Nonlinear stability and statistical mechanics of flow
over topography
By GEORGE F. CARNEVALE

Scripps Institution of Oceanography, University of California, San Diego,
La Jolla, CA 92093, USA

AND JORGEN S. FREDERIKSEN
CSIRO, Division of Atmospheric Research, PB 1, Mordialloc, Victoria 3195, Australia

(Received 11 November 1985 and in revised form 23 June 1986)




Inviscid 2D flow (periodic boundaries)

Oiq+ V- (vq) =0iq+ J(,q) =8+ R

advection of potential vorticity
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Quadratic Invariants

8tq+V-(vq):O

1
Potential Enstrophy Q@ = 5 // q°dxdy

Kinetic Energy E = 1//(V¢)2dazdy
2

and many more invariants

% / / dzdyF(q) = 0




Section 2: Nonlinear Stability

0
Eg—l—é-(VprVq):O > Vyl||Vq
d1 ::(5q

locally ¥ = F'(q)

non-trivial relationship is

pp =q= V3P +h




Quadratic Invariants (again)

non-zero
modes of

topography

multiple ,u’s for a
given energy (not all
necessarily stable)
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Fiaure 1. Energy in the stationary state ¢ = uyr. Schematic sketch of the relation between the total
energy and the parameter x as given by (2.6a). The topography is assumed to have non-zero spectral
amplitudes only in the wavenumber range from k_ to k,. A discrete spectral representation is
assumed with resolved wavenumbers only in the range from k, to k,. The solutions y* are
nonlinearly stable for all x > —k} (also for all x < —kf but these do not obtain in the physical limit
k, - 00). There is an energy cutoff, £(—k}), above which there can be no physically relevant stable ]‘C% < k2 < k%

stationary state of this family.

hi|* =0 for k3 < k* < k2



Nonlinear Stability

) Perturb the state to
Y =17 + 0y determine stability

0Q + woE

Q- +u(E- ) = 3 [[dwdy [ @) + u(F0)? — w(¥)
// dady [(V2(° + 6¢))% + 2hV25¢ — (VZh*)2 4+ u(V(* + 6¢))2 — u(V®)?]
=3 / / drdy [2¢°V280) + p2V8y - Vi + (V26¢)? + u(Vp)?]
_ % / / drdy [(V261)? + p(Ve)?] / / dady [2¢°V?81 — 2¢°V?6¢)]
-5 § v(Vov-yas
_ % / / dudy [(V260)? + u(Vo)?]

1
=5 D Kk + w)|ovn”
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p> —kg

for the perturbation doesn't grow or decay

p< —k7



Nonlinear Stability

) Perturb the state to
Y =17 + 0y determine stability

0Q + woE

Q- Q° + n(E — E?)

a miracle occurs

1
= 3R + )l
k

single-signed

p > —kg

for the perturbation doesn't grow or decay Iin time

p< =k
we don’t know anything about the rest of 1 though



Nonlinear Stability

5(Q+ pE) = =Y K (ar — pbr) 0y

k
Q-+ pE) =) KK + p)|ov|?

k \
positive for p > —k§
minimum enstrophy branch

Recall that since flow is inviscid any perturbation does not
decay, regardless of stability



Moving to Section 3

Inviscid statistical equilibrium



a bit of machinery is involved ...
probability density depends on invariants of system

P(¢k) x e—aE—bQ—l—...

let’'s ignore the
rest of these

/ / F(q)dzdy

(Ur) =

(G = (kD) (Cp = (Cp))) =

hy,

(a/b) + k2

k’z -p is to denote complex
conjugate

a + bk? Ok, ~p

1 1 21 h|? what are a, b”?
oL Z N k|l
2 2« a+bk? " ((afb) + k?)? 2
a + bk* >0
O = EZ k* n (a/b)?|hy|? otherwise
25~ a+0bk?  ((a/b)+ k) negative energy

Heq > —k%
for peq = (a/b), oy < I

it b> 0
it b <0

Recall from
nonlinear stability

s hg
wk—,u"—]fQ



what does this mean?”?

Therefore the values of 4®? are restricted to precisely the same range as defined by
the stable branches of x* derived in the previous section. However, for a given value
of E, u*4(E,Q) is not the same as u5(E) except when @ is an extremum (i.e. for
Q= Q).

Comparison of E® given by (2.6) to E°® given by (3.8) shows that for x > — k2 (the
minimum enstrophy branch) we have for equal energies, £®* = E®4, that u% < u®d
and of course Q®1>@°=Q,,,,. Similarly for x <—k} we have x® <y® and

<Q<‘Q’i Qmax- Thus an energy preserving perturbation to an equilibrium state fras
non-vanishing mean strea.mfunctlon That 18, since Q is an extremum in the sta
state we have 1or the pe
averages can be repla.ced by time avemges we then have that the long time average
of the perturbed state differs from the stable state which was perturbed. Indeed the
long time average of the perturbation cannot vanish. This is the case for the finite
resolution model. In contrast, as we shall show in the next section, in the limit of

infinite resolution the minimum enstrophy state and the canonical equilibrium are
identical.




Infinite Resolution

Reminder ki1 — o0

k2|hk|2

1 1
E=-
Q;a—l—bkz—i_

((a/b) + k2)?

1 a 2 k2 k2+ l k2 h 2
ciedntn | -gngiie [l
T 12—y k2+/‘] j oy, 1 1Pl®
=i [(k —k2)—up In d*k (i kD

Case I. £ < E3(—k3)
peUE, Q) p*(E),
nk?

ST TP

Case I1. E > E5(—k?)
uSYE, Q) — k2 + k2 exp { — 2b(E— E3(— k2))/x},

nk}

b—>—+ [Q—Q(— ko) —kg(E—E*(—kg))] ™"



Infinite Resolution (No topography)

Reminder ki1 — o0

E= % Zk: a +1bl<:2 * ((al;b)wzlj'wy . . "
LI (@R n P
MR Ok b= e, 2] L

=1 2 _ L2\ _ kf'*'/‘] _1_ 2 uilhg
Q 2h (kl ko) 'ulnk?,*l-/t +2 d (”_*_kz)z’

Case 1. £ < E3(—k3)
peUE, Q) > p*(E),
maximum energy of k2
minimum enstrophy state b—>
2(Q—-Q%(1%)’

Case I1. E > E5(—k?)
uSYE, Q) — k2 + k2 exp { — 2b(E— E3(— k2))/x},

2
b7 [Q— Q¥(— k) — (B~ B~ )]
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Infinite Resolution

A h=20

remainder of enstrophy

N,

k?o ki — oo

E < E*(—k3)
h =0
no eddy energy

. N

1
ko k_ k_|_ ki — o0
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Wavenumber, !
Fiauore 6. One-dimensional spectra for the final state in experiment 1 vs. north-south

wavenumber. Ordinates: —.-.—, slope spectrum, 10%° Z,Ih,,,[’; , velocity
spectrum predicted from (14), 1®X;|hu|?/(4+%k%?; — - —, computed velocity spectrum,
15|y u|®. Equal areas beneath the curves correspond to equal contributions to the
variance.

s E > E*(—kp)

A h+0

1
ko k_ k?_|_ ki — o0



Beta plane flow

0+ J(,(+h+By) =0 Periodic on ¥, h
Energy is conserved p7Es / (V) *dzdy = 0
Oh No!

— = [ (C+h
Small and large scale potential %2 //
enstrophy are not conserved 4
[/C+ + By



Beta plane flow

0+ J(,(+h+By) =0 Periodic on ¥, h

Introduce mean eastward flow V¥ =1 — Uy

// V) 2dady = —U//h—d:z;dy

Conserved Quantity // dxdy { V)% —

9@

o

1
Eg = 5U2 +//da¢dy V)2, for — // h—dazdy

Q@:5U+%//d$dy<+h)



let's do the same thing again

without a beta plane

5%+2(V¢XV@:O > Vyl||Vq
possible solution
pp® = V34 + h
with a beta plane

U U possible solution
¢g—q=C+h+py



we have parts that are
periodic and large scale parts

p(y® = Uty) = V29" + h + By




These formulae may be interpreted as modifications in which a k = 0 component has
been added to the topography. Thus, since we now have topography at the largest
allowed scale there is always an allowed minimum enstrophy solution for any given
E; this is made clear in the modified schematic in figure 2, where k,, k_, k., and k,
retain there previous definitions referring only to the periodic functions ¥ and A.
There is a ‘spectral gap’ between the large-scale, k = 0, and the scales with k > k.

1
__+§;

kQ’hkP

(K2

(12 |y [?

(e K7

E)

eeeerd B(=kY)

ey = "
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onlinearly stable for Ilu> — k3 (also for all 4 < — ki but these do not obtain in the physical limit
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FiGURE 2. Energy in the stationary state ¢ = u¥. As in figure 1 except here a large-scale flow (U)
and ‘topography’ (By) are included. The range of the physically relevant nonlinearly stable
solutions is reduced to x > 0. There is no energy cutoff, that is, for any given energy there is a

corresponding nonlinearly stable state.



Nonlinear Stability (again)

0Q + W E

Qw QL +u(By—E°) = ): k2(k®+ p) |0y, |2 +3 (8 U)2, (5.13)
> O, for p > 0

<0, for p < —k?

definite if # > 0 and negative definite if 4 < — k}. Thus the stability range is decreased
by shifting the largest scale from k, to k¥ = 0. Note that the positive x branch

corresponds to negative U® (i.e. westward flow). In the high resolution limit, &, - 00
the stable eastward flow branch no longer exists.

Eu)

Physically
relevant regime

0
F1oure 2. Energy in the stationary state ¢ = ,uWA n figure 1 except here a large-scale flow (U)
d topog aphy’ (By) are included. The range of the physically relevant non] nearly stable
solu sreduoedtop>0 There is no energy cutoff, that is, for any given energy there is a
correp nding nonlinearly stable state.



Canonical equilibrium (again)

mean and variance of ¥

P({fi}, U) oc exp{—ally—bQy} IS same
2
oC exp {%a(U+g ﬂ) } exp{—ak,—bQ,}. (5.14)
Wy =-3 8=~
where again 41 = a/b, and a>0
(U = 0+ bk > 0

Paradoxically, these results for the statistics of U do not explicitly involve the
topography 4. In the limit A— 0, (5.15) unambiguously predicts a mean U; however,
for & identically zero, U is an invariant with arbitrary value. For the ideal case with
h identically zero, the proper distribution allows U to be independently specified
unlike (5.14). The point is that the presence of A, no matter how small, breaks the
east—west (Galilean invariance and U will equilibrate in accordance with (5.16) and
(6.17). However, the smaller the value of 4, the longer it will take for the equilibration
process to approximate the ¢ = oo statistics.



Canonical equilibrium (again)

where again x®1 = a/b, and

(U—=LCUD)?) =

a >0
positive eddy energy a + bk? > 0

)

for u > 0 ,(U) is large amplitude and westward

for u® < —k%,(U) is small amplitude and eastward W |

A 1 1 1
ki K ) -kg 0 4

Ficure 2. Energy in the stationary state ¢ = /a'f’ As in figure 1 except here a large-scale flow (U)
d top g aphy’ (By) are inclu ded The range of the phy ally relevant nonlinearly stable
s reduced t o u > 0. There is no energy cutoff, that is, for any given energy there is a

corre! p d ng nonlinearly stable state.



Infinite Resolution (beta plane)

For E=EY Q=QY

peUE, Q) > p(E),

.
oy 2(Q—%(u%))
FLEECUR Al energy goes to (U [,
mean flow (U+CUSS 0,
N W >
For the same energy canonical CI(Ge — <&e)?> 0.

equilibrium is equivalent to
nonlinearly stable state



Section 6






Discussion

Is there some scheme that could be used to determine when
to include the higher order invariants”

It should be clear that in the calculation of the ‘infinite resolution limit’ of the
energy—enstrophy ensemble, we have assumed a limiting process in which the time
is first allowed to go to infinity for a finite resolution. Then, does our result have
anything to do with the long-time behaviour of the infinite resolution flow? In






What does conservation of potential vorticity mean”

f>0,h>0;q:CI0

Geostrophic Turbulence 265

AH
q = v2¢—|—h, h(x,y) = fT ________

-----

Figure 6.1 By the conservation of potential vorticity on fluid particles, the circulation
around a curve encircling a seamount must become negative. Similarly, the flow becomes
counterclockwise around the dashed line parallel to the boundary of the basin.

Salmon, R., ‘Lectures on Geophysical Fluid Dynamics’



Canonical Equilibrium



Liouville’'s Theorem

P12 = P1P2
log p12 = log p1 + log po

Higher order moments of potential vorticity

S

log pa = aq + BE.(Y,q) + 7Qa = ag — aE — bQ) + ...

but what are a and b7



Find a and b from the mean energy and potential enstrophy

LS B> =)

(= <Yl?> +IK¥l?) (3.8a)
Sl
+bk2 " ((a/b)+ k%)

a
CIGk+Aul*)
C1&e = L8 1*D +1KED + Ay f? (3.8b)

B (@/b)
a+0k* ' ((a/b)+ k)

E

I
o

Q=1

P
x
))
k
P>
X
)
k
P>
k

a + bk? > 0 otherwise negative energy



Kinetic Energy Invariance
0
o1+ (W,0) = OV + T (1,q) = 0
WO VY + 1 J (¢, q) =0

/ (W0, + $J (4, q)) dady = O

V- (0, V) = Vi - 9,V

]{ (YO, V) - Adl — — ~ / / Vi - Vopdady = 0
be 7{ (0: V) - ndl — / Vi - Vipdrdy = 0

wclj/g%———/ Vi - Vipdidy = 0

/ VJ (¢, q)drdy = 0



