  

(14) 

where most  of  the transfer terms are defined in strict analogy to those in (8). 
The terms which are perhaps less directly analogous are defined by:  

- -  V2-- ~K.~,A.] = H ~ A 4 f f [ v ( V ~ - . )  2 + ( ~ i ) ~  ~ . .~]  

{K, i ,  Kzi} = Hi f f < J(~-,,, V2~-,,) (15) 

f (~i)[~i .nt  +A4V4"~i,n + 5i3ff~3,n] d8 
l 512 

= fo (  1 ) ( i - 1 ) / 2  ff( {K~i, Pz} -- 3J ~i>(w) 

(con t. ) 
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(cont.) 

(Pz,  P . }  = --f~o/g' ff(( ~'1 ) --  (~"3>) g(~--.1, ~'-.3) (15) 

(Kz3, B} = --fo f f ('~-a) J(~-3, B) 

The line integral average in (15) is around the full boundary of  £3, 5is is a 
Kronecker delta function, and the length factor is l = L~,Lx/[2(Ly + Lx)]. 
The vertical velocities in (15) are defined by: 

( ' ~ )  = fo /g ' [ ( (  ¢3 - -  ¢1) t  ) + J(¢'-,1, ¢--,3) + (J(¢1,  ¢3))] 

~ ,  = f o / g ' [ ( ¢ 3  - -  ¢ l ) t -  ( ( ¢ 3  - -  ¢1))t -I-J('(~l>, ~-,3) (16) 

- -  ~ I t l 

+ J ( ¢ , l ,  (¢3>) + J ( ¢ 1 ,  ¢h) - -  ( J (¢1 ,  Us)>] 

The budget equations (14) are equivalent to the mean energy equations in 
(7); their compatibility with the eddy energy budgets is assured by relations 
such as: 

(g ; ,  Ki) = (K;, g~i} + {K;,K,I} (17) 

The zonal momen tum is clearly a crucial quantity to monitor  in a zonally 
driven, zonally open channel. The budgets in each layer for the time and zonal 
average of the zonal velocity (~ )  can be written as: 

Hl(Ul)t =Z ' ex  +A1 +Bz + C  1 + ~1 - - D ,  - -D '  

H s ( u s ) t  = --Hse(U'3) + A 3  + B3 + Cs + ~3 + D, + D' - -  E 

where the source and sink terms are defined by: 

? A i = H i A  4 V4~-i,y dx 
o 

Lx 

B i = H i f 
o 

Lx 

Ci = Hi f 
o 

J(¢., ¢ . ,~ )  dx 

J(¢;. ¢;.,) dx 

(18) 

(19) 

~i = Hi~L:: [p~l)(x = Lx) --p~l)(x = 0)] 

D. = ¢ .1¢.3 . :  dx 

(con t. ) 
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(cont.) 

L x 

E=--f 
0 

L X 

D'=--/ 
0 

a , 

7 

- -  a 

[f0~3] axx [H3 - - B ]  (ix 

In each case in (20), there is an integral of  the product  o f  a pressure (equal 
to fo times a streamfunction to leading order) and the spatial gradient of  a 
change in layer thickness (equal to minus the projection into the fluid of  the 
region exterior to it). They are thus of  the form: 

f 
where ~ is the incremental vector arc length along a projecting surface and 
gz is a unit vector aligned vertically. Such a term is a net  zonal pressure force 
exerted by an obstacle, which we call a drag. In the case of  D', the obstacle is 
the instantaneous interfacial height and the net drag is the time average of  
the instantaneous drag. The dynamic pressure drags D .  and D'  are the only 
terms which represent momentum transfer vertically between the layers. 
They may be expressed in a number of  alternative forms, including horizon- 
tal heat flux (see Appendix B). In the analyses below, we shall examine the 
first equation in (18) as well as the sum of  both equations in (18). This latter 
is a budget  for total zonal transport. 

The following are budgets for the time and zonally averaged potential  

(20) 

D' = dx 
g o  

(19) 
Lx 

E=ro f ¢-- Sxax 
0 

In this budget there are contributions from the forcing, the frictional mech- 
anisms, Reynolds '  stresses due to both the standing and transient eddies (Bi 
and C,.), a zonal pressure gradient (gD~), and pressure drag forces at the inter- 
face (D. and D')  and the bo t tom (E). The zonal pressure gradients involve 
the first correction to the mean pressure in a Rossby number  expansion ~ 1 ) ; 
hence, they are incalculable from our model  equations {1)--(4). In the gap, 
however, the assumption of  zonal periodicity implies ~ -- 0. It is only there 
that the budget (18) will be examined. One can see that  D. ,  D',  and E are all 
pressure drags by  rewriting them as follows: 

Lx 

D* = -  [fo~--,1] axx 1 + (~-1--~--3 dx  
o 
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vorticities in each layer: 

a 
HI 1 ~-~ (ql> =H11 curl~-- al + b I +c I +d I +el 

L X 

H31 ~-~ (qs> =--e f 
o 

(V2~'-3 - -a3  + bs +c3 +d3  + e3) dz 

L X 

ro f 
Ha o 

Various source and sink terms in (21) are defined by:  

Lx 

a, = A 4  f V6"~, d x  
0 

bi = (--1)( i+l)12~o/g'Hi f J ( ~ , l ,  ~-,8) 

c, = -  f 

(21) 

(22) 

d, = (--1)( '+l)12~/g'Hi f ~'~) 

fJ(¢ ei = - -  i, V2~;) 

The preceding budgets are complicated.  However, it will be shown that  a 
few terms are f requent ly  dominant  (sections 5, 8, and 9) and tha t  some 
terms in different  budgets can be identified as alternative expressions o f  a 
single process (Appendix B). 

3. THE SET OF ANTARCTIC CIRCUMPOLAR CURRENTS 

As was discussed in the introduct ion,  we shall no t  present a parameter  
s tudy of  the model  defined by equations (1)--(4). Consequently,  most  o f  the 
parameters have unique values, which we simply list as follows: 

Ly = 10 e m g' = 0.02 m s -2  

/'/1 -- 10 3 m A 4 = 101° m 4 S -I 

//3 = 4 • 10 8 m e = 10 -7 S -I 

fo = --I.I • 10 -4 s -I Ys = 2.2 • 10 5 m 

= 1.4 • I 0  - I I  s - 1  m - I  YN = 5.3 " 10 5 m 

Yo = 5 • 10 5 m Aygap = 3.1 " 10 5 m 

(23) 
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All o f  these parameters  were def ined  in sect ion 2, ex cep t  fo r  the  gap width ,  
Ayg~p - YN --YS. Obviously ,  the  Ys, YN, and Aygap values in (23) do  n o t  
apply  to  the  channel  case (where  Ys = 0 and YN = Ly ). 

The  fr ict ional  parameters  can be in te rp re ted  as spin-down times• Clearly, 
the  d o m i n a n t  f r ic t ion in this sense is the  b o t t o m  drag, since e -1 = 120 days  

• 4 - - 1  while LyA4 = 3 • 106 years.  Fo r  cur rents  wi th  scales smaller than  the  basin 
wid th  Ly,  however ,  the  decay  rate  for  lateral f r ic t ion  is m o re  rapid. The  grid 
size for  these calculat ions is Ax = Ay = 19.6 • 103 m (20.0 • 103 m for  the  
channel) ;  thus  a resolut ion-scale spin-down t ime  is Ax4A41 = 170 days. The 
value o f  A4 was chosen as small as was cons is ten t  wi th  c o m p u t a t i o n a l  stabil- 
ity. The  internal  d e f o r m a t i o n  radius: 

r = X / - ~ I H 3 / ( H 1  + H 3 )  [fo [-1 

is equal  to  36 km f rom (23) .*  The  t ime step for  the c o m p u t a t i o n s  was At  = 
7.2 • 103 s. Brief  compar i son  in tegrat ions  were made  with smaller At  and 
larger A4 values; no  discernible changes occur red  in the s t r eamfunc t ion  
pa t te rns  over  a 100 day  per iod.  

The  wind stress fo r  all cases was assumed to  be d i rec ted  towards  the  east, 
wi th  a m a x i m u m  value in the  cen te r  o f  the  basin: 

7Ty 
= 10 -4  f(t) sin ~ ~x[m 2 s -2  ] (24) 

This wind-stress ampl i tude  is equivalent  to  1 d y n e  cm -2 .  In (24) there  is 
t ime varying func t ion  f,  which has a s teady  c o m p o n e n t  plus a semi-annual 
oscil lat ion with ampl i tude  ~ (which is n o n ze ro  in tw o  cases): 

f(t) = 1 + a sin 2~r(t/1.55 • 107 s) (25) 

Van Loon  (1971)  has shown tha t  an energet ic  semi-annual  oscil lat ion occurs  
in the  Sou the rn  Hemisphere  Westerly Wind lat i tudes.  

The  d o m i n a n t  topograph ic  obs t ruc t ion  o f  the  Antarc t ic  Ci rcumpolar  Cur- 
ren t  occurs  in the  vicini ty o f  the  Drake Passage. Consequent ly ,  the  idealized 
fo rm which we shall use for  B(x, y) in one  case is an e longated,  Gaussian 
m o u n d  cen te red  in the  gap. It is def ined  by:  

B(x, y)  = BoBI(x)B2(y) 

where:  

{ e--(x/~O)2 

BI (x )  = e--(Lx--X)2/.~2 

(26) 

i f x  ~< Lx/2 ( 2 7 )  

i f x / >  Lx/2 

* This value may  be somewhat  larger than o c c u r s  i n  the  Circumpolar  Current.  Baker et al. 
(1977) repor t  a value o f  abou t  20 km as characterist ic ofNHf~ -1 in the top  1000 m in the  
Drake Passage (where  N i s  t h e  mean Vaisala frequency).  



225 

{ e - (yS-y)2 /~2  i f y  ~ Ys 

B2(Y)= 1 i f Y s ~ < Y ~ Y N  (27) 

e -(y-yN)2/ '~2 if y ~ YN 

Bo is the topographic amplitude and ~ is the horizontal scale (chosen to be 
1.5 • 10 s m). 

The several different cases for which numerical calculations were made are 
defined in Table I; henceforth,  they  will be referred to by  their case labels. 
These six calculations allow an examination of  the influences of  the gap 
width, the zonal ex ten t 'o f  the basin, the strength of  the semi-annual oscilla- 
tion in the wind forcing, and the topographic barrier in the gap. These cases 
were not  selected so the solutions would be only slightly different from each 
other; our purpose was to expose qualitatively different f low regimes, if pres- 
ent. WW represents a mild exception to  this criterion since its behavior 
proved to be close to  that  o f  LB; consequently,  !t will be discussed less 
extensively than SW. The value of  B0 in TB was chosen so that  the topo- 
graphic Rossby number  B0/-/~ 1 remained small enough to be quasigeo- 
strophic, but  large enough so that  the lower layer f/(thickness) contours 
were closed in the neighborhood of  the least depth;  a sufficient condition for 
assuring this is: 

~YoH3 
B0 > - -  (28) 

fo 
From (23), the right-hand side of  (28) is 400 m. Thus the value of  B0 = 500 
m in Table I does satisfy (28). However, it is considerably smaller than the 
0 (2000 m) value which occurs near the Drake Passage. 

The numerical solutions will all be analyzed as if the initial conditions 
were irrelevant. This approach is appropriate to a turbulent  f low character- 
ized by a limited period of  predictability. Therefore, only periods of  statisti- 
cal equilibrium for the solutions will be presented (see Table I). Our criterion 
for identifying these equilibrium periods is a reasonably crude one ;namely ,  
we require that  there be no apparent trends in the gross statistics of  the solu- 
tions (primarily gap transports and volume averaged energies). 

The analyses which fo!ow are lengthy and detailed; we feel that  the par- 
tial insights provided b y  many different  types of  description are necessary 
for exposing the nature of  these numerical solutions. The six cases listed in 
Table I are analyzed in parallel so that their sometimes unfamiliar character- 
istics can be interpreted at least by  mutual  contrast. It will perhaps be useful in 
reading these descriptions to think of  LB as the parametrically central case 
for this study, CH as the simplest and most  fundamental  case, and TB as the 
most  complex but  probably most  realistic; we shall elaborate upon these 
characterizations in section 12. 

The following is a brief guide to the topics discussed. Firstly, in section 4 
we present qualitative descriptions of  the streamfunction and velocity fields, 
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both instantaneously and with t ime and zonal averages. Section 5 presents 
the volume averaged energetics of  the solutions. Energy time sequences pro- 
vide both an integral measure of the variability of  the solutions and a basis 
for defining the periods of  statistical equilibrium. Two energy budgets are 
examined: one partit ioned into t ime mean and transient eddy components  
and another  with the t ime mean partitioned into zonal mean and standing 
eddy components.  T ime  sequences of  volume transports through the gap are 
presented in section 6. Aspects of  the transient eddies are described in sec- 
tion 7: t ime sequences at fixed locations, spectra, propagation characteristics, 
and principal components  o f  the variability. Section 8 presents t ime and 
zonal averaged momen tum budgets. In section 9, similar potential vorticity 
bud_gets are examined, along with scatter plots which expose the validity of  
q / (4t )  functional relationships (these are the general solutions of  steady, 
inviscid, unforced fluid motions). A linearized stability analysis of  the mean 
jet for CH is presented in section 10. In addition, an assessment is made of 
several, previously proposed eddy heat  flux parameterizations. A discussion 
of previous theoretical calculations for the Antarctic Circumpolar Current is 
given in section 11, and a summary of  results is made in section 12. 

4. STREAMFUNCTION AND VELOCITY CHARACTERISTICS 

Fig. 1 shows typical instantaneous streamfunction patterns during the 
equilibrium periods defined in Table I. All cases are included except for WW 
which is quite similar in character to LB. Three types of  patterns are shown: 
41, 43, and 43 - -  4 1  [which is proportional to the vertical displacement of  
the interface, d = f o / g ' (  4 3  - -  41)]. 

These figures illustrate the qualitative character of  the flows. In all cases 
there is a discernible, essentially zonal jet, but  one which is disrupted by 
eddies and meanders. The jet  is broadest and its transport (the increment in 
Hi 4i across the jet) is greatest in CH, where there are no zonal obstacles. The 
transport is least and the eddy disruption greatest in TB, where there are both 
partial zonal walls and a topographic barrier in the gap. 

The eddies have relatively large scales, typically on the order of 100--200 
km (wavelengths of  400--800 km). It is uncommon for the eddies to have 
scales this much larger than r (=36 km here), either in subtropical gyre obser- 
vations (McWilliams, 1976a) or closed basin numerical solutions (Holland 
and Lin, 1975a). The eddy scales here seem similar to that  of  the horizontal 
shear of  the zonal jet, which itself is broader than closed basin jets. The 
broadest scales are evident in the lower layer, the  narrowest in the interfacial 
displacements. The patterns are approximately equivalent barotropic; that  is, 
the flows in the two layers have nearly the same configurations, but  differ in 
their strengths (the upper layer velocities are stronger than the lower ones). 
The greatest departure from this approximation is shown in TB; there, 43 is 
almost entirely a pattern of  eddies, while 41 exhibits some features of  a 
meandering jet. The smallest eddy scales are also found in TB. 

The mean states of  the various numerical solutions are shown in Fig. 2. 
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The time averages are stable ones here; in all cases an average over half the 
equilibrium period is only slightly different from the average over the whole 
period. The patterns in ~1 and ~ are those of  zonal jets, broader in the 
mean than instantaneously, with reasonably zonally uniform meanders. The 
latter are most  clearly seen as standing eddies in ~--. 1. The standing eddies are 
weakest in CH (because of  the invariance of  the geometry with respect to 
arbitrary zonal translations); they have virtually identical horizontal scale 
and are zonally uniform in SB, LB, and SW; and they are zonally inhomoge- 
neous in TB (they are strongest immediately downstream of  the topog- 
raphy). TB also has something of  the character of  closed gyres in the mean, 
with a counterclockwise one to the north and a clockwise one to the south. 
These gyres rotate in directions corresponding to Sverdrup balances, driven 
by  the local curl of  the wind stress (positive in the north, negative in the 
south). Finally, we note that  the regions where the streamfunction gradients 
are largest seem to be slightly narrower in the upper layer than in the lower 
layer. 

This is further illustrated in Fig. 3, which contains plots of  ( ~ )  against y. 
In all cases the upper layer jet  is stronger than the lower one. Its strength is 
greatest in CH and least in TB. There is an intermediate hierarchy of  jet  
strengths -- with SB, LB, SW an increasing sequence -- although the differ- 
ences are not  great here. The clear suggestion, however, is that  both zonal 
walls and topographic barriers impede the jet, and that the lesser influences 
of  increased basin extent  Lx and a pulsating forcing by  the wind transience 
tend to increase the jet  strength. 

It is apparent from comparing Figs. 1 and 2 that transient eddies are a sig- 
nificant component  of  the numerical solutions. The upper layer streamfunc- 
tion variance patterns are shown in Fig. 4. The eddy variability is strongly 
concentrated in the locations of  the mean jet  (compare with ~1 in Fig. 2) 
and shows a further enhancement in the locations of  the centers of  the mean 
standing eddies (compare with 6 .1  in Fig. 2). This latter suggests that  some 
of the transience is associated with non-propagating oscillations in the ampli- 
tudes of the instantaneous standing eddies. The  spatial envelope of the varia- 
bility is not  much greater in extent  than the size of the individual eddies 
shown in Fig. 1. The order of  the cases, from greatest eddy variance to least, 
is given by SW, LB, SB, CH, and TB with, respectively, peak r.m.s, values of  
5.8, 5.3, 4.2, 4.2, and 2.8 • 104 m e s "1,  There is somewhat  less range here 
than there was in the strength of the mean jets (Fig. 3). Furthermore,  the 
orders are not  identical (CH is displaced from' first in jet  strength to fourth in 
eddy intensity), thus b e l y i n ~ y  exact CorresPOndence between these two 
quantities. The patterns for ~ z  (not shown) are similar to those for ~ 2 ,  
though typically they have mag~udes_w_hich axe only 0.2--0.4 as large. The 
patterns for Velocity variances, u~ 2 and v'i 2, also have their maxima in the 
neighborhoods of  the mean jets. In addition, they show local maxima on the 
flanks of  the standing eddies and either near the interior edges of  the gap 
(for u - ~ )  or along the partial zonal walls (for v-~). 
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Fig. 1. Instantaneous streamfunction patterns on selected days during the 
each case are the upper and lower streamfunctions and their difference, w 
yields the interracial displacement. The contour intervals are 104m 2 s - 1  : 
in units of 103 m 2 s -1 .  The range of ~ values in each of these figures (fro~ 
105, 108, 205, 116, 103, 230, 126, 116, 117, 37, and 104 • 103 m 2 s -1 ,  
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Fig. 2. Ti_me averaged streamfunction patterns (the ~ ' 
S "-1 f o r  ~1  arid 0.6 • 104m 2 s--1 for ~s  and ~ ,1 ;  th~ 
figures (from left to right, top to bot tom) is 277, 1E 
respectively. 
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Fig. 4. Patterns of  ~ 12 for the equi|ibrium periods of  Table I. The contour interval is 
2 • 10 8 m 4 s --2 and |abels are in units of 10 8 m 4 s -2. 
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5. E N E R G E T I C S  

One of the most  useful gross measures of  the numerical solution behavior 
is the t ime history of  the depth integrated and area averaged energies. We 
define these energies analogously to equation (6), 

- ½H, . f f V  ~i"  V ~, (ix dy (i = 1, 3) 
~2 

(29) 
1 r = ~ / g  / f ( t ~  1 - -  43) 2 dx dy 

n 

Plots of  ~ l  and ~ are shown in Fig. 5 for all cases except WW. 
Generally, the fluctuations of  these curves are not  large compared to their 

mean values. The kinetic energies in the two layers are correlated in t ime and 
have nearly equal magnitudes (though c~ 3 ~ C~l in CH and 9(1 ~ c~3 in 
TB). The potential energy exceeds the kinetic energies; this is to be 
expected, simply by a scale analysis of  (29), for currents whose dominant  
horizontal scale exceeds the deformation radius r. There appears to be a gen- 
erally weaker correlation between ~ and the ~ (compared with c~ 1 and 
c~ a); where the bot tom is fiat (in CH, SB, and LB) or the oscillations are 
forced (in SW), there is no phase lag, but  the c~ i follow ~ in TB. 

The initial periods of  the integration are no t  of  fundamental  interest since 
the initial conditions are somewhat  arbitrary (see Table I). Fig. 5 does, how- 
ever, provide a basis for judging the correctness of  the equilibrium periods 
defined in Table I. In two cases, CH and TB, there are significant initial 
adjustment  periods shown prior to the equilibrium periods. 

The equilibrium time scales in CH seem to be slightly larger than in SB 
and LB; for none of these cases does there appear to be any particular regular. 
ity (i.e., no vacillation cycles as in Hart, 1976).* The strongest transience in 
SW is clearly correlated with that  of  the wind. From (24)--(25), we note that  
the  wind maxima occur at day 90 and every 180 days thereafter;  it is 
remarkable how little phase lag there is in the total energy response. A very 
dramatic and regular natural oscillation is shown for TB. Its period is of  the 
order  o f  three years, and its amplitude in energy is 50% of the mean value. 
This oscillation cannot  be simply interpreted as a topographic wave because 
the periods are too dissimilar (n.b., the topographic wave period should be of  
the order of 27r[H/foBol ~ 7 days). No satisfactory explanation has been 
found, though the associated spatial structure is shown in section 7. 

Comparable time series for the instantaneous transient eddy energies are 

* I t  is o f  in t e res t  t h a t  the  m e a n  ene rgy  ba lances  in  the two-layer s t ress-dr iven a n n u l u s  
s tud ies  o f  Ha r t  ( 1 9 7 6 )  are q u i t e  s imilar  to  ours  (see Figs. 7 - -8)  in spite of  the di f fe rences  
in  e d d y  s t ruc tures .  T h e  m o s t  i m p o r t a n t  d i f fe rence  between his c i r cums tances  and  ours  is 
o u r  re la t ive ly  m u c h  weake r  i n t e r io r  f r ic t ion ,  the essential consequence o f  w h i c h  is t h a t  
o u r  f lows are  in t r ins ica l ly  aperiodic. 
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Fig.  5. T h e  t i m e  h i s t o r i e s  o f  t h e  t o t a l  e n e r g i e s  d e f i n e d  in eq .  (29) .  T h e  u n i t s  a re  m 3 s - 2 .  
T h e  l abe l s  f o r  t h e  t h r e e  c u r v e s  in  e a c h  ca se  i n d i c a t e  u p p e r  l a y e r  k i n e t i c  (A) ,  l o w e r  l a y e r  
k i n e t i c  (B) ,  a n d  p o t e n t i a l  (C)  energ ies .  

shown in Fig. 6. These quantities are def ined by: 

= ½H, f l y  . v 
E~ 

~ ,  = .~f~/gl 2 , [ ' f ( ~ ,  JJ " _ 
~ f3 ) 2 

(30) 



237 

CH 
IOOi 

90 

80 

70 

60 

50 

40 

30 

20 

I0 

0 
800 

I I I I - - 1  

1160 1520 1880 2240 

LB 
I r - -  I i I I I I 
I 

-ff i IN'V "'i 

r ' l~/'/l'!) i'?"J:'~/~ v ' '  ,j i 
200 560 920 1280 

] 
1640 

IooSB , I ' I I 

9 0 -  

80 

70 

60 

50 

0 / I I I I I I 

702 1062 1422 

I i I i 

1782 2142 

SW 

2502 0 360 720 1080 1440 

TB 
I 0 0  i I ' I ' I ' . I 1 I i I i I E I i I 

9 0 -  

8 0 -  

7 0 -  

60 

50 

0 I I I I I I ] I [ I l I I I I , I I I 

1080 1440 1800 2160 2520 2880 3240 3600 3960 4320 

t ( d a y s )  

Fig. 6. The  t ime histories o f  eddy  energies during the equi l ibr ium periods def ined in Table  
I. The  units  are m 3 s --2. On the  average, ~ '  > cK k > 3, though ins tantaneously  there are 
exceptions.  
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The fractional variation exhibited in these curves is considerably greater than 
those in Fig. 5, but their mean values are also much smaller. The ~'  and 9( 
values are quite similar here, while the 9(~ values are smaller; this was not  
true for the total energies (29). All of the eddy energies are mutually corre- 
lated. 

There is quite a dramatic peak in the SB eddy energies near day 700, 
which, for example, reaches a value in ~X ~ more than four times larger than 
9( ~ (equal to K~ = 26 m 3 s-2). This eddy energy peak is not  associated with 
any peak in total energy (see Fig. 5). Rather it occurs because of a shift in 
the location of the eddy centers from their more usual locations near the 
standing eddy centers (see Fig. 2). 

The periodicity in TB, seen above in Fig. 5, is also reflected in the eddy 
energies. In addition, irregularly spaced, shorter period fluctuations are evi- 
dent. It is interesting, however, that  the wind-induced periodicity in SW, 
which was seen so clearly in the total energies, is much less noticeable in the 
eddy energies. This is the first of several indications that  even a strongly fluc- 
tuating wind {with peak-to-peak amplitude 4/3 times the mean) causes ocean 
responses which can be small compared to the natural variability or intrinsic 
turbulence of  the fluid. 

The energy budgets (7) and (14) are shown in Figs. 7 and 8 respectively. 
We shall discuss the different cases in turn. For CH, the energy input by the 
wind is transferred from K1 to P. It then partly goes to either P' or K3 (and 
then is lost to bot tom friction). The eddy energy is thus generated by a 
baroclinic instability of  the mean flow (defined by {P, P') > 0 being the 
dominant  mean-to-eddy energy transfer). The eddy energy is transferred 
from P' to  either K~ (then lost to bot tom friction) or to K~, where most of  
it is returned to the mean flow (a reverse instability) and a small fraction is 
lost to lateral friction. This latter transfer, (K~, A4}, is typically the only 
lateral frictional transfer term which is non-zero when rounded off  to the 
nearest 0.1 • 10 -5 m3s -3 . Even this magnitude is much smaller than the 
bot tom frictional energy losses. The standing eddy budget (Fig. 8) is trivial 
for CH since the ~ . ;  are so weak. 

The eddy-mean budget for SB is qualitatively quite similar to CH. The 
only differences are generally lower values for energies and transfer rates and 
the appearance of a small reverse instability in the lower layer as well {i.e., 
{K~, K3} > 0). In this case, however, the standing eddies play an active role 
in the mean budget (Fig. 8). They provide 25% of baroclinic instability con- 
version to the eddies and receive 50% of the upper layer reverse instability. 
Their primary source is a barotropic instability of  the mean zonal jet in both 
layers (i.e., (K.,., Kzi} < 0); note that  this instability is a conversion of  
energy to a non-propagating current pattern. The bot tom frictional loss from 
the standing eddies is 2/3 that  from the mean zonal jet. 

The mean-eddy budget for LB also conforms to the pattern of  SB and CH. 
The standing eddy budget for LB is like that  of  SB as well, except that  the 
standing eddies are much weaker in LB (see Fig. 2), and thus their energy 
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transfer rates are weaker. However, the transient eddies in LB are more ener- 
getic than in SB. Thus, here, as well as in the other  budgets below, there 
seems to  be a compensat ion principle: as one process weakens another 
strengthens, so that  the total  budget  quant i ty  changes relatively little. 

For  SW, the m e a n ~ d d y  budget  is similar to the previous cases, and the 
standing eddy energies are even larger than in SB. Here, however, the 
standing eddy transfer rates are no t  quite as large as in SB. The most  sur- 
prising feature is the absence o f  any significant work done on the fluid by  
the transient wind (n,b., (r ,  K~} ~ 0.02 • 10 -5  m s s - e ) .  This implies an 
almost complete  lack of  correlation between the forcing and the response. 

The most  anomalous budgets are those o f  TB. In Fig. 7, the  conversions 
from mean to eddy  energy are, in equal measure, barocllnic and upper  layer 
barotropic instabilities (i.e., (P, P'} ~ --(K~, Kz} > 0). The eddy  kinetic 
energies are larger than those of  the mean flow, and the primary bo t tom fric- 
tional loss is through the eddies, which is in contrast  t o  all previous cases. In 
Fig. 8, the standing eddy kinetic energies dominate the mean zonal ones, 
and the primary energy source for the ~. t  is a baroclinic instability of  the 
zonal mean flow. An upper  layer barotropic instability and a topographic 
conversion provide lesser sources for  standing eddy energy. All o f  the 
transient eddy exchanges with the zonal mean are reverse instabilities. 

The general character o f  the eddy-mean budgets ca~ be compared with 
those of  the closed basin solutions of  Holland (1977, 1978). The primary 
differences are the dominance in his case of  upper  iayer barotropic instabil- 
ity as the  eddy energy source and the relatively greater port ion of  the 
b o t t o m  frictional dissipation which occurs through the eddies. By these mea- 
sures, then, TB is the case closest in behavior to a closed basin gyre. If one 
further splits the kinetic-potential energy transfer terms as indicated in (10), 
then all cases have systematic transfers from both  Ki to P and from P' to  

j ' t r t  ^ K  t "L both  Ki. In addition, (Kz.  K s }  is positive and t*~ z, 3s negative. All o f  these 
features bu t  the final one are true in the closed basin solutions as well; in 

f i t  "t ^ g t "L barotropically unstable solutions, ~,=1, 3J is positive. 
Bryden (1977) has estimated from moored  observations the pointwise 

(rather than vertically integrated) rate of  baroclinic energy conversion on the 
upstream side o f  the Drake Passage at a moderate ly  deep level. He obtained a 
figure of  about  10 --s m 2 s - 3 ,  with a sign indicating conversion from the 
mean to  the eddies (i.e., (P, P') > 0). From (B.7) in Appendix B we can 
identify the (y, z) pointwise contr ibut ion to this conversion with 
((-uz - -  u'a ))D'/(Hz + H 3), if we disregard any ambiguities about  energy fluxes, 
The ( ~ )  are shown in Fig. 3, and the D' are plot ted in Figs. 21--22. For  the 
various cases, the peak value for this pointwise conversion varies from 
1.1 • 1 0  ' ' s  m 2 s - 3  for  CH to 0.8 • 10 - s m  2 s -8 for  LB to a small negative 
number  for  TB (n.b., in TB the primary baroclinic conversion is connected 
with the standing eddies --  see Fig. 8 --  with a pointwise conversion o f  
0.5 • 1 0  - -s  m 2 s - 3 ) .  Thus, the  numerical solutions exhibit  conversions of  the 
same order as the measurements.  Considering the location of  the measure- 
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ments (i.e., at depth and near large topography) however, one might judge 
the model conversions as generally smaller. 

6. T R A N S P O R T S  

Much of  the historical concern with the Antarctic Circumpolar Current 
has been focused on the volume transport through the Drake Passage. Fuel 
for controversy has been provided by the extremely diverse values which 
have been obtained by different investigators (Nowlin et al., 1977). 

The volume transports through the gap are shown as functions of  time in 
Fig. 9. For all cases except  TB, the dominant  contr ibution to the total trans- 
port  comes from the lower layer. For  all cases except CH, there is signifi- 
cant variability in the transport  with periods from 10--200 days (and even 
longer for TB).* For all cases except  TB, the total transports are excessive 
compared to observations (e.g., 4 0 0 - 6 0 0  Sv for SB, LB, and SW instead of  
the observed average values of  100--200 Sv). For TB, however, the total 
mean transport  is less than 100 Sv, and the lower layer mean transport is 
slightly negative. The transport  in SW is highly correlated with the wind 
transience with only a small phase lag (n.b., its correlated fluctuations are as 
large as 300 Sv peak-to-peak). 

This figure suggests that  the amount  of  variability in the transport,  as well 
as the average value for it, are strong functions of  all three influences -- the 
constriction of  the mean jet  by  the gap edges, the topography,  and the varia- 
tion in the wind forcing. Any precise simulation of  the observed transport  
behavior is, therefore, likely to prove very difficult. 

7. T R A N S I E N C E  

The amount  of data generated by a set of  numerical solutions such as ours 
is vast. This becomes particularly apparent when at tempting to  describe the 
transient behavior of the solutions, which can be so varied in different 
quantities, at different locations, and during different intervals. Of neces- 
sity we can only present a few examples which seem to us to be representa- 
tive. Four  techniques are used: time sequences at a fixed location, spectra 
for those sequences, propagation diagrams (HovmSller diagrams), and princi- 
pal component  plots and time sequences. 

The case LB has been chosen to  illustrate the geographical variations of  
the time sequences. A set of  ~'  sequences are shown in Fig. 10, and a set of  
v' ones in Fig. 11. In Fig. 10, the most  visually prominent  fluctuation period 
in all cases is about  40--60 days. This period is not  inconsistent with a mean 
jet  advection period (n.b., 21rl/U matches this range of  periods for U = 0.3 m 
s -1 and l = 150--250 kin). Much longer periods are also apparent (particu- 
larly in the lower layer), as well as shorter ones (particularly in the center of  

* C H  is t h e  o n l y  ca se  in  w h i c h  all  e x t e r n a l  c o n d i t i o n s  a re  i n d e p e n d e n t  o f  t a n d  x .  
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Fig. 9. The time histories of  transport through the gap (m 3 s'-l) .  The three curves in each 
case are (a) upper layer H I ( ~ I ( 0  ) - -  ~ l (Ly) ) ,  (b) lower layer Hs(~3(0 ) -- ~s(Ly)), and (c) 
total transport. For TB only days 482--4320 are shown, since initial transients are off- 
scale for this graph (n.b. the scale for TB is different from the other cases). 

t h e  upper  layer  jet) .  There  is an i n d i c a t i o n  o f  n o n - s t a t i o n a r i t y  in t h e  c o n t r a s t  
b e t w e e n  the  first and last halves  o f  the  record for  ~ ( 9 8 0 , 4 5 1 ) .  The  ampli-  
t u d e  o f  the  f l u c t u a t i o n s  is greatest  in the  cen ter  o f  the  upper  layer  jet ,  s o m e -  
w h a t  smal ler  in t h e  l o w e r  layer  jet ,  and c o n s i d e r a b l y  smal ler  o u t s i d e  the  jet.  
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Fig. 10. Time series o f  the s t reamfunc t ion  at several locat ions  in LB. Locat ions  are indi- 
cated by  the arguments  (x, y)  in km from the  southwes t - corner  o f  the  basin. Uni ts  are 
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The time scales for v are shorter than for ~ (Fig. 11), at least visually, 
with a dominant period o f  around 25 days. The same geographic tendencies 
occur here as before, however. Since v = ~x, the wavenumber spect~Jm for 
v would be peaked at a smaller scale than for ~; hence, we would expect  the 
fluctuation period for v to be shorter, if it were mainly caused by the advec- 
tion of  spatial structures by the mean jet. We shall not  quantify this argu- 
ment by exhibiting wavenumber spectra; in all cases except CH, the solutions 
are too  spatially inhomogeneous for such spectra to be readily interpretable. 
The sequences in v at locations away from the mean jet exhibit a dramatic 
intermittence. Isolated, narrow (of  only 5--10 days duration) velocity spikes 
occasionally occur. 

There is also considerable variety in the time sequences of  the different 
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numerical  cases. Fig. 12 shows  a set o f  sequences  for ~ near the  center o f  
the  mean jet  ( the  SB case is perhaps n o t  as c lose as wou ld  be most  desirable 
- -  compare  the  locat ion  x = 4 9 0  km, y = 451  km, with ~1 in Fig. 2). The 
sequence  from CH looks  the  least like those  o f  Fig. 10. It seems to  rather 
s imply consist  o f  two  periods,  one  around 20  days and another  around 200  
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aries at x = 0 and L x (see Fig. 2). 
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days. The former could be due to a mean jet  advection (n.b., (h-1) is larger in 
CH than LB -- see Fig. 3 -- and the horizontal length scales seem to be 
smaller -- see Fig. 1). The longer time period could not  be due to bulk advec- 
tion. The sequences for SB, LB, and SW are generally similar, particularly if 
the SB differences of  a somewhat  smaller amplitude and a lesser amount  of  
high frequency structure are discounted due to the generally greater distance 
from its jet  center  (n.b., in Fig. 2 the mean SB jet is south of  the t ime 
sequence location). A very clear illustration of  the absence of  correlation 
between the wind forcing and the fluid response is shown in SW; the wind 
has peak values at day 90 and every 180 days thereafter,  whereas 4~ has no 
recognizable behavior with this period. The dominant  t ime period in TB is 
about  90--130 days. Its slowness compared to the other  cases may be due to 
the relative weakness of  the mean TB jet, particularly at the location of the 
time sequence (see Fig. 2). The very long time periods exhibited in energy 
and transport  (Figs. 5, 6, and 9) for TB are absent in 4~. In particular, there 
are peaks in transport  and total potential energy around days 3200 and 4150 
and a minimum in the interval between days 3450--3650. These features are 
not  simply reflected in 4~ in Fig. 12, although a spectral analysis does indi- 
cate their presence (see below}. This implies that  the point variability is dom- 
inated by relatively small scale quantities, whose spatial integrals (hence, the 
contributions to transport  and volume average energies) must  be small. 

Various frequency spectra are shown in Figs. 13--15." Fig. 13 includes 4'  
and v' spectra from different locations in LB, the same ones shown in Figs. 
10 and 11. The dominant  feature of  these spectra is their redness (i.e., a 
monotonic  decrease with frequency).  In 4 this continues through the lowest 
frequency analyzed (a period of  ~ 500 days); in v there appears to be a gen- 
eral flattening of  the spectra for periods longer than ~ 100 days. The high 
frequency end of  these spectra is quite steep, typically decaying faster than 
co -2 and, in one location, for 4~ in the jet  center, decaying as fast as co -4 . 
There is no universal power law, independent  of  location. Two spectral peaks 
are generally identifiable, though neither is large enough to dominate  the 
variability. They are located around periods of  25 and 60 days. The latter is 
more pronounced in 4~, b e  former in v~. The conclusion from the t ime 
series above, that  v' has faster t ime scales than 4 ' ,  is confirmed in the spectra 
here. 

A survey of  spectra from locations near the upper layer mean jet  centers is 
shown in Fig. 14. The CH case again stands out  as the one with the simplest 
t ime behavior. Three spectral peaks are prominent  (in contrast  to only two 
dominant  periods being visible in Fig. 12); they  are located around periods 
of  8--9, 20, and 190 days. It is tempting to claim that  vestiges of  the 20 day 
peak carry over to the other  cases, although its appearance is sometimes very 
faint and it is debatable whether  a common cause should exist for it given 
the variety o f  cases. There are other  low frequency peaks of  prominence in 
all cases. They  are located at  the following periods: 190 days (CH), 80--150 
days (SB), 60 days (LB, WW, SW), and 100--150 days (TB). These peaks are 



248 

• t / t  

I°" r I ~ r ~  r 
t0~o~ - 

1°9 ! I (9 '°°t-  ,371  
IO ? ~- 
106 t 

i 1(9 
F 

- -  I O H I  

D. i0~o ~ 
i 

iO 9 ~ 3(9 
F 

I0 e r-- 
I 

t0",' ]-+ 

106i ~ 

,~ 1(98 
F- 
J 
r-- 

i 

t I I [ 
10 .4 10-3 10-2 tO-I 

FREQUENCY 

I012 

I0  li 

i0 ~o 

10 9 

10 8 

10 7 

I0 iO 

10 9 

10 8 

IO T 

I0 6 

I0 ~ 

I - - - -  

lO-t 

i0-2 

i0-3 

i0-4 

IO -  f 

10 -2 ~- 
i 

I0 -3 ~- 

i0-4 i.- 

V l  

ff980,~ 

i 
~ - 1(9 

I . . . .  J-. I 
i 0 - 4  i 0 - 3  I 0 - 2  i 0 - I  

FREQUENCY 

i0 ~ 

i-I 

10-2 

10-3 

i0-1 

10-2 

10-3 

10-4 

10-5 

Fig. 13. LB spectra for the t ime  series in Figs. 1 0 - -1 1 .  Spectral  units  for 4 '  and v' are m 4 
s - -2 / (e .p .d . )  and m 2 s--2/(c .p.d.  ) respect ive ly  and the f requency  units  are c.p.d. Al l  spectra 
are ca lculated from t ime  series w i t h  a reso lut ion  o f  At  = 2 days  in the  t ime  interval o f  
days  2 0 2 - - 1 4 4 0 .  A top-hat  running average over  5 adjacent  f requency  bands  has been 
appl ied to  the  raw spectral  est imates .  The  curves are labeled b y  their loca t ions  i(x, y), 
where  i is the layer index  and x and y are dis tances  in km from the  s o u t h w e s t  corner  o f  
the basin. 

evident in both ~ and v in all eases, though the 60 day peaks in LB, WW, SW 
are moderately weak in v. 

The transient wind forcing sequence of  LB, WW, and SW is of  particular 
interest here. For these cases, the relative amplitude o f  the semi-annual 
forcing component  increases from 0 to 2/3 (see (24), (25),  and Table I). In 
the ~ ~ spectra it is difficult to see a response peak at the forcing frequency 
of  5.6 • 10 -3 cycles per day; if anything, it is WW which exhibits the closest 
approximation to a peak. The v~ spectra suggest a slightly stronger response. 
The SW case shows a clearly significant peak in the correct location. How- 
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ever, these results together indicate that the fluid response to even a very 
strongly fluctuating wind can be quite modest ,  and that the intrinsic tur- 
bulent variability of  the equilibrium balance o f  the Antarctic Circumpolar 
Current can dominate many aspects o f  the forced transience. The present 
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model is no doubt  inadequate for modeling many aspects of  transient wind- 
driven currents. In particular, high frequency forced currents, with small ver- 
tical scales, might behave quite differently from the present solutions. Never. 
theless, the solutions do suggest that one should be cautious in drawing con- 
clusions about the influence of  fluctuating winds upon the ocean. 

The case TB provides the longest time series from our set of  numerical 
solutions. Spectra from the entire 3834  day equilibrium period are shown in 
Fig. 15. The red character of  the ~ spectrum does seem to be lost at very 
low frequencies, although, in contrast to previous cases, the v~ spectrum 
seems more generally red than the ~ ~ one. The very regular three year oscil- 
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F i g .  1 5 .  Spectra for ~ and vl  from TB a t x  = 9 8 0 ,  y = 4 8 1  f o r  a long  t ime series. Here 
A t  = 6 days  and the t ime interval is days  4 8 6 - - 4 3 2 0 .  A running 5-band spectral  average 
has been applied as in Figs. 13 and 1 4 .  
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lation seen in transports and energies (Figs. 5, 6, and 9) does seem to be 
reflected in a peak near 10 - s  c.p.d. The length of  the time series is no t  quite 
sufficient to clearly define this peak, however. Also, this peak in ~ ~ and v~, 
while present, is not  nearly so dominant  a feature o f  the spectrum as it 
would undoubted ly  be in spectra of  transports and energies. In Fig. 15, there 
appears to be an additional low frequency peak around 300 days which was 
not  resolved in the shorter records analyzed in Fig. 14. 

Phase diagrams are a means of  exposing eddy propagation. In our  
Antarctic geometries, it is primarily zonal propagation which should occur, 
although, in selected locations (e.g., over the bo t tom slope in TB), some 
meridional propagation should occur as well. Figs. 16 and 17 present zonal 
phase diagrams; that  is, they show contours  of  streamfunction in an (x, t) 
space. The full zonal interval is included (0 ~< x ~< Lx), bu t  only a 180 day 
time interval during the equilibrium period is shown. The slope of  the con- 
tour  lines should be interpreted as a phase propagation; uniform propagation 
would appear as a prevalent orientation of  the slopes. 

Diagrams for several y values and several streamfunction fields are shown 
in Fig. 16 for the case LB. The y values were selected to illustrate behavior 
in the narrow region south of  the jet, in the jet,  and in the broad region 
north of  the jet. The most  uniform propagation can be found in ~1 and 
~1 -- ~s in the jet  region. The contour  slopes that  characterize the places of  
strongest ~ gradients correspond to phase speeds of  around 30--35 km 
day -1. If this speed is divided into the distance between eddy centers of  like 
sign (which we estimate as about  850 km), then a period of  24--28 days 
results; this is the faster o f  the two periods identified from the t ime sequences 
and spectra above. Because these regions of  strong ~1 gradient do not  typi- 
cally persist for a time long compared to a period, it is clear that  a single 
period or phase speed is insufficient to characterize the ~ field. Also, the 
individual eddy centers do not  persist long enough to propagate across the 
entire domain. Thus, the simple description of  mean jet  advection of  passive 
spatial structures, while useful for estimating the magnitude of  periods and 
phase speeds, is by  no means a complete  description. 

The ~s diagram for the jet  region shows a much less uniform pattern of  
contour  line orientation. There are even periods of  westward propagation, 
including one (for days 560--620 in the western half of the basin) where the 
phase speeds are of  the order of  Rossby wave speeds, a few km day -1. This 
disparity between upper  and lower layer propagation rates exists even 
though individual eddy centers are correlated between the layers. This is 
largely due to the fact that  many of  the eddy centers are nearly non-prop- 
agating; for example, there is a clear bias towards streamfunction maxima in 
the middle of  the x domain. 

The southern region streamfunction features are extremely intermittent 
and thus wi thout  any clear propagating character. Their diagrams are dom- 
inated by a barotropic event near day 670, which occurred almost simultane- 
ously at all x, and two eastwardly propagating, baroclinic events between days 
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560 and 610. The northern region is not  as intermittent.  The bias in propaga- 
tion is towards the west, rapidly in ~1 and ~3 (around 30 km day -1 )  and 
much more slowly in the interfacial displacement field. 

A comparison of ~1 phase diagrams for the different cases is shown in Fig. 
17. The y values have been chosen to coincide with the mean jet regions (see 
Fig. 2). All cases except TB show a generally eastward propagation. The CH 
propagation is the most rapid, which reflects its greater (ul> magnitude. It is 
interesting that  the central region in x for SB, where the propagation seems 
to be disrupted, corresponds to the region in Fig. 2 where the mean jet 
makes a large excursion to the south of  this y value. Certainly the most 
anomalous propagation is shown by TB. Even in the x region where there 
exists a predominantly zonal mean jet (between about  500 and 1000 km east 
of x = 0 -- see Fig. 2 ), there is little systematic eastward propagation. Appar- 
ently the eddy behavior in TB has little to do with mean current advections. 

Our final manner of illustrating the nature of the transience is by use of a 
principal component  analysis. This technique has, for example, recently been 
used by Davis (1976) in describing the variability of  North Pacific sea surface 
temperatures. The principal components are also frequently referred to as 
empirical, orthogonal functions. 

Consider a representation for the streamfunction fluctuations where the 
space and time variations are separated: 

~'(x, y, z, t) = ~a i ( t ) f j ( x ,  y, z) (31) 
1 

Such a representation is a complete one whenever there are as many compo- 
nents to  the series as there are positions at which if' is measured (grid points 
in our models). One can furthermore require that  the spatial functions be 
orthonormal with respect to a quadratic integral average over the fluid 
volume V: 

f fjfk dV = 5ik (32) 
V 

In our cases the total volume V is equal to HLxLy. One then forms the time 
average spatial covariance matrix: 

1 
Aim = ~ ~/dVldVm t~'(x~, Yz, zl)d2'(xm, Ym, Zm) (33) 

where the indices l and m indicate the locations where ~b' is sampled. For our 
two layer models, z I can assume only two values. The dVl are infinitesimal 
volume elements equal to Htdxldyz, where Ht is/-/I or H3 depending upon 
whether zt is in the upper or lower layer. It can be shown that  the j th  eigen- 
value of  Azm is equal to a i ~  z (and further that  aia k = 0 f o r j  ¢ k) if the j th  
eigenvector is taken to be equal to fj(xl, Yz, z z ) ~ d V ~ .  By these definitions 
the representation (31) is an expansion in the principal components of  
streamfunction variability. The components  with the largest eigenvalues are 
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the most  efficient, statistically independent  (with respect to the t ime aver- 
age) descriptions of the variability of  the streamfunction field. The fj give 
the spatial structure of  the components,  and their associated amplitudes are 
calculated from: 

aj(t) = J" ~'(v ,  t ) f j (v)  d Y  (34) 
y 

The total s treamfunction variance equals the trace of  A~m, and the ratio of  
a~ to tr(A ) gives the percentage of  the total variance associated with a given 
component .  We shall only examine the first few components  for the various 
cases below, because they contain almost all o f  the total variance. The sepa- 
ration between adjacent locations for calculating the fj is about dx z ~ dyt 
110 km. For the  first few components,  further  resolution is unnecessary. We 
have also examined the principal components  for u' and v' variability. For 
the first few components  of ~' ,  the velocity information is redundant;  that  
is, the velocity patterns agree with a geostrophic interpretation of  the 
streamfunction patterns (n.b., between velocity and streamfunction there are 
differences in the fraction of  the total variance associated with a given com- 
ponent).  

The first seven principal components  for CH are shown in Fig. 18. This 
case has a particularly simple and orderly description in terms o f  these com- 
ponents. The gravest component ,  which contains 34% of  the variance, is a 
zonally invariant ridge in ~, which is coherent  between the layers, though 
weaker and broader at depth. It has virtually zero transport (recall from Fig. 
9 that  the total transport  does not  fluctuate in CH). It can be interpreted as 
a bulk meridional shift in the location of  the zonal jet, wi thout  any change 
in its strength. Its t ime sequence is unrelated to bulk energy fluctuations 
(Figs. 5 and 6), but  is highly correlated with the longer t ime fluctuations in 
~ in the middle of  the basin (Fig. 12). Its amplitude is sufficient to account  
for most  of  those fluctuations. 

The remaining six components  should be considered in pairs. The second 
component  is quite similar to the third, but  shifted by one quarter wave- 
length to the east. as(t) is highly correlated with a2(t), but  leads it by a 
quarter period. Thus, these two components  combine to represent simple 
eastward propagation of  the associated spatial structures. These structures 
are eddies of  1000 km zonal wavelength, with meridional dimensions of  the 
mean jet  vertically in phase but  stronger in the upper layer (where the mean 
jet is stronger), of  larger meridional scale in the lower layer, and with a phase 
speed of  0.06--0.07 m s -1 to the east. These characteristics are qualitatively 
those of  the stable jet  modes discussed in McWilliams (1977C) , though the 
phase speeds are somewhat  lower here. The period of  these components  is 
about  200 days; this period was previously identified in component  1 and 
Figs. 12 and 14. 

Components 4 and 5 also comprise an eastwardly propagating pair with a 
jet  mode  character (as leads a4). The meridional scale is that  of  the jet, the 
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Fig. 18. The first 7 principal components for ~' in CH. For each one, the amplitude time 
sequence aj(t) (m 2 s -1)  and the upper and lower layer spatial patterns (normalized as in 
(32)) are shown. The components are labeled by (j, pj%), where pj% is the percentage o f  
the total variance residing in the jth component. The total variance for CH is tr(A) = 
1.7 • 10 s m 4 s -2.  The contour interval is 0.5. 

zonal  wavelength  is shor te r  t han  tha t  o f  c o m p o n e n t s  2 and  3 (500  km),  the  
phase  speed  is h igher  (0 .30- -0 ,35  m s - l ) ,  and the  per iod  is a b o u t  20  days  
(which  also was previous ly  ident i f ied) .  C o m p o n e n t s  6 and 7 are an east- 
ward ly  propagat ing  je t  m o d e  pair  which  is an t i - symmet r ic  a b o u t  the  je t  
center .  The  associated per iod  is variable,  b u t  a p p r o x i m a t e l y  4 0 - -5 0  days  
(one  can recognize  a small peak  in the  ~ s p e c ~ u m  at  this per iod  in Fig. 14). 
The  phase speed is 0 . 2 - 0 . 3  m s -1 to  the  east. 

Toge the r  these seven c o m p o n e n t s  a c c o u n t  fo r  88% o f  the  to ta l  ~ 
variance in CH; actual ly ,  t hey  represen t  on ly  one  s tanding and  th ree  prop-  
agating pat terns .  T h e y  a c c o u n t  fo r  all b u t  one  o f  the  p r o m i n e n t  fea tures  
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(i.e., the 8--9 day period) in the frequency spectra*, and conform in many 
ways to a simple analog, the jet  mode. As a succinct summary of  the varia- 
bility, they must  be considered of  fundamental value. Obviously, however, 
there remain important  unanswered questions about  why these particular 
components  are present and what are their dynamical couplings with each 
other, the mean jet, and the wind driving and dissipation. 

The interpretation for the principal components  of  other  cases is less sim- 
ple than those of  CH. Fig. 19 shows the first four components  for LB; collec- 
tively, they account for 73% of  the total streamfunction variance for this 
case. The dominant component  is one with a significant transporting ele- 
ment, and its amplitude is highly correlated with the time sequence of  total 
transport (Fig. 9); the magnitude of  al is within about  70% of  being able to 
account  for the magnitude of  the total transport  fluctuations. The second 
component  has the structure of  the standing eddies for LB (see Fig. 2), and 
thus represents fluctuations in their amplitudes; there is almost no transport 
associated with this component .  Propagating component  pairs are not  as 
apparent in LB as in CH. Components 2 and 3 have something of  a spatially 
shifted relationship and, at least for certain intervals, their amplitudes are 
correlated with a temporal shift (e.g., during days 300--400, component  3 
leads component  2, implying a westward propagation). The oscillation 
periods of  these components  are highly variable (which is consistent with the 
generally red spectra shown in Fig. 10). Nevertheless, one can recognize a 
very long period of  about  two years in components  1 and 2, a period of  
around 100 days in components  2 and 3, and a period of  about  60 days in 
component  4. Only the last of  these was identified as a spectral peak in Fig. 
10. 

Finally, in Fig. 20 are shown the dominant  principal components  for the 
remaining cases. In all cases the amplitude time sequences are highly corre- 
lated with the total transports (Fig. 9), as is also true of  LB (the only excep- 
tion occurs in CH where the transports do not  fluctuate). A remarkable 63% 
of the SB variance is associated with its dominant  principal component .  This 
is perhaps related to the fact that  it combines a transporting structure with 
elements of  the standing eddy patterns (see Fig. 2); thus, these two processes 
must be linearly coupled in SB so that a single structure can describe much 
of  the variability of  both. There are also some aspects of  this combination in 
SW and TB, though not  as many; also, the dominant  modes in these cases 
account for smaller percentages of  the total variance. The amplitude in SW is 
clearly in phase with the transient wind driving; the associated pattern is thus 
a major part of  the fluid response. One might describe this pattern as a 
standing wave, bu t  there is no known reason why this should be thought of  

* In fact,  a p ropaga t ing  je t  m o d e  pair  of  pr incipal  c o m p o n e n t s  has  been  f o u n d  wi th  the  
8--9 day period.  T h e y  each a c c o u n t  for  0.6% of  the  to ta l  variance,  are s y m m e t r i c  a b o u t  
the  je t  cen ter ,  have a wave leng th  of  3 0 0 - - 3 5 0  km,  and  have a phase  speed o f  0 .4- -0 .5  m 
s - I  to  the  east. This  pair  is fu r the r  discussed in sec t ion  10. 
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as a situation of  near resonance with the basin geometry or mean flow. In a 
similar manner, we recognize the dominant  component  of  TB as the  pattern 
associated with the strong, 1000 day oscillation described above. Certainly 
there is no simple relation between the ~ and the topographic contours  in 
this case. 

8. ZONAL MOMENTUM 

The budget  equations for mean zonal momentum are given in equations 
(18)--(20). In this section we shall examine these budgets and identify the 
important  processes in them. 

As was also true for the transient descriptions, the case CH has the sim- 
plest momentum balance. Fig. 21 shows this balance for both  the upper 
layer and the total  (depth integrated) momentum.  For  each of  these, only 
three of  the  source or sink terms make any appreciable contribution.  The 
zonal wind stress provides a source of  eastward momentum at all latitudes in 
the upper  layer, the horizontal Reynolds '  stress divergence C1 is an eastward 
source in the middle of  the jet  and a sink on its periphery (i.e., the eddies 
concentrate mean momentum) ,  and the transient interfacial pressure drag D' 
is a sink for upper layer momen tum at all latitudes (n.b., it  is a source for 
lower layer momentum -- see (18)). The standing eddies play no role here 
because they  are too  weak in CH (see Fig. 2). The budget  for the depth inte- 
grated momentum is equally simple: the wind is the primary source, the 
horizontal eddy transports (primarily in the upper  layer) concentrate the jet, 
and the b o t t o m  friction is the momentum sink. In fact, the two budgets 
are virtually identical, with eddy pressure drag for the upper  layer being 
replaced by  b o t t o m  drag for the total. 

The fact  that  horizontal eddy transports tend to concentrate and intensify 
the mean mid-latitude jet  has been known for the atmosphere for many 
years (Start, 1951; Kidson et  al., 1969). Furthermore,  the essential physical 
characterization of  this fact is that  barotropic planetary waves transport  
westward momentum (Kuo, 1951). If one imagines a source for these waves 
in the je t  center (by some instability process such as the baroclinic instabil- 
ity evident in Fig. 7 for  CH), then they  leave behind eastward momen tum as 
they propagate ou t  from the je t  and subsequently deposi t  westward momen- 
tum in an exterior region. This deposit ion process is probably associated 
with near-critical layers (Dickinson, 1968, 1971). It seems probable that  
some variant o f  this process is occurring in CH, since the eddies are at least 
equivalent barotropic and undoubted ly  have their source in the  jet  region. 

The momentum budgets for the remaining cases are shown in Fig. 22 for 
the  gap latitudes only. In the upper  layer, the primary source is always the 
direct wind forcing and the primary sink is the interfacial pressure drag 
(mainly D' in SB, LB, and SW and mainly D .  in TB). The horizontal,  tran- 
sient eddy Reynolds '  stress divergence C1 is a strong secondary source in the  
je t  centers, though usually a sink on the southern flank of  the jet. The 
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Fig. 21. The  ma jo r  e l emen t s  of  the  budge t  for  the  t ime  and  zona l  averaged zona l  mo-  
m e n t u m  for  the  case CH. Only  the  larger t e rms  in (18)  are inc luded  here.  The  u p p e r  pane l  
is for  the  t e n d e n c y  in Hl (Ul>  , t he  lower  for  t h a t  in Hi(U--l) + H3(u--3>. Uni t s  are m 2 s - 2 .  

standing eddy Reynolds stress divergence B1 and pressure drag D.  are 
weakly opposing to the transient C1, except in TB. For TB, all of  the above 
quantities except D.  are momen tum sources, with D. the sole sink. 

The total momen tum budget presents a similar picture. The pressure drag 
terms D.  and D' can no longer contribute, but  their role as momen tum sinks 
is simply replaced by either bot tom friction or, for TB, by the bot tom pres- 
sure drag E. There are appreciable lower layer contributions, as well as 
upper, to the Reynolds '  stress divergences B~ and Ci. 

A summary description of  these budgets is the following one. The wind 
stress is the major momen tum source, the eddies (transient and standing) 
concentrate the upper jet and transfer momen tum downward,  and either the 
frictional bo t tom drag of  the mean lower layer jet or, if <u-3 ) is too weak, the 
topographic pressure drag against the bot tom serve as the momen tum sink. The 
downward transfer of  zonal momen tum by the transient interfacial pressure 
drag is equivalent to the downward transfer of  mean energy in Fig. 7 (i.e., 
f f  ~1 " ~  = {g l ,  P} ). 

9. P O T E N T I A L  V O R T I C I T Y  

In many respects, the potential vorticity is the most  fundamental  depen- 
dent  variable of  our quasigeostrophic model. It is a conservative property of  
a fluid parcel except  for dissipation and wind driving [see (1)]. The instan- 
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taneous balance for equation (1) is a structurally complicated one, with 
short space and time scales. The local rate of  change qt is primarily balanced 
by potential vorticity advections -- the contributions from dissipation and 
wind forcing are two to three orders of  magnitude smaller [their relative un- 
importance in a few realizations of  mid-latitude mesoscale eddy potential 
vorticity balances was shown empirically by McWilliams (1976b)] .  This situ- 
ation remains true even for the time averaged point  balances, though the dis- 
parity between the conservative and non-conservative terms is not  quite as 
great. The pointwise changes in ql are mainly due to interfacial height 
changes in (2), with both relative vorticity and planetary vorticity changes 
each contributing about  25% as much. In q-3 all three types of  potential vor- 
ticity contr ibute comparably. 

It is only for the time and zonal mean, <qi>, that  the budget  contributions 
from the non-conservative processes become appreciable. The various terms 
in these budgets are defined in (21) and (22), and the upper and lower layer 
budgets are plot ted in Figs. 23 and 24, respectively. In the (q-1 > budget, the 
wind is a source of  positive vorticity in the north and negative in the south. 
For  CH only two other terms contr ibute appreciably, and both are due to 
the transient eddies. Away from the jet  latitudes dl and el from (22) balance 
the wind vorticity. In the jet, however, the eddy stretching term dl strongly 
opposes the wind while the eddy relative vorticity transport el reinforces it: 
together these two terms support  a very strong meridional gradient o f  (ql > in 
the jet, which is an expression of  the momentum concentration seen in sec- 
tion 8. In this sense, then, the horizontal transport of  el is a local jet  source 
-- stronger than the wind for potential vorticity -- while the vertical stretch- 
ing of  d I is the sink. Since d3 = -- (H1/H3)d 1, this upper layer sink is a lower 
layer source. In the lower layer (Fig. 24), the source due to eddy stretching 
transport d3 is balanced by a bo t tom frictional sink. The horizontal trans- 
port  e3, while not  negligible, acts in a lesser way to spread the meridional 
gradient o f  ( ~  > (hence, the lower layer jet}. It does this by forcing locally 
intensified gradients on the edges of  the jet  (at y ~ 360 and 640 km). 

In a less simple manner, these balances also occur in the other cases. 
There, however, the standing eddies, as well as the transient ones, make 
important  contributions and the meridional structures are more complex. In 
general, in the upper layer the standing eddy transports tend to oppose the 
transient eddy ones, and the horizontal transports (Cl and el )  oppose the 
vertical ones (bl and dl) .  The most  consistent opposit ion to the wind vor- 
t icity forcing is provided by the transient eddy stretching dl (which, as 
above, can be viewed as systematically transferring the wind driving to the 
lower layer through d3). In SB, LB, and SW the horizontal transient eddy 
transport e~ acts most  clearly to intensify 3(q~ >/ay in the jet, while this role 
is partly taken over by the standing eddies in TB through the term cl.  

In the lower layer balances (Fig. 24), there is again a tendency for mutual  
opposition between standing and transient eddy terms of  like type  (i.e., c3 
versus e3 and b3 versus d3). As in the CH interpretation above, it is reason- 
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able to regard the eddy stretching terms (mainly d3 in SB, LB, and SW and 
b3 in TB) as transmitting the systematic wind vorticity forcing to the lower 
layer. The primary balance to this forcing is provided by the bo t tom friction 
and, in TB, the topographic torque [the last term in (21)]. In all o f  the cases 
with a partially blocked channel, there is a strong spike in the horizontal 
standing eddy transport  cs at the northern edge of  the gap. This spike is 
balanced primarily by lateral friction a3 (which is not  plotted). This is the 
only location in either layer where lateral friction makes an important  con- 
tribution to the < ~) budget. 

For the numerical solutions we have been analyzing, the purely steady- 
state solutions to (1) would be ones where the standing eddies could effect  
all the transports which are necessary in the energy, momentum,  and 
vorticity budgets (e.g., D.  would dominate D' in momen tum and the bi 
would dominate  the d~ in potential vorticity). Furthermore,  insofar as the 
point  balances are dominated by conservative process, any steady solution 
would have to approximately satisfy: 

J (~ , ,  q,) = 0 (35) 

in each layer. 
In fact, the transient eddies do not  play a negligible role in the budgets for 

these solutions; in most  cases they  play an essential role. Also, the wind 
forcing and bo t tom friction must  contr ibute significantly at least in a volume 
integral. Nevertheless, it is of  interest to examine (35) as a relevant null 
model. A general solution to (35) is ~ a function of  ~i alone, with no direct 
dependence on x or y separately. Figs. 25 and 26 show scatter plans of  all 
point values for ~ and ~ throughout  the domains of the various cases. A 
single valued functional relationship would imply a solution to (35). While 
clearly this is not  strictly true for any of the cases, it is remarkable how 
much, viewed from this perspective, this characterization does seem apt for 
all cases except  TB. 

The closest approximation to such a functional relationship occurs in CH, 
and the upper layer relationship seems somewhat  tighter than the lower layer 
one; in this case it is the absence of  standing eddies which assures the rela- 
tionship. Cases SB, LB, and SW seem generally similar, with a recognizable 
width (i.e., degree of  non-uniqueness) to the functional relationship. For 
these cases the largest departures to the unique relationship occur on the side 
boundaries, where our boundary conditions (3) force a discrepancy: ~i is 
constant, while q~ varies because of  H~fly. This boundary departure is most  
noticeable in the lower layer (Fig. 26). The case TB exhibits no basic func- 
tional relationship. 

It was shown in McWilliams (1977a) that  the quasigeostrophic stability of  
these mean states, assuming they approximately satisfy (35), is assured by: 

d~i_ > 0 
d¢~ 
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everywhere in each layer. This inequality does seem to be generally charac- 
teristic of the lower layer, but it is clearly isolated in the upper layer. Thus, 
while it is approximately correct to view these mean states as close to ones which 
have steady, purely conservative point balances there is no basis for believing 
such mean states would be nearly stable ones. The reality about these solu- 
tions, of  course, is that  transient eddies are forced from the fluid response to 
a purely mean driving force, and that  the mean states do have significant 
transient eddy transports contributing to their balances. Nevertheless, the 
idealized equation (35) is a fundamental  reference relation for these solu- 
tions, and the whole transient cycle is associated with the slight non-unique- 
ness of this relation. 

10. EDDY P R O P E R T I E S  AND F L U X E S  IN A C H A N N E L  

In the preceding sections, we have presented several gross measures of  
eddy structural and propagation characteristics and eddy contributions to 
mean budgets. By an equally gross measure, we have identified eddy genera- 
tion through the baroclinic instability of the zonal mean jet in all cases 
except TB (see section 5). Because of the relative simplicity of  the CH solu- 
tion, clearly indicated in the principal components of section 7, we can be 
more precise about the eddy properties in this case. In this section we shall 
consider the relation between linear instability theory and the numerical 
principal components,  the momentum transports by each of  these, the 
validity of  several eddy heat flux parameterizations, the degree of supercriti- 
cality in the mean state of  CH, and the role of a reverse energy cascade, anal- 
ogous to that  of two-dimensional turbulence. 

A linear stability analysis has been made for CH, similar to that  described 
in Haidvogel and Holland (1978). Equations (1) and (3) were solved as a 
linear eigenvalue problem for the small amplitude fluctuations about the 
time and zonal mean solution. The fluctuations were assumed proportional 
to e ° t -  i~x, where o is the eigenfrequency, and the eigenfunctions varied with 
y only. When Haidvogel and Holland (1978) applied such an analysis to nu- 
merical solutions for enclosed gyres, the results were only partially successful 
in matching the numerical eddy Characteristics; this was perhaps to be expec- 
ted, since the numerical mean state was not zonally invariant and the numer- 
ical fluctuations were not  zonally periodic. In CH, however, the geometrical 
assumptions of the instability analysis conform to the numerical circum- 
stances, and more exact correspondences between the two should occur. 

Curves of the eigenfrequency o associated with the meridional mode of 
maximum instability [largest Re(a)] are shown in Fig. 27, plotted as a func- 
tion of  zonal wavenumber k. Because of the zonal periodicity of CH, on a 
distance Lx, only integer k values in Fig. 27 are directly comparable to the 
numerical solution. Wavenumber 3 lies near the maximum instability value; 
wavenumber 2 has a much smaller but significantly positive Re(o); wavenum- 
ber 4 has a negligible rate of  instability; and wavenumbers ~<1 or ~>5 are 
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Fig. 27. The complex frequencies of maximum linear instability about the mean CH state 
shown in Fig. 3. 

stable. We might, therefore, expect to observe the wavenumber 3 mode, and 
perhaps mode 2, in the CH solution. Fig. 28 shows the wavenumber 3 spatial 
structure in comp__~ison with an additional CH principal component propa- 
gating pair (with a~ values smaller than those in section 7). The wavelengths 
of the mode and the components are identical, 330 km. The period of the 
unstable mode is 9 days (see Fig. 27). The time behavior of the principal 
components is shown in Fig. 29. The time lagged covariance CAB(T ) indicates 
that the two components form an eastwardly propagating pair, with compo- 
nent B preceding A by slightly more than 2 days. This corresponds to a 
period of 8--9 days, matching "that of both the unstable mode and the spec- 
tral peak in Fig. 14 (the only peak unaccounted for in the components of 
Fig. 18). Thus, both the unstable mode and the components have an east- 
ward phase speed of 0.3 m s -1 . The e-folding growth time for wavenumber 3 
is 87 days from Fig. 27. The amplitude ratio, (max ~a/max ~1), is somewhat 
different in the mode and the components, respectively it is 0.45 and 0.2-- 
0.3. Another difference between the two is in their degree of spatial phase 
shifts: the unstable mode has larger horizontal displacements separating eddy 
centers in the two layers and more of a banana-shaped pattern in the hori- 
zontal than does the principal component pair. These features are equivalent 
to greater maximum eddy flux divergences (e.g., in C1 o r  D') per unit stream- 
function amplitude in the mode compared to the component. 

A similar identification can be made between the unstable wavenumber 2 
mode (with a wavelength of 500 kin, a perio d of 14 days, a growth time of 
550 days, and an amplitude ratio of 0.4) and the principal components 4 and 
5 in Fig. 18 (with a wavelength of 500 km, a period of ~20 days, and an am- 
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plitude ratio of  0.5). The discrepancy between the periods should not  be 
taken seriously, given the steepness of  the Im(o) curve near k = 2 in Fig. 27. 
Note that  this componen t  pair, which has a 16 times greater streamfunction 
variance than does the componen t  pair in Figs. 28--29, also has a 6 times 
smaller growth rate in the linear theory.  

We also can compare the unstable modes and the principal components  in 
their flux divergence contributions to the general circulation. The presenta- 
tion will be in terms of  the zonal mean momentum transports D' and C1; 
however, from section 2 and Appendix B it is apparent that  analogous con- 
clusions could be drawn from other mean budgets. Because of  the orthogo- 
nality of  the a~(t) with respect to a time average, any total quadratic eddy 
flux divergence can be writ ten as the sum of divergences from individual 
principal components  alone. When the first 20 principal component  contri- 
butions to D'  and C1 were evaluated, it was found that  only two propagating 
componen t  pairs contr ibuted significantly. These two are those which have 
been identified above with the linear unstable modes. Their meridional distri- 
butions are shown in Fig. 30 and should be compared to the distributions of  
the total  D'  and C1 in Fig. 21. The componen t  contributions have shapes 
similar to those of  the totals, although they are somewhat  more restricted in 
meridional extent  and exhibit  a relatively excessive contr ibut ion to C1 com- 
pared to D'. Their amplitudes are comparable to those of  the totals: in the 
je t  center the components  in Fig. 30 together provide more than the total  C1 
and about  80% of  the total D'.  Thus, these few components  accomplish the 
greater part  of  the eddy contr ibut ion to the maintenance of  the general cir- 
culation. Also shown in Fig. 30 are the contributions from the linear unsta- 
ble modes with wavenumbers 2 and 3, normalized so that  their peak D' 
values equal those of  the components  with which they have been identified. 
Their meridional extent  is less and their C1/D' ratio is larger than that  o f  the 
components .  

Together the principal components  of  Fig. 30 account  for only 17% of the 
total  s treamfunction variance. Since the linear theory does not  suggest that  
any of  the other, more energetic, principal components  can be generated by  
an instability of  the mean state --  and since Fig. 30 suggests that  the others 
are generally unimportant  in the mean budgets -- we conclude there must  be 
an efficient energy cascade from the unstable modes to the other  (generally 
larger scale) components .  This cascade is thus a reverse one, as in two~limen- 

Fig. 28. T h e  t o p  pane l  shows  t he  s t r e a m f u n c t i o n  p a t t e r n s  associa ted  w i th  the  uns t ab l e  
m o d e  w i th  k = 3 cycles  pe r  1000  k m  (see Fig. 27). T h e  lower  four  panels  are the__principal 
c o m p o n e n t s  for  CH wh ich  have a d o m i n a n t  8--9  day  per iod.  T h e i r  e igenvalues  a 2 are 
0 .987  • 106 a nd  0 .984  • 106 m 4 s - 2  respec t ive ly  (i.e., t h e y  each  a c c o u n t  for  0.6% of  the  
t o t a l  var iance) .  T he  h o r i z o n t a l  grid for  t he  covar iance  m a t r i x  is smal ler  here  t h a n  for  Figs. 
1 8 - - 2 0  (i.e., dxl  = dyl  = 63  k m  ins tead  o f  the  110  k m  of  Sec t ion  7). The  e i g e n m o d e  has  
an a rb i t r a ry  n o r m a l i z a t i o n  b u t  equa l  c o n t o u r  in tervals  in each  layer  (solid and  dashed  
l ines imply  posi t ive  and  negat ive  values respect ively) .  T h e  pr inc ipa l  c o m p o n e n t s  are nor- 
mal ized  as in (32)  and  have a c o n t o u r  in terval  o f  0.4. 
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sional turbulence (see Batchelor, 1969). Note,  however, that this cascade is 
not  a "barotropif icat ion" of  the flow (as described by Rhines, 1977), un- 
doubtedly  because of  the presence of  a vertically sheared mean jet.  

Linear theory can, therefore, be judged relevant to many aspects of  the 
equilibrium turbulent  balance in CH. Since linear theory has been invoked in 
derivations of  parameterizations of  equilibrium eddy heat fluxes (e.g., Green 
1970; Stone, 1974; Sasamori and Melgarejo, 1977), one can use the CH 
numerical solution as a test of these parameterizations. This test is far more 
theoretically germane than the comparisons with the equilibrium state of  
the earth's atmosphere which these authors discussed. From equation (B.5) 
the parameterization of  heat flux is equivalent to that  of  D' in CH. 

From equation (5.15) of  Stone (1974), we can derive the following 



277 

PRINCIPAL COMPONENT MOMENTUM TRANSPORTS 
I x I0 -4  

Oj 2 : 15 ond 1.5 x i07m4s -2 o] 2 : I 0  ond I 0  x I06 m4s -2 

0 5 x 10 -4 

-05 X 10 -4 

/ 
- i  x Lo i i I I 

Ly/2 Ly 0 L7/2 Ly 

U N S T A B L E  EIGENMODE MOMENTUM TRANSPORTS 
(no rmo l i zed  on mox ID'I for  ) r inc ipol  components}  

I x I0 -4  

WAVENUMSER 2 WAVENUMBER 3 

0 5  X I0 -4  

o 

- 0 . 5  x 10 -4  - D '  

- 1  x 10 -4  I I I 
0 L y / 2  L I  0 L y / 2  Ly 

Fig. 30, The variation of  D' and C 1 with y for selected propagating pairs of  principal com- 
ponents (4 and 5 from Fig. 18 in the upper left and those from Fig. 28 in the upper right) 
and for the linear unstable modes with which these component  pairs have been identified. 
Units are m 2 s - 2 .  

parameterization formula (when ~ = 0): 

/H I + H 3 
D~,(y) =----0.144 fo V ~ i<~>--<u-3>L ((~>--<~>) (36) 

This curve is plotted in Fig. 31 along with D' from CH. There are striking dis- 
crepancies: the parameterization formula is a significant overestimate of D' 
in the jet center, (36) is much less smooth in y than D', and (36) does not 
vanish near the bounding walls. This latter defect can be eliminated by 
including Stone's (1974) correction for ~ ~ 0; this correction has little influ- 
ence upon the parameterization in the jet center. Green (1970) and Sasamori 
and Melgarejo (1977) recommended formulas which are similar to (36), 
though ones intended to apply only in a y average. Their numerical coeffi- 
cients were somewhat different, and in Green (1970) there was an additional 
Froude number factor. For the parameters of the earth's atmosphere, the 
three parameterizations agree; for the parameters of CH, they all yield over- 
estimates of D'. If one examines the assumptions upon which (36) is based, 
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lower  layer  veloci ty  <u 3 } and  an uppe r  layer  <u--3> + e(~u-1) - -  ~u-3~), where  the  <~//> are f rom 
Fig. 3. 

one finds them in disagreement with various properties of  the CH solution. 
For example, Stone (1974) assumed equal mean and eddy kinetic energies in 
equilibrium, whereas in CH K~ is about  half as large as Ki (see Fig. 7). Even 
worse, the total K~ in CH is much greater than the small fraction which is 
associated with the most  unstable mode in contrast  to Stone's identification 
of  the mode with the total. Secondly, the conversion efficiency of  the un- 
stable mode (i.e., the correlation coefficient between v' and T') is not  the 
same at infinitesimal and finite amplitudes (see Fig. 28). Finally, the 
instability process in CH is not  purely local in y -- note the greater smooth- 
ness of  D'  from CH in Fig. 31. The prediction of  localness is based upon the 
meridional scale of  the most  unstable mode being that of  the deformation 
radius, which is smaller than that of  the jet.  This is not  always true even in 
the linear theory (n.b., Simmons, 1974),  nor is it true in CH (see Fig. 28). 

Recently,  Stone (1977) has presented an alternative parameterization for 
heat flux, though one which yields similar results to (36) for the earth's 
atmosphere. The hypothesis is that  the heat flux is what  it must  be so that  
the time and zonal mean vertical shear in zonal velocity is near the value for 
marginal instability. The advocated criterion for marginal instability is that  
for a broad jet  in an inviscid, two layer fluid. Phillips (1954) derived the crit- 
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ical velocity difference AUc when H1 = Hs; when H1 ~ H 3 ,  the following for- 
mula is the relevant one (Robinson and McWilliams, 1974): 

AUc = ra in  L ~o 4874 -- 1 (1 -- 8 + x / 4 - ~ ( 7 4 ( 1  + 8 )  2 - -  1) (37) 

where 7 = fo/Ke~g-~l ,  ~ = H1/H3, and Ke is the zonal wavenumber of the 
perturbation mode. The minimization is over all values of  9'. For the param- 
eters of CH, 7 m i n  = 1.3 and AUc = 0.09 m s -1. From Fig. 3, we can see that  
the numerical AU(y) = U1 -- U3 has a peak value of  0.33 m s - l ;  thus, by the 
criterion (37), CH is significantly, no t  marginally, supercritical. However, if 
we use instead of  (37) a criterion based upon the eigenvalue problem 
described at the beginning of  this section, then AU(y) in CH is within 10% of 
a bulk AUc. This is shown in Fig. 32, where an abrupt transition in growth 
rate (as well as other modal properties) occurs at a fraction of  0.9 of  the 
equilibrium shear in CH. Thus, the results from CH conform quite well to a 
variant of Stone's (1977) hypothesis: the eddies do indeed effect a margin- 
ally supercritical mean flow, at least by the more complicated criterion of 
Fig. 32. 

1 I. THEORIES OF THE ANTARCTIC CIRCUMPOLAR CURRENT 

The essential difference between the present theoretical calculations and 
previous ones is that  the interior fluxes of  momentum and potential vorticity 
are caused by turbulent  processes which are calculated rather than grossly 
parameterized by eddy viscosities (representing generally unspecified pro- 
cesses). This, in our opinion, represents a significant advance in the com- 
pleteness and self-consistency of  the theory,  but  it does not  necessarily ob- 
viate the conclusions from previous theories which were more cavalier about 
the turbulent  processes. 

Crease (1964) presented a succinct but  valuable summary of the current 
theoretical hypotheses about  the gross balances in the Antarctic Circumpolar 
Current (ACC), and the reader is referred there for more detail than we shall 
give. One simple conception is that  the ACC is purely zonal and the direct 
wind driving should be locally balanced by eddy momentum diffusion. 
Hidaka and Tsuchiya (1953) estimated that  the diffusivities required for this 
would be either 0.2 m 2 s -1 or 106 m 2 s -1 depending upon whether the fric- 
t ion were vertical or horizontal. Stommel (1957) felt these levels of  turbu- 
lence were indefensible* and he, and later Wyrtki (1960), argued that  the 
geometry of  the ACC should not  be considered zonally open -- because of  
the intrusion of  partial barriers by islands and topographic features along all 
latitude lines in the ACC region -- and that,  therefore, a zonal pressure 
gradient could exist to balance the wind stress. In such a case the frictional 

* A typ ica l  value  for  h o r i z o n t a l  d i f fus iv i ty  in t he  midd le  o f  a sub t rop i ca l  gyre  wou ld  per- 
haps  be  100  m 2 s - 2  (F ree land ,  Rossby ,  and  Rhines ,  1975) .  
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requirements for balance would be less than in a zonally open channel, and 
the ACC would behave as the confluence of  closed basin western boundary 
currents driven by interior gyres with a Sverdrup (1947) vorticity balance. It 
is obvious, however, that  this conception cannot be wholly correct since it 
requires no zonal transport across some meridian. 

In several ways topography has been hypothesized as important  for the 
ACC. Kamenkovich (1962) stressed its impo~ance in guiding the transport 
streamlines [along lines of  f /(depth)] and influencing the total transport. He 
relied on a vertical eddy diffusivity to obtain a local frictional balance with 
the winds. He stated that  a value of 10 -2 m 2 s -1 was sufficient, but  Gill 
(1968) later pointed out  that  at least 10-1 m 2 s-1 was required for a consis- 
tent  application of  this model. Fandry (1971) examined a linear, barotropic 
model with bot tom friction and topography and concluded that  topography 
impedes transport by enhancing the bot tom frictional drag. This is because 
the circumpolar circuit is lengthened for any fluid parcel due to meridional 
deviations induced by the topography and because the bot tom velocities are 
enhanced near topography. Schulman (1970) presented numerical examples 
of barotropic flow with bot tom friction and topography. Munk and Palmen 
(1951), in an early but insightful paper, argued that  the bot tom velocities 
were probably too small for bot tom friction to balance the wind driving but 
felt that  bot tom pressure drag [the final term in (19)] would be adequate. 
They recognized the difficulty in vertically transferring the stress to the 
bot tom and suggested either vertical eddy diffusion or large northwards 
excursions of  the ACC water in a meridional cell (with sinking equatorwards 
of the ACC) as means of effecting this transfer. The former mechanism, 
which has a counterpart  in our solutions, is certainly the more direct one. 

There have also been a few studies of  combined thermal and wind forcing 
of the ACC. In an early study, Fofonoff  (1955) argued that  the two forces 
would augment each other, while relying on a vertical eddy diffusivity of  
2 m 2 s -1 to obtain a balance. Several steady-state numerical calculations, 
with large eddy diffusivities have also been made. Cox (1975) presented solu- 
tions for the global oceans, and Gill and Bryan (1971) studied a more local 
model of the ACC. In the latter, a complicated coupling was discovered 
involving a thermally driven meridional cell and wind<lriven flow through a 
topographically blocked Drake Passage. The vertical and horizontal eddy 
coefficients of friction were 0.5 • 10 -2 and 5 • 104 m 2 s -1 respectively. Both 
of these values are larger than in usual subtropical gyre simulations but 
smaller than the values identified by Hidaka and Tsuchiya (1953) for either 
process acting alone. However, the numerical experiments were made for an 
f0 ~ 10 -5 s -1. If f0 were increased by an order of magnitude to a correct 
value, then the diffusivities would have to be increased as well in order to 
preserve the Ekman numbers. 

We feel it inappropriate to assess the combined thermal and mechanical 
aspects of the ACC on the basis of  our present solutions. However, the valid- 
ity of the purely wind-driven hypotheses discussed above can be examined. 
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In most  cases - -  the  major exception is the extreme form of the Stommel hy- 
pothesis - -  it is crucial that  the fluid interior either be barotropic or have a 
very large vertical diffusion of  momen tum (with a coefficient on the order of  
I m 2 s- l ) .  The several numerical solutions we have presented demonstrate  
(rather than assume) the partially barotropic nature of  the ACC and also 
demonstrate the nature of  the large vertical momentum transfer (i.e., the 
interfacial pressure drag induced by the geostrophic, mesoscale eddies --  see 
section 8). An approximate measure of  the magnitude of  this transfer comes 
from equating the surface stress ~ [ = 1 0 - 4 m  2 s -2  from (24)] and the mean 
b o t t o m  frictional stress hseua with an interior, vertical eddy stress: 

Vv ~-z ~ Vv ! H  
2 

For the approximate values of~-x ~ 0.5 m s -1 and ~-3 ~ 0.25 m s -1 (see Fig. 
3), we find ehau-a equal to  10--4m z s-Z; for an equivalent interior stress, Vv 
must  equal 1 m s s -1.  Thus, our  mean balance for the ACC is quite consistent 
with many of  the previous conceptions;  also, the turbulent  eddies which can 
accomplish this have been exposed. Furthermore,  the various hypotheses  
about  topography --  its influence on the transport  magnitude and the loca- 
t ion of  the streampaths (e.g., Kamenkovich, 1962),  its capability of  pro- 
ducing topographic form drag to balance the wind stress (e.g., Munk and 
Palmen, 1951), and even its tendency to partly support Sverdrup interior 
balances (e.g., Stommel, 1957) -- all find partial confirmation in the compar- 
ison of TB with the flat bottom cases. Our set of solutions does not 
adequately delineate the parametric sensitivities of the present class of nu- 
merical models. Hence, we are reluctant to assign proportional roles to the 
various mechanisms above. Nevertheless, we feel that models of this type can 
lead to a considerable refinement of our theoretical knowledge about the 
ACC. 

Finally, for completeness, we include approximate estimates for several 
other eddy diffusion coefficients. In general, the eddy flux divergences 
exhibit much more structure than can be expressed by a single coefficient. 
However, for CH the divergences are relatively simple (n.b. Fig. 21) and such 
estimates are reasonable. By comparing integrands in (B.15), we can estimate 
the upper layer horizontal particle diffusivity as: 

K ~ 1 - - 2  • 10 a m 2 s - ~  

based upon  Figs. 21 and 25. An upper  layer, horizontal diffusivity for mo- 
mentum VH and an inteffacial, horizontal thermal diffusivity KT can be esti- 
mated within the mean je t  from the following ratios: 

( 3 8 )  

/ ~y 
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where the interfacial temperatures are defined by (B.3). For the CH numer- 
ical solution, we have approximately: 

/)H ~ --3 • 103 m e s -1 

K T ~ 0.9 • 103 m 2 s -1 

Tennekes (1977) predicted that  KT = -- VH ; this is only approximately true in 
CH. 

12. DISCUSSION 

The numerical solutions presented above illustrate the nature of equilib- 
rium turbulent balances between geostrophic eddies and mean jets. In these 
balances the two types of motion are inextricably coupled. However, any 
application of  these results to the Antarctic Circumpolar Current must be 
made very cautiously, because it is clear that  at least the basin geometry and 
topography are important  and as yet  insufficiently explored regulators of  
the turbulent  balances. 

Certainly the simplest case is the channel one CH. Because of the zonal 
and temporal invariance of the basin and forcing, there are no important  
variations in the transports and no standing eddies, and the transient eddies 
are, on the average, either independent of the zonal coordinate or occur as 
homogeneous, zonally propagating patterns. The mean jet is a strong one, 
with its maximum at the latitude of  the maximum wind stress. It is narrower 
in the upper layer than the lower, because of the up-gradient horizontal mo- 
mentum fluxes by the transient, upper layer eddies. The lower layer jet 
receives its momentum from the upper layer by action of  the eddy interfa- 
cial pressure drag forces and loses it to the bot tom through the parameter- 
ized frictional drag. The most energetic transient motions have the form of 
trigonometric functions in the zonal coordinate and appear in the frequency 
spectra as about four separate, broad peaks superimposed on a generally red 
spectrum. Their space and time structures approximately correspond to neu- 
tral, linear jet modes. Two of these peaks, at periods of  9 and 20 days, are 
associated with the baroclinic instability of the mean jet, as predicted by a 
linearized eigenvalue analysis. The unstable eddy motions have scales some- 
what larger than the deformation radius. This process serves as the energy 
source for the transient eddies, with the other, more energetic transient 
motions receiving their energy by a reverse cascade similar to that of two- 
dimensional turbulence. The fundamental  horizontal scale of the system is 
set by the strength of  the concentration of the mean, meridional potential 
vorticity gradient, which is accomplished primarily by the upper layer 
relative vorticity flux; this scale is smaller than that  of the wind-stress or 
channel width, but much larger than the deformation radius. 

None of the other cases have a zonally invariant geometry. They are thus 
more complicated, and our interpretations of the essential processes are less cer- 
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tain. The set of  cases of  SB, LB, WW, and SW can be viewed as members of a 
common family. They differ from CH by having energetic standing eddies 
and other  departures from zonal invariance. On the other  hand, they do 
retain an approximate zonal symmetry  (reflection about  the basin center; 
the equivalence of  the up- and downstream sides of  the gap), and their mean 
energy, momentum,  and potential vorticity budgets are broadly similar to 
each other  and to those of  CH (n.b., the standing eddy contributions do not  
dominate the budgets). It is plausible, therefore,  that  the processes identified 
in CH are occurring in these other  cases as well, albeit with an extra de~ree 
of  complexity.  Furthermore,  we can tentatively conclude that,  while the pres- 
ence of a narrow gap is important,  the zonal length of  the basin and a semi- 
annual component  in the wind do not  make as substantial an alteration of 
the general circulation. 

In contrast, the presence of a large topographic barrier in the gap does 
away with much of the simplicity seen in the other  cases. The mean standing 
eddies dominate  the zonal mean,  the transports and energies are greatly 
reduced,  and the energy budgets indicate a mixed baroclinic and barotropic 
eddy generat ion mechanism. Closed gyres with partial Sverdrup balances are 
present both north  and south of  the jet. In addition, far  the zonal mean mo- 
men tum and potential vorticity budgets, the standing eddies (rather than the 
transient ones) produce the requisite interior fluxes, while the topographic 
drag and torque serve as the major sinks (rather than bo t tom friction). No 
vestige of  zonal symmetry  remains; the region downstream from the barrier 
is much more energetic than upstream. Particularly vexing is our inability to 
explain the regular but  extremely long period oscillation seen most  clearly in 
the transport  (Fig. 9); the associated principal component  has its maximum 
expression well away from the topography (Fig. 20). 

In several respects, TB is our most  realistic analog for the Antarctic Cir- 
cumpolar  Current. There is, in fact, a very large topographic barrier near the 
Drake Passage, in addition to sizable obstacles at other  locations. (A two- 
layer, quasigeostrophic model  can only crudely represent such topography; 
more vertical resolution and primitive equations would be required for any 
great precision.) The transports in all cases but  TB are greatly excessive com- 
pared to observations; there seems little doubt  that  the topography plays a 
major role in regulating this. Finally, TB exhibits, more than any other  case, 
plausible analogs to the Weddell Gyre and Falkland Current, immediately 
downstream from the gap (Fig. 2). Perhaps the greatest qualitative discrep- 
ancy between our model  solutions and the observations is the substantially 
smaller horizontal scales in the latter, at least in the deep water near the 
Drake Passage (Bryden and Pillsbury, 1978). 

We do feel, though, that  these idealized calculations demonstrate  the 
probable importance of  geostrophic turbulent  processes in describing the 
mean state of  the Antarctic Circumpolar Current. Whatever ult imate skill in 
simulation models such as ours might exhibit, it seems most  likely that  only 
models with plausible turbulent  processes can be viewed as adequate. For the 
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success of  any systematic effort  to develop detailed simulations of  the 
Antarctic, it seems to us imperative that much more globally extensive mea- 
surements of  the ocean variability be obtained in order to indicate the types 
of  theoretical studies which would be most  relevant. 
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APPENDIX A 

The two-layer quasigeostrophic potential vorticity equations (1)--(2) with 
the boundary and auxiliary conditions (3)--(4) have been solved by standard 
finite<lifference methods using a staggered velocity and streamfunction grid 
system (as in Arakawa's, 1966, Scheme C) and energy conserving formulas 
for Jacobian evaluations (see Holland (1978) for the vorticity equations). 
All of  the budgets in section 2, as well as the vorticity equations, have finite 
difference forms which result from derivations, purely by finite difference 
mathematics,  from the momentum equations on velocity grid points. 

In solving (1)--(2), ql and q3 are stepped forward in time at the interior 
grid points and the gap points. From new potential vorticity values we next  
obtain new sixeamfunctions. 

We define the barotropic streamfunction by:  

4 ~ (Hi @ 1 + Ha ~ 3 )/(H1 + Ha ) -= ¢ + c(t) 4' (A1) 

Its two components  ~ and 4' are determined as follows: 

V 2~n + 1 = (q,~ + 1 + q~ + 1 _ f o B ) / ( H 1  + H3 ) - -  f 

with : 

0 on 5~2N 
= 0 on 5~2 N and 6 ~ s ,  and V24 ' = 0 with 4' = 

1 on 5 ~ s  

The superscript n + 1 indicates the new time level. Using the third auxiliary 
condition in (4), we have an equation for d c / d t  from which c n+l is deter- 
mined. The new baroclinic streamfunction: 

- 4 ,  - Ca - ~ + c ' ( t ) ~ '  + c " ( t ) ~ "  

is obtained from the following equations: 

(V2 ~ 2 ) ~ .  + 1 q,~+l q ~ + l  f o B  

H1 H3 H3 
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where: 

k 2 = ~(H1  + H3)]g'HIH3 

and: 

= 0 on ~ N  and 6 ~ s ;  ( V2 - - k 2 ) ~  ' ---- 0 

with: 

on 5~2 s 

a n d :  

(v  2 --  ~,2)4" = 0 

with 4" = 1 on 8~2 N and 8~2 s. Using the second and the fourth auxiliary" 
condit ions in (4), we have a set of  equations from which (c') "+1 and (c") "÷1 
can be determined. Then 4~ ÷1 and 4~ +1 are obtained from ¢,+1 and 4 "+1, 
and the boundary  values of  q~+l and q~÷i filled in using the relations 
(2)--(4). In the evaluation of  the  Jacobian terms, the grid points representing 
Ys and Ys must  be treated as interior points in order to  satisfy the area con- 
servation relations (e.g., I f  J ( 4 ,  q) = 0). 

To solve the Poisson equation for ~b and the Helmholtz equation for ¢ for 
the idealized geometry of  the Antarctic Circumpolar region, we followed the 
algorithm developed by  Buzbee et  al. (1971) using direct, methods  to treat  
problems in irregular domains. The method  of  solution is first to represent 
the finite<lifference approximation to the Poisson equation as a matrix equa- 
tion. The algorithm for solving such an equat ion (A~ = ~) requires modifying 
A and y so that  a different  matrix equat ion B z = W can be solved b y  an effi- 
cient direct method  and then the solution 12 constructed from g. The proce- 
dure is as follows: 

(1) Partition A and y in the form: 

A = ; y = (A5) 
A2 ~ ~2 

Define: 

B = ; y = ~ = (A6) 
A2 2 

(2) Solve Bz = ~-by  a direct method  and compute  C = A l Z .  

(3) SolveB~-= ~ b y  a direct method.  
(4) Solve C~ = Yl - -Alx~by pivoted Gauss elimination (C is a p × p matrix). 

Then the solution v can be computed  from: 

12 = ~ + z ~  (A7) 



286 

For our system, we define: 

A1 = (AI2012) (A8) 

A 1 is a p × (n X rn + p) matrix where p is the number  of  gap points,  n is the ^ . 

column dimension and m is the row dimension. A is a p × p tridiagonal coef- 
ficient matrix, and 12 is a p X m identi ty matrix with unity on the diagonals 
in the gap point  positions and zero elsewhere. Yl is the forcing funct ion of  
length p associated with the gap points. B1 is a p  × (n X m + p)  matrix of  the 
form : 

BI = (f0) (A9) 

/is a p X p identity matrix. ~ is defined to be the transpose of BI, and ~I is 
taken to be I. 

APPENDIX B. RELATIONS AMONG EDDY FLUXES 

It is possible to derive a set of  relations among various eddy fluxes which 
appear in the mean momentum,  energy, and potential  vorticity budgets of 
section 2. We shall do this for  circumstances which do not  precisely conform 
to any of  the cases defined in section 3, but  which are certainly similar; 
namely,  a periodic channel which is no t  necessarily invariant in the zonal 
direction. The " m ean"  which is relevant here is a combined time and zonal 
average {denoted by ~).  The departures from this mean, the "eddies"  
(denoted by ^ ), thus combine the standing and transient eddies; for  averaged 
quadratic quantities, this combinat ion is a simple sum of  the two types of  
individual eddy fluxes. 

Consider the loss rate for  mean zonal momentum in a layer. From (18)-- 
(20), the vertical momentum flux divergence is equivalent to  an interfacial 
pressure drag contr ibut ion defined by: 

D = --/Sh.,- (B.1) 

where p is the layer pressure (=fo6) and h the layer thickness. This also is 
proport ional  to an eddy thickness flux, or an eddy mass flux, as can be 
shown by an integration by parts zonally: 

D = fogh (B.2) 

The momentum loss rate (B.1) is, fur thermore,  proport ional  to a horizontal  
heat or buoyancy  flux. We can define interfacial buoyancy  and temperature  
fluctuations by: 

2 Pofo ( ~  _ ~/3) 
[)'= H g 

T I  = - - P I / P O  O~ 

(B.3) 
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where P0 is a reference density and a the coefficient of  thermal expansion. 
Then, in combination with an interfacial velocity, 

vI = (HazY1 + Hlv~a)/H 

the meridional eddy fluxes axe given by: 

~ - "  2Ap 
Oip I = --fo---H-D1 

fliT1 - 2 A p  D1 
aPofoH 

(B.4) 

(B.5) 

where D1 is the upper layer form of (B.1). For isothermal top and bo t tom 
boundary conditions, vertical integrals of  the fluxes (B.5) are approximated,  
in a two layer fluid, by multiplying the interfacial fluxes by H/2. 

A baroclinic energy conversion rate is, f rom (7)--(9), defined by: 

Ly 

{P,P}--ro f (B.6) 
0 

An integration by parts yields: 
Ly 

{P, P} = f (ul --  u3)D1 dy (B.7) 
0 

which indicates that  this conversion is effected by the product  of  the upper 
layer m o m e n t u m  loss rate and the vertical difference in mean zonal veloci- 
ties. Clearly one could write analogous formulas for the conversions (K i, P).  
By use of  (B.5), (B.7) may be alternatively expressed in terms of  heat  trans- 
ports as: 

Ly / 

{P, P) = --ag f f)T(~',/~'z) dy dz (B.8) 
0 --H 

The loss rate of mean potential vorticity from eddy fluxes of vortex 
stretching [see (21)--(22)] can be writ ten for the ith layer as: 

1 a 
--[bi + di] = (Di) (B.9) 

Hi ay 

We can also identify Taylor 's (1921) horizontal particle diffusivity with 
the m o m e n t u m  loss rate. For a particle originally at a rest latitude y , ,  we 
define its meridional departure by r~ = (y(t) - -y ,  ), where y(t) is its latitude 
at time t. For times short compared to diffusion across the channel (so that  
particle has no t  yet  significantly changed its mean environment) ,  but  long 
compared to an eddy circulation time, the diffusivity K is defined by: 

dt_- K = (~n2> (B.IO) 
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The brackets indicate an ensemble average over many realizations of particle 
diffusion about y . .  Since (d/dt)r~ = 6, it follows that:  

K = <7)~> (B.II) 

When there also exists a mean meridional potential vorticity gradient, a par- 
ticle at ~ will, if potential vorticity is approximately conserved with the 
motion, have an anomalous value: 

= -- ~yy 77 (B.12) 

at least for small r~, (i.e., small compared to the scale of ~(y) changes). 
(B.11)--(B.12) imply: 

g = --< fi~ >/~y = --fic)/~y (B.I 3 ) 

The ensemble average for vortieity flux is equal to the time and zonal aver- 
age. Thus, by the definition of q, we obtain for layer i: 

Ki 3 y  f°f)'hi + Hi ~-(ftif)i) 
oy 

= Di -- (Ci + Bi) (B.14) 

where C/+ B i is a horizontal Reynolds stress divergence as in (19). A merid- 
ional integral of (B.14) across the channel yields 

f K, 3Cli f D, dy dy = (B.15) 

Note that  forD1 > 0, D3 < 0, 8711/8y > 0, and O~3/i)y < 0, as in our channel 
solutions, the integrated diffusivity in (B.15) is positive. From (B.14) we see 
that  K will be point-wise positive wherever Di -- (Ci + Bi) is of the same sign 
as ~ i / S y .  From Fig. 21, this is true almost everywhere in the upper layer for 
the channel case; only on the extreme meridional edges is K1 slightly nega- 
tive. 

Finally, we note that,  in our 2-layer model, D is a purely internal transfer, 
hence: 

0 Ly 

- - I t  0 

This implies: 

L ,  0 

b --g Y 
(B.16) 

which is a form of the theorem derived by Bretherton [1966, eq. (13)]. 
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