


The	problem:	what	sets	the	size	of	the	ACC?	
	
Stommel	1957,	1962:	Early	models	adapt	Sverdrup	dynamics	to	the	ACC,	relaEng	wind	stress	
curl	to	transport.		
	
Munk	and	Palmen,	1951:	Such	models	require	‘uncomfortably	large’	values	of	eddy	fricEon	
coefficients	to	limit	the	ACC	transport	to	reasonable	values.		
	
Gill	1968:	Linear	model	of	the	ACC	requires	a	boRom	fricEon	coefficent	of	103	cm2/s	
																																																																														a	lateral	fricEon	coefficient	of	108	cm2/s.	
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Even	worse:	how	big	*is*	the	ACC?	
	
Reid	and	Nowlin,	1971:	Eastward	transport	of	237	Sv	through	the	Drake	Passage	
	
Foster,	1972:		Westward	transport	of	15	Sv	through	the	Drake	Passage	(backwards!)	
	
InternaEonal	Southern	Ocean	Studies	(ISOS)	program	measures	Drake	Passage	transport,	
structure,	dynamics.	
	
Nowlin	and	Klinck,	1986:	134	Sv	+-	10%	(eastward),	with	Eme	variability	of	20%.		
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ACC	characterisEcs:	
	
-  NOT	a	narrow	jet	or	boundary	

current	with	with	Ro	

-  Three	narrow	frontal	regions	of	
width	two	or	three	Emes	the	
Rossby	radius	

-  The	current	penetrates	down	to	
the	boRom	of	the	water	
column,	with	substanEal	
meridional	density	gradients	at	
depth.	



McWilliams	et	al.,	1978:	A	2-layer,	eddy-resolving	QG	model	of	the	ACC	with	various	
configuraEons	of	topography	and	wind	forcing.	
	
In	all	model	runs,	eddies	played	a	key	role	in	transporEng	zonal	momentum	downward.	
	
In	model	runs	without	topography,	fricEon	was	only	strong	enough	to	hold	model	
transport	values	around	400-600	Sv.	
	
In	model	runs	with	topography,	topographic	form	drag	was	strong	enough	to	limit	the	
model	transport	to	100	Sv.		
	
BoRom	and	sidewall	fricEon	is	not	enough!	Thus:		



Steady	state	zonal	momentum	balance:	

NoEng	that:	

We	can	write	eqn	(1)	as		

and		

(eqn	1)		



Taking	the	verEcal	integral:		



Taking	the	verEcal	integral:		



In	the	circumpolar	region	of	the	Southern	Ocean,	integrated	zonal	momentum	balance	
becomes:	

Momentum	source:	FricEonal	wind	stress	at	the	surface	of	the	fluid	
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PotenEal	momentum	sinks:	
1)  FricEonal	stress	at	the	boRom;	
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PotenEal	momentum	sinks:	
1)  FricEonal	stress	at	the	boRom;	
2)  FricEonal	stress	at	the	sidewalls,	via	meridional	momentum	flux	divergence;	
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In	the	circumpolar	region	of	the	Southern	Ocean,	integrated	zonal	momentum	balance	
becomes:	

Momentum	source:	FricEonal	wind	stress	at	the	surface	of	the	fluid	
	
	
	
	
	
	
	
	
	
	
PotenEal	momentum	sinks:	
1)  FricEonal	stress	at	the	boRom;	
2)  FricEonal	stress	at	the	sidewalls,	via	meridional	momentum	flux	divergence;	or	
3)  Topographic	form	stress.		
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Topographic	form	stress	



How	does	momentum	travel	from	surface	source	to	seafloor	sink?	
Interfacial	form	stress.	
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Interfacial	form	stress:		

	
VerEcal	flux	of	eastward	momentum	is	proporEonal	to	eddy	heat	flux.	

	
Poleward	heat	flux	corresponds	to	the	downward	flux	of	eastward	

momentum.		



Given	a	few	numbers…		
	
	
	
	
	
	
	
	
….this	model	can	be	tested	observaEonally.		





1977	Drake	Cluster	Array	
FDRAKE75	Mooring	8	

FDRAKE75	Mooring	10	





ObservaEons	used	to	test		



SOLID	LINE	



Second	test:	
Can	down-gradient	eddy	heat	flux	be	parameterized	in	terms	of	Eme-averaged	baroclinic	
fields	a	la	Green	(1970)	and	Stone	(1972)?	
	



ObservaEons	used	to	test		



SOLID	LINE	

DOTTED	LINE	



EsEmaEng	transport	

SOLID	LINE	

DOTTED	LINE	



EsEmaEng	transport:	

=	

Seqng	eddy	heat	flux	esEmates	equal	to	each	other:		

Allows	us	to	calculate	Eme	averaged	ACC	verEcal	shear:		

From	which	we	can	esEmate	an	ACC	transport:	

.	







For	discussion:	the	authors	assume	that	the	RHS	is	just	as	evenly	distributed	as	the	LHS.	Is	
this	a	reasonable	assumpEon?			

EKE	from	surface	alEmetry,	2003-2013.	
Sheen	et	al.,	2014.	

Wind	stress	(N/m2)	from	NCEP	reanalysis,	
1980-2000.	Marshall	and	Speer,	2012.	





Zoom	in	to	Drake	Passage:	cDrake	Experiment,	2007-2011.	

1977	Drake	Cluster	Array	
FDRAKE75	Mooring	8	

FDRAKE75	Mooring	10	





Pressure (dbar)!

cDrake	spaEal	and	temporal	variability.	

VerEcal,	Eme	mean	IFS.		 Time	mean	IFS	profiles.	


