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1. Introduction

In recent years the interest in the dynamical balance
of the Antarctic Circumpolar Current (ACC) has seen
a renaissance in oceanographic research. Various papers
deal with the barotropic circulation in channels with
simple topography—these are largely analytical solu-
tions (e.g., Johnson and Bryden 1989; Krupitsky and
Cane 1994; Wang and Huang 1995; Olbers and Völker
1996)—and a few numerical solutions have appeared,
noteworthy eddy-resolving quasigeostrophic channel
circulations (McWilliams et al. 1978; Wolff et al. 1991;
Olbers 1993; Marshall et al. 1993) and the FRAM ex-
periment (FRAM Group 1991). Apart from subtleties
due to the different ingredients in these models the in-
vestigations have verified the early proposal of Munk
and Palmén (1951) on the importance of the pressure
force on the submarine topography—the bottom form
stress—in the balance of the zonal momentum. In fact,
the concept of a ‘‘canonical’’ balance may be formu-
lated: The flux of momentum imparted by the surface
wind stress is carried—via the interfacial form stress
mechanism—by standing and transient eddies to the
depth where the flow is blocked by topography and the
bottom form stress acts to transfer the momentum to the
earth.

To many oceanographers this dynamical concept of
the ACC, however, still appears mysterious since the
conventional tools of oceanographic science—for ex-
ample, the Ekman and geostrophic transports and the
Sverdrup balance—seem not to pertain to this canonical
concept, which, moreover, seems to be insuffient to de-
termine the zonal transport of the circumpolar flow.
Warren et al. (1996, hereafter WLR) express their in-
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disposition with the form stress concept and the implied
balance of the ACC. In their view, the form drag mech-
anism appears to be irrelevant in the balance of the ACC,
and they propose that ‘‘Sverdrup dynamics seem to offer
a more promising analysis of the real Circumpolar Cur-
rent.’’

Let me briefly repeat the basic line of arguments by
which WLR degrade the importance of the form stress
mechanism in particular and the ‘‘ ‘form drag’ force
balance’’ in general in the physics of the ACC. In their
view, the momentum balance {Eq. [3]1 in WLR, (6)
below} between the wind stress and the bottom form
stress ‘‘merely states that the [meridional Ekman flux]
must balance the [net meridional geostrophic flow that
can exist below the ridge crests] if the total meridional
flow is zero.’’ Of course, it is trivial, and maybe se-
mantic at this stage, to state that the mass balance cares
for the balance of mass fluxes and the balance of mo-
mentum has its own right (see section 2).

WLR continue to degrade the importance of the mo-
mentum balance [3] because it ‘‘includes no attribute
(e.g., volume transport) of the Circumpolar Current . . .
in fact, according to the resolution [4] and [5]’’ [the
balances for the Ekman layer and the bottom layer, (2)
and (4) below], ‘‘the Circumpolar Current is irrelevant
to the integrated momentum balance and could actually
be absent without affecting [3], [4], and [5].’’ However,
a flow in response to passing over topographic features
must set up a pressure field that correlates with the
topographic elevation to produce a bottom form stress.
This stress definitely ‘‘knows’’ ‘‘that the current should
flow eastward or westward,’’ but the process of its gen-
eration cannot be inferred from the zonally averaged
momentum balance [3] alone (see section 3).

In response to Munk and Palmén (1951), ‘‘who
sought an agency to oppose the eastward wind stress
they propose as a more conventional, straightforward
answer to their request . . . the Coriolis acceleration (not
discussed by Munk and Palmén) associated with the

1 Numbers in square brackets refer to equations in WLR.
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northward Ekman transport.’’ Munk and Palmén do not
need any defense from my side but apparently WLP
take the momentum balance in the Ekman layer as the
balance of the whole system. This is certainly appro-
priate for an unbounded domain with a motionless abyss
but not for a bounded domain with a meridional cir-
culation and deep currents. There must indeed be an
agency that transmits the wind stress to greater depths
(see sections 4 and 5) where it can be taken up by bottom
friction or form stress (see section 6).

After all these arguments, the form drag—as a phys-
ical process—and the momentum balance [3]—as an
independent statement about conservation of momen-
tum in the system—seems to have disappeared from the
WLR scenario: ‘‘the proportionality’’ of the pressure
difference across the deep ridges and the wind stress
‘‘is simply required for meridional mass balance and
form drag talk is obscurantist in relation to the Circum-
polar Current: the physics that it really describes seems
to have nothing to do with that great current, but instead
with mass conservation in the quite independent merid-
ional circulation.’’ The Sverdrup balance model of
Stommel (1957) and the ‘‘Sverdrupian’’ estimate of the
ACC transport by Baker (1982) and others are recon-
sidered. But apart from the fact that such a scenario is
not dynamically closed, the ingredients of Sverdrup dy-
namics and more general, the barotropic vorticity dy-
namics, are not seen in its correct context: WLR try to
convince us that the zonal wind stress cannot have a
responsible role in the balance of the ACC since vor-
ticity is implemented to the flow via the curl: ‘‘adding
a constant to the field of zonal wind stress, for example,
would alter the meridional circulation, but, leaving the
curl unchanged, would not affect the transport of the
Circumpolar Current.’’ We discuss the Sverdrup balance
and the equivalence of the vorticity dynamics and the
momentum dynamics in sections 7 and 8.

2. The interrelation of the momentum and mass
balance and the meridional circulation

Starting from the simplified zonal momentum balance
(absorbing the density into the pressure and stress)

]p ]t
2 f y 5 2 1 (1)

]x ]z

the relations [2] to [5] in WLR are obtained by vertical
and zonal integration. Repeating here these equations,
we have

0

2 f y dz 5 ^t & (2)E 07 8
2E

2E

2 f y dz 5 0 (3)E7 8
2H

2H ]D
2 f y dz 5 p 2 t , (4)E D D7 8 7 8]x

2D(x)

where pD(x) 5 p(x, z 5 2D(x)) is the bottom pressure.
The zonal integral is indicated by angle brackets,

^ · · · & :5 dx · · · ,R
C

and we are considering, as WLR, an Ekman layer 0 .
z . 2E, an intermediate layer 2E . z . 2H above
the depth z 5 2H of the highest ridge, and the bottom
layer between z 5 2H and the bottom at z 5 2D(x).
Furthermore, t 0 is the zonal wind stress, and t D is the
frictional stress at the bottom. As WLR, we assume that
the wind stress is absorbed in the Ekman layer, meaning
that t [ 0 beneath z 5 2E, and that t D may be neglected
[as other small terms have been neglected in (1)]. We
include t D for later reference.

WLR interpret (2)–(4) basically in the framework of
mass balance, of course ‘‘(2) specifies the meridional
Ekman flux, (4) identifies the net meridional geostrophic
flow that can exist below the ridge crests.’’ The balance
of these mass fluxes, however, is not derived from these
equations nor from the total balance of momentum [Eq.
(6) below] but from the balance of the total mass south
of the path C,

0

y dz 5 0, (5)E7 8
2D(x)

and the vanishing of the geostrophic transport and the
neglection of any ageostrophic terms in the intermediate
layer. Using (5) the integral over the entire depth yields
the total balance of momentum [the sum of (2) to (4)]
in the form

]D
t 2 t 1 p 5 0, (6)0 D D7 8]x

which of course is completely independent of any spe-
cific form of mass exchange in the vertical.

Hence, Eq. (6) has its own right in the dynamics of
the system. After all, it is one of the most fundamental
constraints of the system, it is the balance of momentum
in the whole water column: in the absence of body forces
the fluxes of momentum into the system must balance.2

WLR complain that Munk and Palmén have ignored
‘‘the Coriolis acceleration associated with the northward
Ekman transport’’ in their seminal discussion of the mo-
mentum balance. The Coriolis acceleration only appears
in the balance of the individual (nonmaterial) layers but
has—as a consequence of mass conservation—no effect
on the mass of the total water column, that is, there is
no net Coriolis acceleration or force on the whole sys-

2 It should be mentioned that the balance as presented in the form
(6) is actually the budget of vorticity of the volume south of the
latitude considered. To obtain a budget of momentum we must in-
tegrate (6) over a finite latitudinal strip.
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tem. As WLR, I believe indeed that ‘‘Ekman layer dy-
namics applies to the Drake Passage zone as much as
is thought to the rest of the world ocean,’’ but if ‘‘the
surface stress’’ is ‘‘absorbed in a thin boundary layer,’’
this does not mean that the total system is in balance:
there is still the question of balance below the Ekman
layer and of the total water column. Here, one cannot
evade the ‘‘obscure form drag force’’ unless one is will-
ing to accept a large frictional bottom stress t D or a
large lateral Reynolds stress, which transports momen-
tum out of the current system. Both assumptions are
contrary to observations (Morrow et al. 1992) and re-
sults from high-resolution models (see below).

3. The determination of the zonal transport

WLR dismiss the relevance of (6) to the ACC since
it ‘‘includes no attribute (e.g. volume transport) of the
Circumpolar Current, . . . [it] could actually be absent,’’
meaning presumably that the total momentum balance
is of no use to determine the zonal transport. Of course,
it is only under rare conditions (as, e.g., for a linear
decay as in the case of radioactive substances, or the
physically questionable Rayleigh damping of momen-
tum) that a steady integral balance of a quantity con-
tains, besides the fluxes across the boundaries, also a
term involving the content of the quantity in the com-
partment.

But how is the transport of the zonal flow determined?
One cannot expect that this can be done from just one
integral balance. The total momentum balance (6) con-
tains the part of the bottom pressure that is out of phase
with variations of the topography along the zonal path
of integration. This part, as the entire pressure field, is
shaped by many different processes. For quantitative
answers a full model including external forces by the
wind stress and the surface fluxes of heat and freshwater
as well as the advection of mass, heat, and salt must be
solved. Qualitative answers and a deeper insight into
the dynamics of the ACC can be obtained by cheaper
methods, which may reveal mechanisms in trade for
completeness.

The cheapest approach ignores the baroclinic state,
considers quasigeostrophic dynamics, and derives the
total momentum balance [i.e., Eq. (6), with linear bot-
tom friction included] and the balances of the in-phase
and the out-of-phase (the form stress) components of
the pressure field involving the advection by the zonal
mean flow. Evidently, this heavily truncated image of
the full dynamics is the Charney–DeVore model (Char-
ney and DeVore 1979): the pressure components are
established by a standing barotropic Rossby wave gen-
erated by the mean flow U (the vertically integrated
zonal velocity) over the topography. The implied form
stress F becomes a function of the zonal velocity,

]D
p 5 F[U ]D7 8]x

21 D 2 H eU
5 2 f . (7)

2 2 21 22 D e 1 k (U 2 c )R

Here, k is the zonal wavenumber of the topography, cR

the Rossby wave speed, and e the parameter of linear
bottom friction. The wave may get locked in resonance
with the mean flow at the Rossby wave speed cR and
produces a large form stress. The total momentum bal-
ance

t 0 2 eU 1 F[U] 5 0 (8)

determines the zonal transport U. The form stress def-
initely ‘‘knows’’ about the presence and direction of the
flow; a westward wind and flow would generate a drag
of different sign. For the two solutions of (7) and (8)
in the resonant range the friction in the momentum bal-
ance (8) is negligible; these solutions are balanced by
form stress. The off-resonant solution is controlled by
friction. It is remarkable that friction is, in any case,
essential to bring the pressure field out of phase with
respect to the topography. Notice further that a westward
wind would not be able to lock the flow in resonance.
For reasonable oceanic parameters (reasonable values
for the wind stress and the bottom friction) only the
frictionally controlled solution exists.

This simple model—as any barotropic model—is in-
capable of correctly describing the observed transport
of the ACC, not even the order of magnitude, but it
captures an important mechanism by which the flow can
set its bottom form stress. Extension to baroclinic con-
ditions are tedious but still analytically managable (Ol-
bers and Völker 1996). The physics are essentially the
same as in the barotropic model. The form stress consists
of a barotropic and a baroclinic pressure contribution,
the latter is shaped by a baroclinic Rossby wave in
resonance with the zonal flow. Again, the form stress
is set by friction: The barotropic form stress vanishes
for zero bottom friction, and the baroclinic form stress
vanishes if bottom friction and vertical momentum
transport in the fluid (by eddies, see below) vanish. This
model yields reasonable transport magnitudes in the
oceanic parameter range.

It is worth mentioning that this simple baroclinic
model—as others (see Olbers et al. 1992) predicts that
the barotropic part of the bottom form stress (the stress
due to the surface pressure) acts as an extremely pow-
erful drag. Whereas in barotropic conditions the form
stress almost compensates the wind stress and the trans-
port becomes a small fraction of the transport over flat
bottom, it is found in baroclinic conditions that the bar-
otropic form stress overcompensates the wind stress and
the baroclinic part (due to tilting of the isopycnals) in
fact drives the eastward flow. This mechanism has been
observed in the most complete numerical model of the
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ACC, the FRAM experiment (see, e.g., Stevens and
Ivchenko 1997).

4. The physics of form stress

Why does the bottom form drag appear so obscure?
After all, it is only a mathematical representation of the
action of pressure forces on the topography and as such
it is merely a zonal flux of zonal momentum out of the
fluid. We are adapted to see the pressure gradient as
force acting on fluid parcels but it should be remembered
that pressure is part of the stress tensor, describing the
isotropic part of the normal flux of momentum: p is the
flux of any component of momentum in the same cor-
responding coordinate direction. If there is a ‘‘barrier’’
in the form of topography or a material interface (in a
layer model), the pressure fluxes horizontal momentum
in the horizontal direction across this barrier, establish-
ing then either bottom form stress3 or interfacial form
stress. The interfacial form stress does not appear in
balances evaluated for compartments bounded by level
coordinates (the divergence of the form stress—the pres-
sure gradient force—then propels the fluid in the same
layer). Integrated vertically between two interfaces z 5
2h1(x) and z 5 2h2 (x) along any contour with coor-
dinate x and bounded by xl, xr, the integrated pressure
‘‘divergence’’ appears as

x 2h (x)r 1]p
dz dxE E]xx 2h (x)l 2

x2h (x) xr1 r ]h15 p dz 1 p(x, 2h (x))E ) E 1[ ]x
2h (x) x x2 l l

]h22 p(x, 2h (x)) dx . (9)2 ]]x

The first term on the rhs is the net lateral flux of hor-
izontal momentum into the area (thus vanishing for
closed contours), the second is the flux through the in-
terfaces, that is, the form stress (in case of h2 5 D this
term is the bottom form stress). When we consider the
wind-driven circulation in a basin with a flat bottom,
bounded zonally by xl and xr, the net pressure difference
across the basin (the first term on the rhs) opposes the
external stress to achieve the balance of momentum. In
a zonally unbounded domain this term is absent, but the
bottom form stress is just the extension of this pressure
difference to the submarine barriers.

Notice that the effect of form stress on a layer bound-
ed by two surfaces is described by the difference of the
interfacial form stresses acting at the surfaces: it takes

3 It was first pointed out and exemplified by Holloway (1987) that
the bottom form drag could act as well to accelerate the fluid. This
actually is found in many cases of QG flow over topography, so it
is more appropriate to call it bottom form stress.

the form of a vertical divergence of a vertical flux of
horizontal momentum. Notice further that, in the case
of material surfaces, the net meridional mass flux van-
ishes in each layer. Then there is no net Coriolis force
acting on the layer and, thus, the vertical divergence of
the interfacial form stress must balance all applied fric-
tional stresses, and—in the deepest layer—the bottom
form stress. The balance of zonal momentum in such
an isopycnal model has thus the same general form as
(2) to (4) with the Coriolis force replaced by the cor-
responding divergence of the interfacial form stress (see,
e.g., Marshall et al. 1993). Notice that here other terms
of the momentum equation (1) should be included; the
divergence of the lateral Reynolds stress is generally
small compared to the local Coriolis term, but not if
integrated over the layer where the latter term becomes
zero.

It is evident from the expression (9) that the interfacial
stress contains a contribution from stationary defor-
mations of the interface (the standing eddy part) and a
contribution from transient eddies. Any flow over to-
pography will generate the standing eddy part, whereas
there are flow structures and, more important, low-res-
olution models that do not allow for transient eddies.

Evidently, the interfacial form stress, as defined
above, vanishes for level surfaces. Below I will show
that the continuous vertical transfer of momentum by a
nonfrictional process—the interfacial form stress—can
be generalized to level models with full thermodynam-
ics.

5. The vertical transport mechanism in level
models

A model of the ACC based on material layers may
be suspicious in conditions where watermass conversion
may occur. It is indeed of little help for quantitative
prediction. But to say it again, such models are cheaper
to run and analyze and may elucidate basic mechanisms
such as the role of the eddies in the transfer of mo-
mentum in the water column. But where are the eddies—
standing or transient—in the level counterpart consid-
ered in the section 2? In fact, they can be found in the
Coriolis acceleration. The zonally averaged meridional
velocity is related to the lateral transport of heat (or
potential density) by the eddies and enters as a vertical
divergence of a vertical flux of momentum in the bal-
ance of momentum in the same way as the interfacial
form stress in layer models.

The mathematical details of this statement are easily
outlined. Consider the piece of ocean bounded to the
south by the Antarctic continent and to the north by a
circumpolar path C at constant latitude through Drake
Passage. Furthermore, let A(z) denote the area on the
level z from C to the south and bounded there by the
continent. There are gaps in C [thus C is a C(z)] and
‘‘outbreaks’’ of A(z) where topography stands above the
level z, they are taken care of in the equations that
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follow. We discuss relations between line integrals along
C and area integrals over A(z) that are derived from the
balances of mass and heat, which we write in the form

]w
= ·u 1 5 0 (10)

]z
(z)]J

= ·J 1 1 wQ 5 0. (11)z]z

Here u is the horizontal velocity and w the vertical
velocity, u the perturbation of temperature about a hor-
izontally averaged state Q(z), and J 5 (J (x) , J (y)) and
J (z) are the horizontal and vertical flux components of
heat, given by the advective and turbulent (sub-eddy-
scale) parts (I, I (z)),

J 5 uu 1 I J (z) 5 w u 1 I (z) . (12)

Integration of the mass balance equation (10) over the
area A(z) yields after some mathematical substitutions

]
^y& 1 w dA 5 0. (13)E]z A(z)

The area integral of w, which appears here, may also
be evaluated using the thermohaline balance (11), which
leads to

dQ
(y)2Q w dA 5 ^J & 1 , (14)z E dzA(z)

where

(z)Q(z) 5 J dA (15)E
A(z)

is the vertical heat flux across A(z). Combining (13) and
(14) we find a relation between the meridional circu-
lation and heat transport in the form

] dQ
21 (y)^y& 5 (Q ) ^yu 1 I & 1 , (16)z 1 2[ ]]z dz

which is familiar in quasigeostrophic settings (e.g.,
Green 1970). Here, however, it is generalized for dia-
batic conditions. Notice that the integral of y in (13)
and (16) has a geostrophic term at depths where C is
blocked by topography, for unblocked contours it is
entirely ageostrophic. The essence of (16) is that, in the
presence of lateral boundaries, the Coriolis force can be
rewritten as a divergence of a vertical transport of mo-
mentum—an ‘‘interlevel form stress’’—that is set by the
lateral heat flux across C and the vertical heat flux south
of C. We also learn from this relation how the watermass
conversion rate Q enters the momentum balance. More
important is, however, that the role of the eddies in the
circumpolar belt is revealed: They are responsible for
transferring horizontal momentum in the water column
and heat laterally. These processes are interlinked;
downward momentum transport is equivalent to south-
ward heat transport.

6. The zonal momentum balance of the ACC

Quasigeostrophic models (McWilliams et al. 1978;
Wolff et al. 1991; Marshall et al. 1993; Olbers 1993)
and PE models (Killworth and Nanneh 1994; Stevens
and Ivchenko 1997) have determined the magnitudes of
the different contributions to the momentum balance in
the zonal average. We summarize the results of these
numerical investigations in the light of the above frame-
work. Taking a time mean, the complete zonally inte-
grated balance of zonal momentum becomes

]F ]t ]
2 f ^y & 5 5 2 uy 1 dp , (17)O7 8 7 8]z ]z ]y ridges

where we have introduced the level expression of the
interfacial form stress

dQ
21 (y)F 5 2 f (Q ) ^yu 1 I & 1 . (18)z 1 2dz

The advective fluxes contained in F and uy can be
split into mean and eddy terms, for example, yu 5 yu
1 y9u9 . The sum of the pressure differences is extended
over all ridges interrupting the path C; each ridge con-
tributes the difference between the values on the eastern
side and the western side, that is, dp 5 p(xeast, z) 2
p(xwest, z). The vertical integral of this term yields the
bottom form stress.

Summarizing the aforementioned investigations, the
‘‘canonical’’ balance of zonal momentum is then char-
acterized as follows.

Ekman layer (0 $ z $ 2E): At depths directly in-
fluenced by the wind stress the dominant balance is
between the divergence of the frictional stress ^t & and
the Coriolis force f ^y & (due to ageostrophic motion)
or—as evident from the analysis above—the divergence
of the interlevel (or facial) form stress,

]F ]t
2 f ^y & 5 ø . (19)7 8]z ]z

By use of (14) at z 5 0 and integration over the Ekman
layer, we find

0

2 f ^y & dz 5 2F (z 5 2E ) ø ^t & (20)E 0

2E

stating that the momentum input by wind stress at the
sea surface is balanced by the interlevel/facial form
stress at the bottom of the Ekman layer.

Intermediate layer (2E $ z $ 2H): Below the Ek-
man layer but above the minimum depth H of topog-
raphy along the path of consideration, the balance is
between the lateral Reynolds stress divergence and the
Coriolis force. All other terms are smaller by almost an
order of magnitude. The dominant terms—the Reynolds
stress divergence and the Coriolis force—are, however,
more than two orders of magnitude smaller than the
dominant terms in the Ekman layer. In other words: the
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Coriolis force acting on the fluid of the layer is small
(only the ageostrophic part enters the balance):

f ^y & 5 f ^y ag& ø 0, (21)

but it is the difference of the two big interlevel/facial
stresses at the top and bottom of the layer. In the frame-
work of interlevel/facial form stress the balance is thus
expressed by the approximate constancy of this stress.
The constant is determined by (20), and we find

F ø 2^t 0&. (22)

In this intermediate layer the stress associated with the
heat flux is thus transmitted almost unchanged, it has
the size of the wind stress but the process is neither
frictional nor due to a vertical Reynolds stress.

Deep layer (2H $ z $ 2Dmax): At depths where the
topography interrupts the circumpolar path the bottom
form stress comes into action. The balance occurs be-
tween this stress and the Coriolis force, which now has
a large geostrophic component—the two terms are of
the same magnitude as the terms in the Ekman layer.
Other terms are negligible. We thus have

]F
2 f ^y & 5 ø dp , (23)O

]z ridges

and integration over the deep layer yields
2H ]D

2 f ^y & dz 5 F (z 5 2H ) ø 2 p .E D7 8]x
2Dmax

The balance thus occurs between the flux of momentum
by interlevel/facial form stress at the top of the blocked
layer and the pressure force on the topography, the bot-
tom form stress.

Total balance (0 $ z $ 2D): It is quite obvious from
the above considerations, but also confirmed in the nu-
merical experiments of the QG and FRAM models, that
the vertically integrated balance occurs predominantly
between the wind stress and the bottom form stress; that
is,

]D
^t & ø 2 p . (24)0 D7 8]x

For an eastward wind we must obviously have a south-
ward geostrophic flow (d p negative, f negative) in the
valleys between the blocking topography.

Primitive equation and QG models indicate that the
standing eddy contribution dominates the heat flux ^J (y)&.
If the intermediate layer outcrops at the surface, as in
the real circumpolar flow and the FRAM experiment,
the above canonical framework must be modified to
include the direct acceleration by the wind (see Kill-
worth and Nanneh 1994). For QG models the above
balances hold with Q [ 0 and (I, I (z)) [ 0; that is, only
the advective part of the interfacial form stress is pres-
ent.

7. The Sverdrup balance

Despite these solid results on the dynamics of the
ACC, WLR reconsider Sverdrup dynamics (following
Stommel 1957) to put the problem of momentum bal-
ance aside. The transport estimates along 558S (Baker
1982) or 548S (Godfrey 1989) obtained from the simple
flat-bottom Sverdrup balance are indeed intriguing, but
it should be clear that the Sverdrup balance does not
pose a dynamically closed problem: even if it could
possibly be used to estimate the transport of the ACC,
in the same way as the Sverdrup balance determines the
transport of the Gulf Stream by a simple mass conser-
vation argument, this approach can certainly not explain
the dynamical balance of the current. The use of another
quantity—the barotropic vorticity—and its balance can-
not circumvent the fullfilment of the momentum bal-
ance. It can indeed be shown (see next section) that a
properly posed vorticity problem must consider the bal-
ance (6).

The Sverdrup balance follows from the planetary vor-
ticity balance derived from (1). Vertical integration from
the surface to the bottom z 5 2D(x) results in

z50

bV 5 2 f w(2D) 1 curlt)
z52D

5 2 f w (2D) 1 curl(t 2 t ). (25)g 0 D

The term involving the geostrophic vertical velocity
wg(2D) 5 2(1/ f )J(pD, D) at the bottom generates
barotropic vorticity by stretching the water column
when it has to pass a topographic barrier. WLR propose
to neglect this term, they argue that ‘‘the vertical ve-
locity must be zero by regional averaging and that the
Sverdrup balance should hold in that regional sense.’’
As WLR also mention and as is evident from obser-
vations, ‘‘the current reaches the bottom . . . where it
experiences non-zero vertical velocities.’’ These are,
however, not just local features, as WLR assume, since
the current has to cross three major midocean ridges of
large zonal extent and has to pass the sill in Drake
Passge and numerous smaller barriers. Simple scaling
reveals the danger to miss just one (half ) of these fea-
tures in this regional average: for a ridge with slope of
1023 and a horizontal velocity of 0.01 m s21 at the bot-
tom we get fwg ; 1029 m s22 (a fairly conservative
estimate on the low side), whereas a meridional trans-
port of 100 Sv (Sv [ 106 m3 s21) implies bV ; 10210

m s22, an order of magnitude smaller. In correspon-
dence, scaling of the so-called bottom torque J(pD, D)
shows that it is not small at all when compared with
the input of vorticity by the wind stress. In fact, the
dominance of the stretching term can only be avoided
if the bottom current very closely follows the contours
of bathymetry.

Integrating (25) zonally and using as before the bal-
ance of mass (5) we find
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] ]D
t 2 t 1 p 5 0, (26)0 D D7 8]y ]x

which is the vorticity counterpart of the form drag force
balance [as mentioned above, the zonally integrated mo-
mentum balance (6) is the vorticity balance for the piece
of ocean south of the latitude given by the contour C].
So we are again stuck to the physics of form stress:
either we accept a large friction—at least in some area
as Drake Passage—or we have to face the importance
of form drag.

But is the flat-bottom Sverdrup balance—in the local
or the zonally accumulated form—applicable to the
ACC, or is the rough agreement of transport estimates
derived from it with observed values just a coincidence?
Wells and DeCuevas (1995) considered the budget of
vorticity over areas bounded by transport streamlines in
the FRAM experiment. There is no evidence of a local
flat-bottom Sverdrup balance anywhere in the ACC; in-
stead, a local balance occurs between the planetary ad-
vection (the b term), the bottom torque (the stretching
term), and the advective term of relative vorticity [so
this should be included in (25)]. Integrating in the
‘‘Sverdrupian range’’ outside Drake Passage (408W
eastward to 708W along 558S), bottom torque and ad-
vection of relative vorticity integrate to large but almost
compensating values, whereas the b term and the wind
stress curl get values that also compensate but are a
factor of 5 smaller. Should we regard this as a Sverdrup
regime? Integrating further through the passage the b
term must tend to zero and a balance between the bottom
torque and the wind stress curl emerges in the complete
zonal average (in accordance with the momentum bal-
ance). Of course, this is a model but it is the most
complete one we currently have.

8. The curl problem

Finally I comment on WLR’s suggestion that the
transport of the ACC may entirely be determined by the
curl of the wind stress. In the vorticity balance, indeed,
only the curl of the wind stress appears, so it is tempting
to speculate that the solution only depends on the curl
and not the wind stress itself. Though contradicting our
basic understanding of the behavior of stress-driven zon-
al flows, this fallacy is not easy to unravel (it is, of
course, trivial that a constant wind stress does generate
transport in a channel). As a matter of fact, there is an
important example where transports only depend on the
curl: the barotropic wind-driven circulation in a basin
(the baroclinic state of this flow depends on the stress).
In a periodic geometry, however, even the simplest
transport model contains an important difference in the
boundary conditions, which at first sight may be a purely
mathematical problem but has a deeper physical mean-
ing.

Consider the vorticity balance in the form

]c
2e¹ c 1 b 5 J(p , D) 1 curlt , (27)D 0]x

where our concern is to determine the transport pattern
U 5 2cy, V 5 cx, which can be represented by a
streamfunction c because of mass conservation. We
have, for simplicity, represented the friction in (25) as
linear bottom friction of the barotropic flow: curl t D 5
e¹2c (the conclusions do not depend on this specific
choice). Integration of the resulting familiar barotropic
vorticity equation (with prescribed forcing by the wind
curl and the bottom torque) needs the specification of
boundary conditions, which naturally are the kinematic
conditions of zero normal flow. In a basin this is
achieved by c 5 const on the rim and, without restric-
tion, the constant can be set to zero. In multiply con-
nected domains—as the Southern Ocean, or in simpler
geometry, as a channel—zero normal flow requires c
to be constant on each boundary but the constants are
not equal; in fact, their difference is the unknown net
transport value. The reason for this difficulty can be
traced back to the elimination of a part of the baroclinic
pressure field when stepping to the vorticity framework;
here the information on the net transport has been lost.
A complete solution must of course include a balanced
pressure field satisfying the momentum equation cor-
responding to (27),

eU 1 f k 3 U 5 2h=pD 2 =E 1 t 0. (28)

Here U 5 (U, V), and E derives—together with the
baroclinic part in pD—from the vertical integral of the
baroclinic pressure. It turns out that E is the total baro-
clinic potential energy of the in situ density, referred to
the surface. This field does not impart any vorticity into
the system; however, (27) must be solved such that the
resulting U renders =E as the gradient of a scalar. In a
basin, given the transport U, this pressure can be con-
structed uniquely by contour integration, starting with
an arbitrary value at an arbitrary point on the boundary.
In channel geometry, however, the unique reconstruc-
tion of the pressure from the gradient is possible if, and
only if, integration around each continent vanishes:

ds · =ER
L

5 ds · [2eU 2 f k 3 U 2 h=p 1 t ]R D 0

L

5 ds · [t 2 t 1 p =h] 5 0. (29)R 0 D D

L

From (27) and Stokes theorem we notice that it is suf-
ficient to consider (29) for one arbitrary contour L for
each continent (there are thus as many constraints as
unknown streamfunction differences). Only if comple-
mented by these integral contraints, the vorticity prob-
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lem (27) is physically and mathematically well posed.
Of course, in this form the problem (27) and (29) is
equivalent to (28), supplemented by the mass conser-
vation = ·U 5 0. Thus, finally, we are back to the ne-
cessity that the momentum balance equation (6) must
be satisfied to obtain a consistent solution of the vor-
ticity balance. And, it is apparent from (29) that the
transport must indeed depend on the stress itself and
not only on the curl.
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