Two-dimensional turbulence above topography

a 1976 JFM paper by

F. P. Bretherton & D. H. Haidvogel

(as told by Cesar)

Context

MODE experiment

FFT (1965), 2D turbulence studies

Contemporary studies: Rhines (1975, 1977),

Salmon (1978, 1980), McWilliams (1984) —

h=0

Inviscid 2D dynamics

(f-plane barotropic QG dynamics)

$$\frac{Dq}{Dt} = \partial_t q + \mathsf{J}(\psi, q) = 0$$

$$u = -\psi_x \qquad v = \psi_y$$

$$\mathsf{J}(f,g) = f_x g_y - f_y g_x$$

Note
$$h = \frac{f_0}{H} \eta_b$$

The enstrophy cascade

tracer variance forward cascade

tracer variance forward cascade

tracer variance forward cascade

(This comes from a 2D stirring simulation with a velocity field represented by "renovating waves")

enstrophy forward cascade

The evolution of the active tracer q is more complicated because two quadratic quantities must be conserved in the inviscid limit:

(Kinetic) Energy

$$E = \frac{1}{2} \iiint |\nabla \psi|^2 \mathrm{d}x \, \mathrm{d}y = \sum_{|k|} E(|k|)$$

(Potential) Enstrophy
$$Q = \frac{1}{2} \! \iint q^2 \mathrm{d}x \, \mathrm{d}y = \sum_{|k|} |k|^2 E(|k|) + \dots$$

$$q = \nabla^2 \psi + h$$

$$|k| = \kappa = (k^2 + l^2)^{1/2}$$

Small-scale dissipation damps enstrophy much more efficiently

2D turbulence: enstrophy decay

Time series in an initial value problem with h=0

Energy has only a 0.3 % decay, whereas enstrophy decays by 92%

A minimum enstrophy principle

What is the flow that minimizes potential enstrophy Q given the energy E?

"A simple exercise in calculus of variations" (BH76):

$$\delta Q + \mu \delta E = \iint \left[q \nabla^2 \delta \psi + \mu (\nabla \psi \cdot \nabla \delta \psi) \right] \, \mathrm{d}x \, \mathrm{d}y$$

$$= \iint \nabla^2 \left(\nabla^2 \psi + h - \mu \psi \right) \delta \psi \, \mathrm{d}x \, \mathrm{d}y = 0$$

Assuming periodic BCs:

$$\left(\mu - \nabla^2\right)\psi = h$$

$$E = \frac{1}{2} \iiint |\nabla \psi|^2 \mathrm{d}x \,\mathrm{d}y \qquad \qquad Q = \frac{1}{2} \iiint q^2 \mathrm{d}x \,\mathrm{d}y$$

What is the flow that minimizes potential enstrophy Q given the energy E?

Physical space

Fourier space

$$(\mu - \nabla^2) \psi = h$$
 $\hat{\psi}_0 = \frac{\hat{h}}{k^2 + l^2 + \mu}$

The Lagrangian multiplier defines a length scale $\ L_0 = \mu^{-1/2}$

$$|k|L_0 << 1$$
 : $\psi_0 pprox \mu^{-1}h$ Isobaths are streamlines of the coarse-grained flow

$$|k|L_0>>1$$
 : $q=
abla^2\psi_0+hpprox 0$ The fine-grained PV is homogenized

$$|k| = \kappa = (k^2 + l^2)^{1/2}$$

What is the flow that minimizes potential enstrophy Q given the energy E?

$$\hat{\psi}_0 = \frac{\hat{h}}{k^2 + l^2 + \mu}$$

 μ is determined using the constraint E

$$E=\frac{\overline{U^2}}{2}=\frac{1}{2}\sum\frac{|k|^2}{(|k|^2+\mu)^2}|\hat{h}|^2(|k|)$$

$$|k|=\kappa=(k^2+l^2)^{1/2}$$
 prescribed

An example

"The preferred topography" (BH76)

$$\hat{h}(|k|) \propto |k|^{-2}$$
 $|k|_{min} = 1$, $|k|_{max} = 12$

$$|k| = \kappa = (k^2 + l^2)^{1/2}$$
 $|k|_{min} = 1, |k|_{max} = 12$

A given energy level has multiple solutions but the positive minimizes enstrophy

"It is readily demonstrated that for positive μ this is in fact a minimum" (BH76)

A given energy level has multiple solutions but the positive minimizes enstrophy

The second order terms in the variational problem

$$\delta^2 Q + \mu \delta^2 E = \frac{1}{2} \iint (\nabla^2 \delta \psi)^2 \mathrm{d}x \, \mathrm{d}y + \frac{\mu}{2} \iint |\nabla \delta \psi|^2 \mathrm{d}x \, \mathrm{d}y$$

An example of minimum enstrophy solution

$$E = 0.05$$
, $\mu = 9.22072072$

contours: h

Colors: PV $\nabla^2 \psi_0 + h$ Colors: Streamfunction ψ_0

An example of minimum enstrophy solution

$$E = 0.05$$
, $\mu = 9.22072072$

contours: h

Colors: PV $\nabla^2 \psi_0 + h$ Colors: Streamfunction ψ_0

Discuss: Why BH76 did not do this!?

I will not discuss.

The role of saddle points

(There a lots of typos in equations 24 through 30 of the paper.)

The role of viscosity

The role of viscosity

$$\begin{split} \frac{Dq}{Dt} &= \nu \nabla^2 (\nabla^2 \psi) \\ q &= \nabla^2 \psi + h \\ \\ \frac{\partial Q}{\partial t} &= -\nu \iint \nabla q \cdot \nabla (q - h) \mathrm{d}x \mathrm{d}y \\ &= -\nu \iint |\nabla q|^2 \mathrm{d}x \mathrm{d}y + \nu \iint \nabla q \cdot \nabla h \, \mathrm{d}x \mathrm{d}y \end{split}$$

Positive or negative?

If, $\psi = \psi_0$ then enstrophy must increase since ψ_0 is the minimum enstrophy solution.

Closed-basin solution

The circulation on the boundary must be prescribed

If
$$\psi = 0$$
 on Γ then $C = \oint_{\Gamma} \partial_n \psi ds = \text{constant}$

The minimum enstrophy problem has two constraints

$$\delta \frac{1}{2} \iiint (\nabla^2 \psi + h)^2 \mathrm{d}x \mathrm{d}y + \mu \delta \frac{1}{2} \iiint |\nabla \psi|^2 \mathrm{d}x \mathrm{d}y + \lambda \oint \frac{\partial}{\partial n} \delta \psi \mathrm{d}s = 0$$

Use integration by parts, e.g.,

The circulation on the boundary must be prescribed

If
$$\psi = 0$$
 on Γ then $C = \oint_{\Gamma} \partial_n \psi ds = \text{constant}$

The minimum enstrophy problem has two constraints

$$\nabla^2(\nabla^2\psi + h - \mu\psi) = 0 \qquad \text{within S}$$

$$\nabla^2 \psi + h + \lambda = 0 \qquad \text{on} \quad \Gamma$$

Using $\psi=0$ on Γ :

$$\nabla^2 \psi - \mu \psi = -(h + \lambda) \qquad \text{within S}$$

C determines the new constant λ

A numerical experiment

Side remark

CPU 36.4 MHz; 36 MFLOPS

CDC 7600

CPU 1.4 GHz; GPU; 100's GFLOPS to TFLOPS

IPhone 6

Source: Wikipedia

Topography

Initial streamfunction

What is the initial energy level and the associated $\,\mu$?

Final streamfunction

Final PV

The flow quickly becomes quasi-steady

$$\mathsf{J}(\psi,q) = 0 \to q = F(\psi)$$

$$\mathsf{A}_1 = \mathsf{A}_2 = \mathsf{A}_3 = \mathsf{A}_4 = \mathsf{A}_4 = \mathsf{A}_5 = \mathsf$$

The $\psi-q$ relationship

Roughly linear...but there are different "regimes"...

But the energy dropped by 58% owing to low resolution...

$$E = 0.5 |\hat{h}|^2 \propto |k|^{-2} |k|^2 |\psi|^2 (t = 0) \propto |k| \left[1 + \left(\frac{k}{6}\right)^4 \right]^{-1}$$

$$\mu = 2.38288288$$

Contours represent topography; colors streamfunction or PV

(doubly periodic calculations)

Energy stays nearly constant, enstrophy decays significantly...

Initializing a simulation with the minimum enstrophy solution

Contours represent topography; colors streamfunction or PV

In practice, with viscosity, energy decays super slowly...

Energy decays, enstrophy increases...

The effects of β

The effects of β

"In so far the the b-slope can be thought of as a Fourier component of zero wavenumber the solution may be instantly obtained":

$$\psi_0(x,y) = \sum \frac{\hat{h}}{k^2 + \hat{l}^2 + \mu} + \frac{\beta}{\mu}y$$

Discuss: is this obvious?

The effects of β

Fofonoff mode type of solution

Numerical experiments

Topography

Final streamfunction

Final PV

The $\psi-q$ relationship

The effects of eddies on the large scale flow

Reynolds decomposition

$$\psi = \Psi + \psi' \qquad q = (\nabla^2 \Psi + \beta y) + \underbrace{(\nabla^2 \psi' + h)}_{q'}$$

.... The eddy PV flux div: $\nabla \cdot \mathbf{F} = \overline{\mathbf{J}(\psi', q')}$

The PV eqn:

$$\frac{Dq'}{Dt} = -\beta \psi_x'$$

$$\frac{Dq'}{Dt} = -\beta \psi_x'$$
$$q' = -\beta \eta$$

 η : northward particle displacement

The single-particle diffusivity is

$$D = \frac{\mathsf{d}}{\mathsf{d}t} \frac{1}{2} \overline{\eta^2} = \beta^{-2} \frac{\mathsf{d}}{\mathsf{d}t} \frac{1}{2} \overline{q'^2} = \beta^{-1} \overline{v'q'} = -\beta^{-1} \overline{(\nabla^2 \psi' + h) \psi'_x}$$
$$\approx -\beta^{-1} \left[\frac{1}{2} \partial_x \overline{(\psi'_x^2 - \psi'_y^2)} + \partial_y \overline{\psi'_x \psi'_y} + \overline{h \psi'_x} \right] \approx -\beta^{-1} \overline{h \psi'_x}$$

$$D = \frac{\mathsf{d}}{\mathsf{d}t} \frac{1}{2} \overline{\eta^2} = \beta^{-2} \frac{\mathsf{d}}{\mathsf{d}t} \frac{1}{2} \overline{q'^2} = \beta^{-1} \overline{v'q'} = -\beta^{-1} \overline{(\nabla^2 \psi' + h) \psi_x'}$$

$$\approx -\beta^{-1} \left[\frac{1}{2} \partial_x \overline{(\psi_x'^2 - \psi_y'^2)} + \partial_y \overline{\psi_x' \psi_y'} + \overline{h \psi_x'} \right] \approx -\beta^{-1} \overline{h \psi_x'}$$

change to spatial average

$$P^{(x)} = \overline{h\psi_x'} \approx -\overline{\psi'h_x}$$

scale separation

Topographic form stress

$$D = \frac{\mathrm{d}}{\mathrm{d}t} \frac{1}{2} \overline{\eta^2} = \beta^{-2} \frac{\mathrm{d}}{\mathrm{d}t} \frac{1}{2} \overline{q'^2} = \beta^{-1} \overline{v'q'} = -\beta^{-1} \overline{(\nabla^2 \psi' + h) \psi_x'}$$

$$\approx -\beta^{-1} \left[\frac{1}{2} \partial_x \overline{(\psi_x'^2 - \psi_y'^2)} + \partial_y \overline{\psi_x' \psi_y'} + \overline{h \psi_x'} \right] \approx -\beta^{-1} \overline{h \psi_x'}$$
 change to spatial average

 $P^{(x)} = \overline{h \psi_x'} \approx -\overline{\psi' h_x}$ Discuss: really?

Topographic form stress

scale separation

Summary

- An initially turbulent flow above topography tends to a minimum enstrophy steady solution that is approximately along isobaths.
- On a beta-plane, the minimum enstrophy solution implies an westward interior flow.
- Topographic form stress appears to play a key role in driving the large-scale flow.

Discussion topics

(Or things to think about in the privacy of your own study)

- "The preferred topography": $|\hat{h}|^2(|k|) \propto |k|^{-2}$
- What is the relevance of freely-decaying solutions to the understanding of real (forced) geophysical flows?
- Differences between closed-basin and doublyperiodic solutions.
- The $h \to 0$ limit.

The limit h -> 0 is a bit murky...

A simple eigenproblem

$$\nabla^2 \psi = \mu \psi$$

The minimum enstrophy solution is

$$\psi_0 = A\cos kx + B\cos ly$$

$$k^2 + l^2 = 1 \quad \rightarrow \quad \mu = -1$$

Discuss: What determines A and B?

2D turbulence

An initial value problem (h=0)

Southern Ocean Topography

Drake Passage Topography

Topographic gradient

$$K = \beta_{topo}/\beta = \frac{\frac{|f_0|}{H}|\nabla h|_{rms}}{\beta}$$

$$\approx 54.24$$

$$H = \langle h \rangle \approx 3716 \text{ m}$$

spatial average