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Context
MODE experiment 
FFT (1965), 2D turbulence studies 
Contemporary studies: Rhines (1975, 1977), 
Salmon (1978, 1980), McWilliams (1984) 

Vorticity in a 2048x2048 freely 
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Inviscid 2D dynamics
(f-plane barotropic QG dynamics)
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The enstrophy cascade



2D turbulence
tracer variance forward cascade

BH76 Fig. 1



2D turbulence
Initial condition
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2D turbulence
After two eddy turnover timesInitial condition
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Conservation of area
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�n = �q/|rq|

(This comes from a 2D stirring simulation with a velocity field represented by “renovating waves”)
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2D turbulence
enstrophy forward cascade

The evolution of  the active tracer  q is more complicated because 
two quadratic quantities must be conserved in the inviscid limit: 

(Kinetic) Energy

(Potential) Enstrophy
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Small-scale dissipation damps 
enstrophy much more efficiently|k| =  = (k2 + l2)1/2
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2D turbulence: enstrophy decay
Time series in an initial value problem  with h=0

Energy has only a 0.3 % decay, whereas enstrophy 
decays by 92%



A minimum enstrophy 
principle



What is the flow that minimizes potential 
enstrophy Q given the energy E?
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“A simple exercise in calculus of variations” (BH76):

Assuming periodic BCs:
�
µ�r2

�
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 0 ⇡ µ�1h:

: q = r2 0 + h ⇡ 0 The fine-grained PV is homogenized

What is the flow that minimizes potential 
enstrophy Q given the energy E?

 ̂0 =
ĥ
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Fourier space

L0 = µ�1/2The Lagrangian multiplier defines a length scale

|k|L0 >> 1

|k|L0 << 1

Physical space
�
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Isobaths are streamlines of the coarse-grained flow

|k| =  = (k2 + l2)1/2
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is determined using the constraintµ E

What is the flow that minimizes potential 
enstrophy Q given the energy E?

E =
U2

2
= 1

2

X |k|2

(|k|2 + µ)2
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|k| =  = (k2 + l2)1/2



An example 

ĥ(|k|) / |k|�2

“The preferred topography” (BH76)
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A given energy level has multiple solutions 
but the positive minimizes enstrophy

“It is readily demonstrated that for positive     this is in fact a 
minimum” (BH76)

µ



A given energy level has multiple solutions 
but the positive minimizes enstrophy

The second order terms in the variational problem
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An example of minimum enstrophy 
solution

E = 0.05 , µ = 9.22072072

Streamfunction  0PV r2 0 + h Colors:Colors:
contours: h



An example of minimum enstrophy 
solution

E = 0.05 , µ = 9.22072072

Streamfunction  0PV r2 0 + h Colors:Colors:
contours: h

Discuss: Why BH76 did not do this!?



The role of saddle points

(There a lots of typos in equations 24 through 30 of the paper.)

I will not discuss.



The role of viscosity



Dq

Dt
= ⌫r2(r2 )

The role of viscosity

q = r2 + h
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Positive or negative?
If,                then enstrophy must increase since      is the 

minimum enstrophy solution.
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Closed-basin solution



The circulation on the boundary must be 
prescribed
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The minimum enstrophy problem  has two constraints
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The minimum enstrophy problem  has two constraints

r2(r2 + h� µ ) = 0

r2 + h+ � = 0

within S

on �

r2 � µ = �(h+ �) within S
Using  = 0 on  � : 

The circulation on the boundary must be 
prescribed

C determines the new constant �



A numerical experiment



Side remark

CPU 1.4 GHz; GPU;  
100’s GFLOPS to TFLOPS CPU 36.4 MHz; 36 MFLOPS 

Source: Wikipedia
CDC 7600 IPhone 6



Topography Initial streamfunction

What is the initial energy level and the associated µ ?



Final streamfunction Final PV



Streamfunction

PV

The flow quickly becomes quasi-steady

J( , q) = 0 ! q = F ( )



The            relationship � q

Roughly linear…but there are different “regimes”…



But the energy dropped by 
58% owing to low resolution…



Contours represent topography; colors streamfunction or PV
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(doubly periodic calculations)



Energy stays nearly constant, 
enstrophy decays significantly…



Contours represent topography; colors streamfunction or PV

Initializing a simulation with the minimum  
enstrophy solution

In practice, with viscosity, energy decays super slowly…



Energy decays, enstrophy 
increases…



The effects of �



The effects of �
“In so far the the b-slope can be thought of as a Fourier 
component of zero wavenumber the solution may be instantly 
obtained”:
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Discuss: is this obvious?



The effects of �
Fofonoff mode type of solution 



Numerical experiments

Topography streamfunction PV
Final

Final



The            relationship � q



The effects of eddies on the 
large scale flow



Eddy fluxes
Reynolds decomposition
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…. The eddy PV flux div: r · F = J( 0, q0)
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Eddy fluxes
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: northward particle displacement⌘
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Eddy fluxes

Topographic 
form stress

scale separation
change to spatial average
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Eddy fluxes

Discuss: really?
Topographic 
form stress

scale separation
change to spatial average
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• An initially turbulent flow above topography tends 
to a minimum enstrophy steady solution that is 
approximately along isobaths.  

• On a beta-plane, the minimum enstrophy solution 
implies an westward interior flow. 

• Topographic form stress appears to play a key role 
in driving the large-scale flow.

Summary



• “The preferred topography”:  

• What is the relevance of freely-decaying solutions 
to the understanding of real (forced) geophysical 
flows?  

• Differences between closed-basin and doubly-
periodic solutions. 

• The              limit.

Discussion topics

|ĥ|2(|k|) / |k|�2

(Or things to think about in the privacy of your own study)

h ! 0



The limit h -> 0 is a bit murky…

r2 = µ 

A simple eigenproblem

The minimum enstrophy solution is

Discuss:  What determines A and B?

 0 = A cos kx+B cos ly

k2 + l2 = 1 µ = �1!



2D turbulence
An initial value problem (h=0)



Southern Ocean 
Topography



Drake Passage Topography
Topography h Topographic gradient

K = �topo/� =
|f0|
H |rh|rms

�

⇡ 54.24

H = hhi ⇡ 3716 m

h.i spatial average


