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In a recent note, Warren et al. (1996 , WLR hereafter)
presented the opinion that considerations of form drag
in the dynamics of the Antarctic Circumpolar Current
(ACC) are obscurantist in nature and a distraction from
the more promising ‘‘Sverdrup’’ approach to ACC dy-
namics. I would argue that, on the contrary, the concept
of form drag is one of several important considerations
in understanding ACC dynamics and is the one that most
clearly distinguishes the ACC from midocean gyres.
The fundamental difference between the ACC and the

North Atlantic may be illustrated by the following
thought experiment. Add an eastward wind stress with
zero curl to the mean wind field forcing the flow, and
see what happens. In the North Atlantic, for the verti-
cally integrated flow, nothing need happen. The circu-
lation pattern is determined by the wind stress curl, and
the added irrotational stress makes no difference. There
is a difference, however, in how the flow is distributed
in the vertical. The added wind produces a southward
flow in the surface Ekman layer and, to close the me-
ridional circulation, this must return north lower down.
This can be achieved by a large-scale tilt in the sea
surface, inducing a northward geostrophic flow, together
with an opposing tilt in isopycnals to cancel that flow
below the thermocline.
Or, to put it another way, the added eastward force

due to the wind stress is balanced by a tilt in sea surface
that causes the ocean (above the thermocline) to push
harder on the eastern boundary than on the west. This
second way of describing things is possible because, for
a closed zonal section across which there can be no
mean mass flux, the net effect of the Coriolis force is
zero. Coriolis is important for individual fluid elements
though, so the integral balance between pressure gra-
dient and wind stress can be reinterpreted in terms of
the meridional circulation.
Now consider what would happen in a flat-bottomed
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Southern Ocean. A Sverdrup balance still determines
the meridional component of the vertically integrated
flow, and where there are eastern boundaries, the zonal
component can also be calculated in the conventional
manner. At latitudes with no boundary, however, an ar-
bitrary function of latitude can be added to the Sverdrup
solution. Sverdrup dynamics do not constrain the
strength of the ACC, and the strength of the ‘‘free
mode’’ must be determined by considering how the zon-
al wind stress is balanced. With no bottom topography,
this must be a frictional (or eddy) mechanism, so the
flow becomes strong enough for lateral or bottom fric-
tion to balance the wind stress. In terms of the merid-
ional circulation, the northward flow in the Ekman layer
is now balanced by southward flow either in the bottom
Ekman layer or across the body of the current, in both
cases balanced by friction. In this case, addition of an
eastward wind stress with no curl makes a large dif-
ference to the flow, increasing the total transport of the
ACC.
The enormous ACC transports that result from the

frictional balance led Munk and Palmén (1951) to con-
sider the Southern Ocean with bottom topography.
There is still a free mode. Any eastward flow that is
purely a function of latitude can be added without af-
fecting a Sverdrup balance, as long as it does not pen-
etrate deep enough to intersect with the bottom topog-
raphy, so again the Sverdrup balance does not determine
the transport of the ACC unless a value for this free
mode is specified. The difference made by bottom to-
pography is that it is now possible to balance the wind
stress with a form stress, without resorting to frictional
control and the large transports that implies. As WLR
point out, this form stress is simply the result of a geo-
strophic southward return flow to close the meridional
circulation, so it might be thought that this can be con-
sidered independently of the ACC transport. There are
two reasons why it is not safe to assume this:
First, unlike the North Atlantic, this return flow is

separated from the surface Ekman flow since it must
occur below some sill depth in the Drake Passage lat-
itudes. This implies that subduction and subsequent
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1. Introduction

In recent years the interest in the dynamical balance
of the Antarctic Circumpolar Current (ACC) has seen
a renaissance in oceanographic research. Various papers
deal with the barotropic circulation in channels with
simple topography—these are largely analytical solu-
tions (e.g., Johnson and Bryden 1989; Krupitsky and
Cane 1994; Wang and Huang 1995; Olbers and Völker
1996)—and a few numerical solutions have appeared,
noteworthy eddy-resolving quasigeostrophic channel
circulations (McWilliams et al. 1978; Wolff et al. 1991;
Olbers 1993; Marshall et al. 1993) and the FRAM ex-
periment (FRAM Group 1991). Apart from subtleties
due to the different ingredients in these models the in-
vestigations have verified the early proposal of Munk
and Palmén (1951) on the importance of the pressure
force on the submarine topography—the bottom form
stress—in the balance of the zonal momentum. In fact,
the concept of a ‘‘canonical’’ balance may be formu-
lated: The flux of momentum imparted by the surface
wind stress is carried—via the interfacial form stress
mechanism—by standing and transient eddies to the
depth where the flow is blocked by topography and the
bottom form stress acts to transfer the momentum to the
earth.
To many oceanographers this dynamical concept of

the ACC, however, still appears mysterious since the
conventional tools of oceanographic science—for ex-
ample, the Ekman and geostrophic transports and the
Sverdrup balance—seem not to pertain to this canonical
concept, which, moreover, seems to be insuffient to de-
termine the zonal transport of the circumpolar flow.
Warren et al. (1996, hereafter WLR) express their in-
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disposition with the form stress concept and the implied
balance of the ACC. In their view, the form drag mech-
anism appears to be irrelevant in the balance of the ACC,
and they propose that ‘‘Sverdrup dynamics seem to offer
a more promising analysis of the real Circumpolar Cur-
rent.’’
Let me briefly repeat the basic line of arguments by

which WLR degrade the importance of the form stress
mechanism in particular and the ‘‘ ‘form drag’ force
balance’’ in general in the physics of the ACC. In their
view, the momentum balance {Eq. [3]1 in WLR, (6)
below} between the wind stress and the bottom form
stress ‘‘merely states that the [meridional Ekman flux]
must balance the [net meridional geostrophic flow that
can exist below the ridge crests] if the total meridional
flow is zero.’’ Of course, it is trivial, and maybe se-
mantic at this stage, to state that the mass balance cares
for the balance of mass fluxes and the balance of mo-
mentum has its own right (see section 2).
WLR continue to degrade the importance of the mo-

mentum balance [3] because it ‘‘includes no attribute
(e.g., volume transport) of the Circumpolar Current . . .
in fact, according to the resolution [4] and [5]’’ [the
balances for the Ekman layer and the bottom layer, (2)
and (4) below], ‘‘the Circumpolar Current is irrelevant
to the integrated momentum balance and could actually
be absent without affecting [3], [4], and [5].’’ However,
a flow in response to passing over topographic features
must set up a pressure field that correlates with the
topographic elevation to produce a bottom form stress.
This stress definitely ‘‘knows’’ ‘‘that the current should
flow eastward or westward,’’ but the process of its gen-
eration cannot be inferred from the zonally averaged
momentum balance [3] alone (see section 3).
In response to Munk and Palmén (1951), ‘‘who

sought an agency to oppose the eastward wind stress
they propose as a more conventional, straightforward
answer to their request . . . the Coriolis acceleration (not
discussed by Munk and Palmén) associated with the

1 Numbers in square brackets refer to equations in WLR.

Why are you all so obsessed with this form-drag business?

Quick-and-dirty response

I’ve-been-thinking-about-this-for-a-really-long-time response



So what are these “Obscurantist” physics anyway?
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For a flat-bottomed circumpolar region ~ dx ~=-H dz lip0 aplOx = 0 and the wind 
stress at the sea surface (of order 2 dyn cm -2, see NOWLIN and KLn~CK, 1986) must be 
balanced either by the meridional divergence of eastward momentum flux OlOy f dz(uv), 
or bottom stress. GILL (1968) argued convincingly that bottom stress is unlikely to be as 
large as wind stress. He calculated that a meridional flux of zonal momentum u'v' of 
order 100 cm 2 s -g on the northern and southern edges of the ACC would balance the 
eastward stress. These meridional fluxes of zonal momentum are equivalent to the large 
lateral viscosity coefficients that many models require. 

Recent analyses indicate that observed meridional momentum fluxes are not nearly 
large enough to balance the wind stress and give a reasonable transport value. BR',rDEN 
and I-IEA'rrl (1985) observed a statistically significant northward eddy flux of eastward 
momentum on the northern edge of the ACC downstream of the Macquarie Ridge where 
this momentum flux was anticipated to be large. Even if it were typical of the entire 
circumpolar zone, which was considered unlikely, the measured eddy momentum flux 
was smaller by a factor of four than that required by GILL (1968). Bryden and Heath also 
estimated the standing eddy momentum flux due to large-scale variations in the 
circumpolar circulation from historical data compiled by GOROON et al. (1982) and found 
it to be two orders of magnitude smaller than that required to balance the wind stress. 
Finally, PIOLA et al. (1987) determined the eddy momentum flux at the surface from the 
large-scale FGGE drifter deployment during 1979 and found it to be a factor of three 
smaller than that required to balance the wind stress, even in the unlikely instance that 
the surface values were typical of depth-averaged ones. Thus the meridional divergence 
of the meridional flux of eastward momentum does not appear to be large enough to 
balance the eastward wind stress in the circumpolar region. 

The alternative balancing mechanism for the eastward wind stress is bottom form drag, 
or mountain drag, in which high pressure is found on the upstream side of submarine 
ridges or seamounts (Fig. 3). MtrNg and PALMEN (1951) first suggested mountain drag as 
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Fig. 3. Schematic presentation of bottom form drag or mountain drag. Wind stress imparted 
eastward momentum in the water column is removed by the pressure difference across the ridge. 
Note that geostrophic balance ~ = ap/ax demands an equatorward flow (symbolized by ®) 

along the ridge, evidence of which may be seen in Fig. 1. 
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Time-averaged zonal momentum equation

Integrate vertically over the whole water column

Integrate along a streamline around the ACC

Wind stress = Topographic form stress

�H

adapted from Johnson & Bryden (1989)

Warren et al. treat this as a 
statement of mass conservation



“The language obscures the more conventional physics”
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Warren et al. treat this as a 
statement of mass conservation



Upwelling and buoyancy

z

y

�H

Upwelling 
region

Johnson & Bryden claim that because there is 
buoyancy loss over the southern ocean, there 
cannot be upwelling.  

Warren et al. argue that this isn’t true.  

This gives a surface heat loss of 1.4 x 1014 W 
or buoyancy loss of -0.9 x 10-7 kg m-2 s.  

However, there is a large freshwater flux with 
buoyancy flux 2.6 x 10-7 kg m-2 s. 

 So buoyancy is actually gained. 

Is this still the modern view?



Sverdrup dynamics set the strength of the flow

• Warren et al. suggest that Sverdrup dynamics dictate the strength 
of the ACC, with southward flow in most of the ACC and 
northward flow just east of Drake Passage 

• Baker (1982) found that Sverdrup balance predicts a good-ish 
transport of the ACC (173Sv) 

Where        is a circle of constant latitude just south of Cape HornC

�V = r⇥ ⌧

 ACC =
1

�

Z

C
r⇥ ⌧ dx



• Warren et al. have not assimilated the view that the overturning 
circulation is along isopycnals (a fairly recent idea at the time), so 
they assume diabatic flow 

• The wind stress forces Ekman transport in the surface layer and 
the mass is returned below the topography: this process is not 
coupled to the transport of the ACC. 

• The wind stress is balanced by the Coriolis force in the Ekman 
layer. 

• You can predict the transport of the ACC based on Sverdrup 
balance alone.

To recap Warren et al.

Warren et al. assert the following



Hughes (1996) response: Sverdrup dynamics do not provide 
enough constraints

Southward transport is returned 
by geostrophic flow due to slope 

in sea-surface height 
u = 0u = 0

�v = �fwz

u
x

+ v
y

+ w
z

= 0

In a closed basin 

i.e. we can find      using u

In an open channel

i.e. we can add any zonally-uniform 
      without changing u v

“At latitudes with no boundary, an arbitrary function of latitude can be added to the 
Sverdrup solution.”



Hughes (1996) response: we can’t assume that ACC 
transport is independent of topography

• For return of the Meridional Overturning Circulation, the sloping isopycnals 
must reach below the topography 

• Therefore the ACC must reach below the topography.

Döös and Webb (1994)

Isopycnals Streamfunction (follows isopycnals)



Hughes (1996) response: the topography sets the strength 
of the eastward current

• Some flow appears to be returned at shallower depths than would 
be permitted at Drake Passage 

• This could happen at the Kerguelen plateau 

• But in order for this to happen you need a strong eastward current
64 D. J. WEBB 
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Figure 3 Source and sink flows in a zonal channel with occluding island. 

Thus a north-south current can cross a zonal channel containing an occluding island, 
but only at the cost of driving two strong zonal currents. 

If two or more islands combine to occlude the channel, then extra zonal currents 
are generated. The cases involving two islands are shown in Figures 4a and 4b. In 
both cases we have 

Here and in the rest of the paperf, is used to denotef(y, ) etc. The total zonal flow F,,, is 

Case 4a, F,,, = F2 + Fb + F4 + F, 

Case 4b, F,,, = F2 + F, + F, + 2F. (3.8) 

From these results, it is apparent that a meridional flow is also possible when the 
channel is occluded by a series of two or more islands (or other topographic features) 
and that each additional island in the series introduces an additional strong zonal jet. 
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Olbers (1998) response: here’s what form drag is all about
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northward Ekman transport.’’ Munk and Palmén do not
need any defense from my side but apparently WLP
take the momentum balance in the Ekman layer as the
balance of the whole system. This is certainly appro-
priate for an unbounded domain with a motionless abyss
but not for a bounded domain with a meridional cir-
culation and deep currents. There must indeed be an
agency that transmits the wind stress to greater depths
(see sections 4 and 5) where it can be taken up by bottom
friction or form stress (see section 6).
After all these arguments, the form drag—as a phys-

ical process—and the momentum balance [3]—as an
independent statement about conservation of momen-
tum in the system—seems to have disappeared from the
WLR scenario: ‘‘the proportionality’’ of the pressure
difference across the deep ridges and the wind stress
‘‘is simply required for meridional mass balance and
form drag talk is obscurantist in relation to the Circum-
polar Current: the physics that it really describes seems
to have nothing to do with that great current, but instead
with mass conservation in the quite independent merid-
ional circulation.’’ The Sverdrup balance model of
Stommel (1957) and the ‘‘Sverdrupian’’ estimate of the
ACC transport by Baker (1982) and others are recon-
sidered. But apart from the fact that such a scenario is
not dynamically closed, the ingredients of Sverdrup dy-
namics and more general, the barotropic vorticity dy-
namics, are not seen in its correct context: WLR try to
convince us that the zonal wind stress cannot have a
responsible role in the balance of the ACC since vor-
ticity is implemented to the flow via the curl: ‘‘adding
a constant to the field of zonal wind stress, for example,
would alter the meridional circulation, but, leaving the
curl unchanged, would not affect the transport of the
Circumpolar Current.’’ We discuss the Sverdrup balance
and the equivalence of the vorticity dynamics and the
momentum dynamics in sections 7 and 8.

2. The interrelation of the momentum and mass
balance and the meridional circulation
Starting from the simplified zonal momentum balance

(absorbing the density into the pressure and stress)
]p ]t

2 f y 5 2 1 (1)
]x ]z

the relations [2] to [5] in WLR are obtained by vertical
and zonal integration. Repeating here these equations,
we have

0

2 f y dz 5 ^t & (2)E 07 8
2E

2E

2 f y dz 5 0 (3)E7 8
2H

2H ]D
2 f y dz 5 p 2 t , (4)E D D7 8 7 8]x2D(x)

where pD(x) 5 p(x, z 5 2D(x)) is the bottom pressure.
The zonal integral is indicated by angle brackets,

^ · · · & :5 dx · · · ,R
C

and we are considering, as WLR, an Ekman layer 0 .
z . 2E, an intermediate layer 2E . z . 2H above
the depth z 5 2H of the highest ridge, and the bottom
layer between z 5 2H and the bottom at z 5 2D(x).
Furthermore, t 0 is the zonal wind stress, and t D is the
frictional stress at the bottom. As WLR, we assume that
the wind stress is absorbed in the Ekman layer, meaning
that t [ 0 beneath z5 2E, and that t Dmay be neglected
[as other small terms have been neglected in (1)]. We
include t D for later reference.
WLR interpret (2)–(4) basically in the framework of

mass balance, of course ‘‘(2) specifies the meridional
Ekman flux, (4) identifies the net meridional geostrophic
flow that can exist below the ridge crests.’’ The balance
of these mass fluxes, however, is not derived from these
equations nor from the total balance of momentum [Eq.
(6) below] but from the balance of the total mass south
of the path C,

0

y dz 5 0, (5)E7 8
2D(x)

and the vanishing of the geostrophic transport and the
neglection of any ageostrophic terms in the intermediate
layer. Using (5) the integral over the entire depth yields
the total balance of momentum [the sum of (2) to (4)]
in the form

]D
t 2 t 1 p 5 0, (6)0 D D7 8]x

which of course is completely independent of any spe-
cific form of mass exchange in the vertical.
Hence, Eq. (6) has its own right in the dynamics of

the system. After all, it is one of the most fundamental
constraints of the system, it is the balance of momentum
in the whole water column: in the absence of body forces
the fluxes of momentum into the system must balance.2
WLR complain that Munk and Palmén have ignored
‘‘the Coriolis acceleration associated with the northward
Ekman transport’’ in their seminal discussion of the mo-
mentum balance. The Coriolis acceleration only appears
in the balance of the individual (nonmaterial) layers but
has—as a consequence of mass conservation—no effect
on the mass of the total water column, that is, there is
no net Coriolis acceleration or force on the whole sys-

2 It should be mentioned that the balance as presented in the form
(6) is actually the budget of vorticity of the volume south of the
latitude considered. To obtain a budget of momentum we must in-
tegrate (6) over a finite latitudinal strip.
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the system. After all, it is one of the most fundamental
constraints of the system, it is the balance of momentum
in the whole water column: in the absence of body forces
the fluxes of momentum into the system must balance.2
WLR complain that Munk and Palmén have ignored
‘‘the Coriolis acceleration associated with the northward
Ekman transport’’ in their seminal discussion of the mo-
mentum balance. The Coriolis acceleration only appears
in the balance of the individual (nonmaterial) layers but
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2 It should be mentioned that the balance as presented in the form
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Time-averaged zonal momentum equation
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(see sections 4 and 5) where it can be taken up by bottom
friction or form stress (see section 6).
After all these arguments, the form drag—as a phys-

ical process—and the momentum balance [3]—as an
independent statement about conservation of momen-
tum in the system—seems to have disappeared from the
WLR scenario: ‘‘the proportionality’’ of the pressure
difference across the deep ridges and the wind stress
‘‘is simply required for meridional mass balance and
form drag talk is obscurantist in relation to the Circum-
polar Current: the physics that it really describes seems
to have nothing to do with that great current, but instead
with mass conservation in the quite independent merid-
ional circulation.’’ The Sverdrup balance model of
Stommel (1957) and the ‘‘Sverdrupian’’ estimate of the
ACC transport by Baker (1982) and others are recon-
sidered. But apart from the fact that such a scenario is
not dynamically closed, the ingredients of Sverdrup dy-
namics and more general, the barotropic vorticity dy-
namics, are not seen in its correct context: WLR try to
convince us that the zonal wind stress cannot have a
responsible role in the balance of the ACC since vor-
ticity is implemented to the flow via the curl: ‘‘adding
a constant to the field of zonal wind stress, for example,
would alter the meridional circulation, but, leaving the
curl unchanged, would not affect the transport of the
Circumpolar Current.’’ We discuss the Sverdrup balance
and the equivalence of the vorticity dynamics and the
momentum dynamics in sections 7 and 8.

2. The interrelation of the momentum and mass
balance and the meridional circulation
Starting from the simplified zonal momentum balance

(absorbing the density into the pressure and stress)
]p ]t

2 f y 5 2 1 (1)
]x ]z

the relations [2] to [5] in WLR are obtained by vertical
and zonal integration. Repeating here these equations,
we have

0

2 f y dz 5 ^t & (2)E 07 8
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2E

2 f y dz 5 0 (3)E7 8
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2H ]D
2 f y dz 5 p 2 t , (4)E D D7 8 7 8]x2D(x)

where pD(x) 5 p(x, z 5 2D(x)) is the bottom pressure.
The zonal integral is indicated by angle brackets,

^ · · · & :5 dx · · · ,R
C

and we are considering, as WLR, an Ekman layer 0 .
z . 2E, an intermediate layer 2E . z . 2H above
the depth z 5 2H of the highest ridge, and the bottom
layer between z 5 2H and the bottom at z 5 2D(x).
Furthermore, t 0 is the zonal wind stress, and t D is the
frictional stress at the bottom. As WLR, we assume that
the wind stress is absorbed in the Ekman layer, meaning
that t [ 0 beneath z5 2E, and that t Dmay be neglected
[as other small terms have been neglected in (1)]. We
include t D for later reference.
WLR interpret (2)–(4) basically in the framework of

mass balance, of course ‘‘(2) specifies the meridional
Ekman flux, (4) identifies the net meridional geostrophic
flow that can exist below the ridge crests.’’ The balance
of these mass fluxes, however, is not derived from these
equations nor from the total balance of momentum [Eq.
(6) below] but from the balance of the total mass south
of the path C,

0

y dz 5 0, (5)E7 8
2D(x)

and the vanishing of the geostrophic transport and the
neglection of any ageostrophic terms in the intermediate
layer. Using (5) the integral over the entire depth yields
the total balance of momentum [the sum of (2) to (4)]
in the form

]D
t 2 t 1 p 5 0, (6)0 D D7 8]x

which of course is completely independent of any spe-
cific form of mass exchange in the vertical.
Hence, Eq. (6) has its own right in the dynamics of

the system. After all, it is one of the most fundamental
constraints of the system, it is the balance of momentum
in the whole water column: in the absence of body forces
the fluxes of momentum into the system must balance.2
WLR complain that Munk and Palmén have ignored
‘‘the Coriolis acceleration associated with the northward
Ekman transport’’ in their seminal discussion of the mo-
mentum balance. The Coriolis acceleration only appears
in the balance of the individual (nonmaterial) layers but
has—as a consequence of mass conservation—no effect
on the mass of the total water column, that is, there is
no net Coriolis acceleration or force on the whole sys-

2 It should be mentioned that the balance as presented in the form
(6) is actually the budget of vorticity of the volume south of the
latitude considered. To obtain a budget of momentum we must in-
tegrate (6) over a finite latitudinal strip.

Integrate in the          and         directionsx z
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northward Ekman transport.’’ Munk and Palmén do not
need any defense from my side but apparently WLP
take the momentum balance in the Ekman layer as the
balance of the whole system. This is certainly appro-
priate for an unbounded domain with a motionless abyss
but not for a bounded domain with a meridional cir-
culation and deep currents. There must indeed be an
agency that transmits the wind stress to greater depths
(see sections 4 and 5) where it can be taken up by bottom
friction or form stress (see section 6).
After all these arguments, the form drag—as a phys-

ical process—and the momentum balance [3]—as an
independent statement about conservation of momen-
tum in the system—seems to have disappeared from the
WLR scenario: ‘‘the proportionality’’ of the pressure
difference across the deep ridges and the wind stress
‘‘is simply required for meridional mass balance and
form drag talk is obscurantist in relation to the Circum-
polar Current: the physics that it really describes seems
to have nothing to do with that great current, but instead
with mass conservation in the quite independent merid-
ional circulation.’’ The Sverdrup balance model of
Stommel (1957) and the ‘‘Sverdrupian’’ estimate of the
ACC transport by Baker (1982) and others are recon-
sidered. But apart from the fact that such a scenario is
not dynamically closed, the ingredients of Sverdrup dy-
namics and more general, the barotropic vorticity dy-
namics, are not seen in its correct context: WLR try to
convince us that the zonal wind stress cannot have a
responsible role in the balance of the ACC since vor-
ticity is implemented to the flow via the curl: ‘‘adding
a constant to the field of zonal wind stress, for example,
would alter the meridional circulation, but, leaving the
curl unchanged, would not affect the transport of the
Circumpolar Current.’’ We discuss the Sverdrup balance
and the equivalence of the vorticity dynamics and the
momentum dynamics in sections 7 and 8.

2. The interrelation of the momentum and mass
balance and the meridional circulation
Starting from the simplified zonal momentum balance

(absorbing the density into the pressure and stress)
]p ]t

2 f y 5 2 1 (1)
]x ]z

the relations [2] to [5] in WLR are obtained by vertical
and zonal integration. Repeating here these equations,
we have

0

2 f y dz 5 ^t & (2)E 07 8
2E

2E

2 f y dz 5 0 (3)E7 8
2H

2H ]D
2 f y dz 5 p 2 t , (4)E D D7 8 7 8]x2D(x)

where pD(x) 5 p(x, z 5 2D(x)) is the bottom pressure.
The zonal integral is indicated by angle brackets,

^ · · · & :5 dx · · · ,R
C

and we are considering, as WLR, an Ekman layer 0 .
z . 2E, an intermediate layer 2E . z . 2H above
the depth z 5 2H of the highest ridge, and the bottom
layer between z 5 2H and the bottom at z 5 2D(x).
Furthermore, t 0 is the zonal wind stress, and t D is the
frictional stress at the bottom. As WLR, we assume that
the wind stress is absorbed in the Ekman layer, meaning
that t [ 0 beneath z5 2E, and that t Dmay be neglected
[as other small terms have been neglected in (1)]. We
include t D for later reference.
WLR interpret (2)–(4) basically in the framework of

mass balance, of course ‘‘(2) specifies the meridional
Ekman flux, (4) identifies the net meridional geostrophic
flow that can exist below the ridge crests.’’ The balance
of these mass fluxes, however, is not derived from these
equations nor from the total balance of momentum [Eq.
(6) below] but from the balance of the total mass south
of the path C,

0

y dz 5 0, (5)E7 8
2D(x)

and the vanishing of the geostrophic transport and the
neglection of any ageostrophic terms in the intermediate
layer. Using (5) the integral over the entire depth yields
the total balance of momentum [the sum of (2) to (4)]
in the form

]D
t 2 t 1 p 5 0, (6)0 D D7 8]x

which of course is completely independent of any spe-
cific form of mass exchange in the vertical.
Hence, Eq. (6) has its own right in the dynamics of

the system. After all, it is one of the most fundamental
constraints of the system, it is the balance of momentum
in the whole water column: in the absence of body forces
the fluxes of momentum into the system must balance.2
WLR complain that Munk and Palmén have ignored
‘‘the Coriolis acceleration associated with the northward
Ekman transport’’ in their seminal discussion of the mo-
mentum balance. The Coriolis acceleration only appears
in the balance of the individual (nonmaterial) layers but
has—as a consequence of mass conservation—no effect
on the mass of the total water column, that is, there is
no net Coriolis acceleration or force on the whole sys-

2 It should be mentioned that the balance as presented in the form
(6) is actually the budget of vorticity of the volume south of the
latitude considered. To obtain a budget of momentum we must in-
tegrate (6) over a finite latitudinal strip.

Using mass conservation
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northward Ekman transport.’’ Munk and Palmén do not
need any defense from my side but apparently WLP
take the momentum balance in the Ekman layer as the
balance of the whole system. This is certainly appro-
priate for an unbounded domain with a motionless abyss
but not for a bounded domain with a meridional cir-
culation and deep currents. There must indeed be an
agency that transmits the wind stress to greater depths
(see sections 4 and 5) where it can be taken up by bottom
friction or form stress (see section 6).
After all these arguments, the form drag—as a phys-

ical process—and the momentum balance [3]—as an
independent statement about conservation of momen-
tum in the system—seems to have disappeared from the
WLR scenario: ‘‘the proportionality’’ of the pressure
difference across the deep ridges and the wind stress
‘‘is simply required for meridional mass balance and
form drag talk is obscurantist in relation to the Circum-
polar Current: the physics that it really describes seems
to have nothing to do with that great current, but instead
with mass conservation in the quite independent merid-
ional circulation.’’ The Sverdrup balance model of
Stommel (1957) and the ‘‘Sverdrupian’’ estimate of the
ACC transport by Baker (1982) and others are recon-
sidered. But apart from the fact that such a scenario is
not dynamically closed, the ingredients of Sverdrup dy-
namics and more general, the barotropic vorticity dy-
namics, are not seen in its correct context: WLR try to
convince us that the zonal wind stress cannot have a
responsible role in the balance of the ACC since vor-
ticity is implemented to the flow via the curl: ‘‘adding
a constant to the field of zonal wind stress, for example,
would alter the meridional circulation, but, leaving the
curl unchanged, would not affect the transport of the
Circumpolar Current.’’ We discuss the Sverdrup balance
and the equivalence of the vorticity dynamics and the
momentum dynamics in sections 7 and 8.

2. The interrelation of the momentum and mass
balance and the meridional circulation
Starting from the simplified zonal momentum balance

(absorbing the density into the pressure and stress)
]p ]t

2 f y 5 2 1 (1)
]x ]z

the relations [2] to [5] in WLR are obtained by vertical
and zonal integration. Repeating here these equations,
we have

0

2 f y dz 5 ^t & (2)E 07 8
2E

2E

2 f y dz 5 0 (3)E7 8
2H

2H ]D
2 f y dz 5 p 2 t , (4)E D D7 8 7 8]x2D(x)

where pD(x) 5 p(x, z 5 2D(x)) is the bottom pressure.
The zonal integral is indicated by angle brackets,

^ · · · & :5 dx · · · ,R
C

and we are considering, as WLR, an Ekman layer 0 .
z . 2E, an intermediate layer 2E . z . 2H above
the depth z 5 2H of the highest ridge, and the bottom
layer between z 5 2H and the bottom at z 5 2D(x).
Furthermore, t 0 is the zonal wind stress, and t D is the
frictional stress at the bottom. As WLR, we assume that
the wind stress is absorbed in the Ekman layer, meaning
that t [ 0 beneath z5 2E, and that t Dmay be neglected
[as other small terms have been neglected in (1)]. We
include t D for later reference.
WLR interpret (2)–(4) basically in the framework of

mass balance, of course ‘‘(2) specifies the meridional
Ekman flux, (4) identifies the net meridional geostrophic
flow that can exist below the ridge crests.’’ The balance
of these mass fluxes, however, is not derived from these
equations nor from the total balance of momentum [Eq.
(6) below] but from the balance of the total mass south
of the path C,

0

y dz 5 0, (5)E7 8
2D(x)

and the vanishing of the geostrophic transport and the
neglection of any ageostrophic terms in the intermediate
layer. Using (5) the integral over the entire depth yields
the total balance of momentum [the sum of (2) to (4)]
in the form

]D
t 2 t 1 p 5 0, (6)0 D D7 8]x

which of course is completely independent of any spe-
cific form of mass exchange in the vertical.
Hence, Eq. (6) has its own right in the dynamics of

the system. After all, it is one of the most fundamental
constraints of the system, it is the balance of momentum
in the whole water column: in the absence of body forces
the fluxes of momentum into the system must balance.2
WLR complain that Munk and Palmén have ignored
‘‘the Coriolis acceleration associated with the northward
Ekman transport’’ in their seminal discussion of the mo-
mentum balance. The Coriolis acceleration only appears
in the balance of the individual (nonmaterial) layers but
has—as a consequence of mass conservation—no effect
on the mass of the total water column, that is, there is
no net Coriolis acceleration or force on the whole sys-

2 It should be mentioned that the balance as presented in the form
(6) is actually the budget of vorticity of the volume south of the
latitude considered. To obtain a budget of momentum we must in-
tegrate (6) over a finite latitudinal strip.
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northward Ekman transport.’’ Munk and Palmén do not
need any defense from my side but apparently WLP
take the momentum balance in the Ekman layer as the
balance of the whole system. This is certainly appro-
priate for an unbounded domain with a motionless abyss
but not for a bounded domain with a meridional cir-
culation and deep currents. There must indeed be an
agency that transmits the wind stress to greater depths
(see sections 4 and 5) where it can be taken up by bottom
friction or form stress (see section 6).
After all these arguments, the form drag—as a phys-

ical process—and the momentum balance [3]—as an
independent statement about conservation of momen-
tum in the system—seems to have disappeared from the
WLR scenario: ‘‘the proportionality’’ of the pressure
difference across the deep ridges and the wind stress
‘‘is simply required for meridional mass balance and
form drag talk is obscurantist in relation to the Circum-
polar Current: the physics that it really describes seems
to have nothing to do with that great current, but instead
with mass conservation in the quite independent merid-
ional circulation.’’ The Sverdrup balance model of
Stommel (1957) and the ‘‘Sverdrupian’’ estimate of the
ACC transport by Baker (1982) and others are recon-
sidered. But apart from the fact that such a scenario is
not dynamically closed, the ingredients of Sverdrup dy-
namics and more general, the barotropic vorticity dy-
namics, are not seen in its correct context: WLR try to
convince us that the zonal wind stress cannot have a
responsible role in the balance of the ACC since vor-
ticity is implemented to the flow via the curl: ‘‘adding
a constant to the field of zonal wind stress, for example,
would alter the meridional circulation, but, leaving the
curl unchanged, would not affect the transport of the
Circumpolar Current.’’ We discuss the Sverdrup balance
and the equivalence of the vorticity dynamics and the
momentum dynamics in sections 7 and 8.

2. The interrelation of the momentum and mass
balance and the meridional circulation
Starting from the simplified zonal momentum balance

(absorbing the density into the pressure and stress)
]p ]t

2 f y 5 2 1 (1)
]x ]z

the relations [2] to [5] in WLR are obtained by vertical
and zonal integration. Repeating here these equations,
we have

0

2 f y dz 5 ^t & (2)E 07 8
2E

2E

2 f y dz 5 0 (3)E7 8
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2H ]D
2 f y dz 5 p 2 t , (4)E D D7 8 7 8]x2D(x)

where pD(x) 5 p(x, z 5 2D(x)) is the bottom pressure.
The zonal integral is indicated by angle brackets,

^ · · · & :5 dx · · · ,R
C

and we are considering, as WLR, an Ekman layer 0 .
z . 2E, an intermediate layer 2E . z . 2H above
the depth z 5 2H of the highest ridge, and the bottom
layer between z 5 2H and the bottom at z 5 2D(x).
Furthermore, t 0 is the zonal wind stress, and t D is the
frictional stress at the bottom. As WLR, we assume that
the wind stress is absorbed in the Ekman layer, meaning
that t [ 0 beneath z5 2E, and that t Dmay be neglected
[as other small terms have been neglected in (1)]. We
include t D for later reference.
WLR interpret (2)–(4) basically in the framework of

mass balance, of course ‘‘(2) specifies the meridional
Ekman flux, (4) identifies the net meridional geostrophic
flow that can exist below the ridge crests.’’ The balance
of these mass fluxes, however, is not derived from these
equations nor from the total balance of momentum [Eq.
(6) below] but from the balance of the total mass south
of the path C,

0

y dz 5 0, (5)E7 8
2D(x)

and the vanishing of the geostrophic transport and the
neglection of any ageostrophic terms in the intermediate
layer. Using (5) the integral over the entire depth yields
the total balance of momentum [the sum of (2) to (4)]
in the form

]D
t 2 t 1 p 5 0, (6)0 D D7 8]x

which of course is completely independent of any spe-
cific form of mass exchange in the vertical.
Hence, Eq. (6) has its own right in the dynamics of

the system. After all, it is one of the most fundamental
constraints of the system, it is the balance of momentum
in the whole water column: in the absence of body forces
the fluxes of momentum into the system must balance.2
WLR complain that Munk and Palmén have ignored
‘‘the Coriolis acceleration associated with the northward
Ekman transport’’ in their seminal discussion of the mo-
mentum balance. The Coriolis acceleration only appears
in the balance of the individual (nonmaterial) layers but
has—as a consequence of mass conservation—no effect
on the mass of the total water column, that is, there is
no net Coriolis acceleration or force on the whole sys-

2 It should be mentioned that the balance as presented in the form
(6) is actually the budget of vorticity of the volume south of the
latitude considered. To obtain a budget of momentum we must in-
tegrate (6) over a finite latitudinal strip.
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northward Ekman transport.’’ Munk and Palmén do not
need any defense from my side but apparently WLP
take the momentum balance in the Ekman layer as the
balance of the whole system. This is certainly appro-
priate for an unbounded domain with a motionless abyss
but not for a bounded domain with a meridional cir-
culation and deep currents. There must indeed be an
agency that transmits the wind stress to greater depths
(see sections 4 and 5) where it can be taken up by bottom
friction or form stress (see section 6).
After all these arguments, the form drag—as a phys-

ical process—and the momentum balance [3]—as an
independent statement about conservation of momen-
tum in the system—seems to have disappeared from the
WLR scenario: ‘‘the proportionality’’ of the pressure
difference across the deep ridges and the wind stress
‘‘is simply required for meridional mass balance and
form drag talk is obscurantist in relation to the Circum-
polar Current: the physics that it really describes seems
to have nothing to do with that great current, but instead
with mass conservation in the quite independent merid-
ional circulation.’’ The Sverdrup balance model of
Stommel (1957) and the ‘‘Sverdrupian’’ estimate of the
ACC transport by Baker (1982) and others are recon-
sidered. But apart from the fact that such a scenario is
not dynamically closed, the ingredients of Sverdrup dy-
namics and more general, the barotropic vorticity dy-
namics, are not seen in its correct context: WLR try to
convince us that the zonal wind stress cannot have a
responsible role in the balance of the ACC since vor-
ticity is implemented to the flow via the curl: ‘‘adding
a constant to the field of zonal wind stress, for example,
would alter the meridional circulation, but, leaving the
curl unchanged, would not affect the transport of the
Circumpolar Current.’’ We discuss the Sverdrup balance
and the equivalence of the vorticity dynamics and the
momentum dynamics in sections 7 and 8.

2. The interrelation of the momentum and mass
balance and the meridional circulation
Starting from the simplified zonal momentum balance

(absorbing the density into the pressure and stress)
]p ]t

2 f y 5 2 1 (1)
]x ]z

the relations [2] to [5] in WLR are obtained by vertical
and zonal integration. Repeating here these equations,
we have

0

2 f y dz 5 ^t & (2)E 07 8
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2E
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2H ]D
2 f y dz 5 p 2 t , (4)E D D7 8 7 8]x2D(x)

where pD(x) 5 p(x, z 5 2D(x)) is the bottom pressure.
The zonal integral is indicated by angle brackets,

^ · · · & :5 dx · · · ,R
C

and we are considering, as WLR, an Ekman layer 0 .
z . 2E, an intermediate layer 2E . z . 2H above
the depth z 5 2H of the highest ridge, and the bottom
layer between z 5 2H and the bottom at z 5 2D(x).
Furthermore, t 0 is the zonal wind stress, and t D is the
frictional stress at the bottom. As WLR, we assume that
the wind stress is absorbed in the Ekman layer, meaning
that t [ 0 beneath z5 2E, and that t Dmay be neglected
[as other small terms have been neglected in (1)]. We
include t D for later reference.
WLR interpret (2)–(4) basically in the framework of

mass balance, of course ‘‘(2) specifies the meridional
Ekman flux, (4) identifies the net meridional geostrophic
flow that can exist below the ridge crests.’’ The balance
of these mass fluxes, however, is not derived from these
equations nor from the total balance of momentum [Eq.
(6) below] but from the balance of the total mass south
of the path C,

0

y dz 5 0, (5)E7 8
2D(x)

and the vanishing of the geostrophic transport and the
neglection of any ageostrophic terms in the intermediate
layer. Using (5) the integral over the entire depth yields
the total balance of momentum [the sum of (2) to (4)]
in the form

]D
t 2 t 1 p 5 0, (6)0 D D7 8]x

which of course is completely independent of any spe-
cific form of mass exchange in the vertical.
Hence, Eq. (6) has its own right in the dynamics of

the system. After all, it is one of the most fundamental
constraints of the system, it is the balance of momentum
in the whole water column: in the absence of body forces
the fluxes of momentum into the system must balance.2
WLR complain that Munk and Palmén have ignored
‘‘the Coriolis acceleration associated with the northward
Ekman transport’’ in their seminal discussion of the mo-
mentum balance. The Coriolis acceleration only appears
in the balance of the individual (nonmaterial) layers but
has—as a consequence of mass conservation—no effect
on the mass of the total water column, that is, there is
no net Coriolis acceleration or force on the whole sys-

2 It should be mentioned that the balance as presented in the form
(6) is actually the budget of vorticity of the volume south of the
latitude considered. To obtain a budget of momentum we must in-
tegrate (6) over a finite latitudinal strip.
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ACC, the FRAM experiment (see, e.g., Stevens and
Ivchenko 1997).

4. The physics of form stress
Why does the bottom form drag appear so obscure?

After all, it is only a mathematical representation of the
action of pressure forces on the topography and as such
it is merely a zonal flux of zonal momentum out of the
fluid. We are adapted to see the pressure gradient as
force acting on fluid parcels but it should be remembered
that pressure is part of the stress tensor, describing the
isotropic part of the normal flux of momentum: p is the
flux of any component of momentum in the same cor-
responding coordinate direction. If there is a ‘‘barrier’’
in the form of topography or a material interface (in a
layer model), the pressure fluxes horizontal momentum
in the horizontal direction across this barrier, establish-
ing then either bottom form stress3 or interfacial form
stress. The interfacial form stress does not appear in
balances evaluated for compartments bounded by level
coordinates (the divergence of the form stress—the pres-
sure gradient force—then propels the fluid in the same
layer). Integrated vertically between two interfaces z 5
2h1(x) and z 5 2h2 (x) along any contour with coor-
dinate x and bounded by xl, xr, the integrated pressure
‘‘divergence’’ appears as

x 2h (x)r 1]p
dz dxE E]xx 2h (x)l 2

x2h (x) xr1 r ]h15 p dz 1 p(x, 2h (x))E ) E 1[ ]x2h (x) x x2 l l

]h22 p(x, 2h (x)) dx . (9)2 ]]x
The first term on the rhs is the net lateral flux of hor-
izontal momentum into the area (thus vanishing for
closed contours), the second is the flux through the in-
terfaces, that is, the form stress (in case of h2 5 D this
term is the bottom form stress). When we consider the
wind-driven circulation in a basin with a flat bottom,
bounded zonally by xl and xr, the net pressure difference
across the basin (the first term on the rhs) opposes the
external stress to achieve the balance of momentum. In
a zonally unbounded domain this term is absent, but the
bottom form stress is just the extension of this pressure
difference to the submarine barriers.
Notice that the effect of form stress on a layer bound-

ed by two surfaces is described by the difference of the
interfacial form stresses acting at the surfaces: it takes

3 It was first pointed out and exemplified by Holloway (1987) that
the bottom form drag could act as well to accelerate the fluid. This
actually is found in many cases of QG flow over topography, so it
is more appropriate to call it bottom form stress.

the form of a vertical divergence of a vertical flux of
horizontal momentum. Notice further that, in the case
of material surfaces, the net meridional mass flux van-
ishes in each layer. Then there is no net Coriolis force
acting on the layer and, thus, the vertical divergence of
the interfacial form stress must balance all applied fric-
tional stresses, and—in the deepest layer—the bottom
form stress. The balance of zonal momentum in such
an isopycnal model has thus the same general form as
(2) to (4) with the Coriolis force replaced by the cor-
responding divergence of the interfacial form stress (see,
e.g., Marshall et al. 1993). Notice that here other terms
of the momentum equation (1) should be included; the
divergence of the lateral Reynolds stress is generally
small compared to the local Coriolis term, but not if
integrated over the layer where the latter term becomes
zero.
It is evident from the expression (9) that the interfacial

stress contains a contribution from stationary defor-
mations of the interface (the standing eddy part) and a
contribution from transient eddies. Any flow over to-
pography will generate the standing eddy part, whereas
there are flow structures and, more important, low-res-
olution models that do not allow for transient eddies.
Evidently, the interfacial form stress, as defined

above, vanishes for level surfaces. Below I will show
that the continuous vertical transfer of momentum by a
nonfrictional process—the interfacial form stress—can
be generalized to level models with full thermodynam-
ics.

5. The vertical transport mechanism in level
models
A model of the ACC based on material layers may

be suspicious in conditions where watermass conversion
may occur. It is indeed of little help for quantitative
prediction. But to say it again, such models are cheaper
to run and analyze and may elucidate basic mechanisms
such as the role of the eddies in the transfer of mo-
mentum in the water column. But where are the eddies—
standing or transient—in the level counterpart consid-
ered in the section 2? In fact, they can be found in the
Coriolis acceleration. The zonally averaged meridional
velocity is related to the lateral transport of heat (or
potential density) by the eddies and enters as a vertical
divergence of a vertical flux of momentum in the bal-
ance of momentum in the same way as the interfacial
form stress in layer models.
The mathematical details of this statement are easily

outlined. Consider the piece of ocean bounded to the
south by the Antarctic continent and to the north by a
circumpolar path C at constant latitude through Drake
Passage. Furthermore, let A(z) denote the area on the
level z from C to the south and bounded there by the
continent. There are gaps in C [thus C is a C(z)] and
‘‘outbreaks’’ of A(z) where topography stands above the
level z, they are taken care of in the equations that
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What is the interfacial form stress?
Conservation of mass & temperature
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follow. We discuss relations between line integrals along
C and area integrals over A(z) that are derived from the
balances of mass and heat, which we write in the form

]w
= ·u 1 5 0 (10)

]z
(z)]J

= ·J 1 1 wQ 5 0. (11)z]z

Here u is the horizontal velocity and w the vertical
velocity, u the perturbation of temperature about a hor-
izontally averaged state Q(z), and J 5 (J (x) , J (y)) and
J (z) are the horizontal and vertical flux components of
heat, given by the advective and turbulent (sub-eddy-
scale) parts (I, I (z)),

J 5 uu 1 I J (z) 5 w u 1 I (z) . (12)
Integration of the mass balance equation (10) over the
area A(z) yields after some mathematical substitutions

]
^y& 1 w dA 5 0. (13)E]z A(z)

The area integral of w, which appears here, may also
be evaluated using the thermohaline balance (11), which
leads to

dQ
(y)2Q w dA 5 ^J & 1 , (14)z E dzA(z)

where

(z)Q(z) 5 J dA (15)E
A(z)

is the vertical heat flux across A(z). Combining (13) and
(14) we find a relation between the meridional circu-
lation and heat transport in the form

] dQ
21 (y)^y& 5 (Q ) ^yu 1 I & 1 , (16)z 1 2[ ]]z dz

which is familiar in quasigeostrophic settings (e.g.,
Green 1970). Here, however, it is generalized for dia-
batic conditions. Notice that the integral of y in (13)
and (16) has a geostrophic term at depths where C is
blocked by topography, for unblocked contours it is
entirely ageostrophic. The essence of (16) is that, in the
presence of lateral boundaries, the Coriolis force can be
rewritten as a divergence of a vertical transport of mo-
mentum—an ‘‘interlevel form stress’’—that is set by the
lateral heat flux across C and the vertical heat flux south
of C.We also learn from this relation how the watermass
conversion rate Q enters the momentum balance. More
important is, however, that the role of the eddies in the
circumpolar belt is revealed: They are responsible for
transferring horizontal momentum in the water column
and heat laterally. These processes are interlinked;
downward momentum transport is equivalent to south-
ward heat transport.

6. The zonal momentum balance of the ACC
Quasigeostrophic models (McWilliams et al. 1978;

Wolff et al. 1991; Marshall et al. 1993; Olbers 1993)
and PE models (Killworth and Nanneh 1994; Stevens
and Ivchenko 1997) have determined the magnitudes of
the different contributions to the momentum balance in
the zonal average. We summarize the results of these
numerical investigations in the light of the above frame-
work. Taking a time mean, the complete zonally inte-
grated balance of zonal momentum becomes

]F ]t ]
2 f ^y & 5 5 2 uy 1 dp , (17)O7 8 7 8]z ]z ]y ridges

where we have introduced the level expression of the
interfacial form stress

dQ
21 (y)F 5 2 f (Q ) ^yu 1 I & 1 . (18)z 1 2dz

The advective fluxes contained in F and uy can be
split into mean and eddy terms, for example, yu 5 yu
1 y9u9 . The sum of the pressure differences is extended
over all ridges interrupting the path C; each ridge con-
tributes the difference between the values on the eastern
side and the western side, that is, dp 5 p(xeast, z) 2
p(xwest, z). The vertical integral of this term yields the
bottom form stress.
Summarizing the aforementioned investigations, the

‘‘canonical’’ balance of zonal momentum is then char-
acterized as follows.
Ekman layer (0 $ z $ 2E): At depths directly in-

fluenced by the wind stress the dominant balance is
between the divergence of the frictional stress ^t & and
the Coriolis force f ^y & (due to ageostrophic motion)
or—as evident from the analysis above—the divergence
of the interlevel (or facial) form stress,

]F ]t
2 f ^y & 5 ¯ . (19)7 8]z ]z

By use of (14) at z 5 0 and integration over the Ekman
layer, we find

0

2 f ^y & dz 5 2F (z 5 2E ) ¯ ^t & (20)E 0
2E

stating that the momentum input by wind stress at the
sea surface is balanced by the interlevel/facial form
stress at the bottom of the Ekman layer.
Intermediate layer (2E $ z $ 2H): Below the Ek-

man layer but above the minimum depth H of topog-
raphy along the path of consideration, the balance is
between the lateral Reynolds stress divergence and the
Coriolis force. All other terms are smaller by almost an
order of magnitude. The dominant terms—the Reynolds
stress divergence and the Coriolis force—are, however,
more than two orders of magnitude smaller than the
dominant terms in the Ekman layer. In other words: the
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follow. We discuss relations between line integrals along
C and area integrals over A(z) that are derived from the
balances of mass and heat, which we write in the form
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= ·u 1 5 0 (10)

]z
(z)]J

= ·J 1 1 wQ 5 0. (11)z]z

Here u is the horizontal velocity and w the vertical
velocity, u the perturbation of temperature about a hor-
izontally averaged state Q(z), and J 5 (J (x) , J (y)) and
J (z) are the horizontal and vertical flux components of
heat, given by the advective and turbulent (sub-eddy-
scale) parts (I, I (z)),

J 5 uu 1 I J (z) 5 w u 1 I (z) . (12)
Integration of the mass balance equation (10) over the
area A(z) yields after some mathematical substitutions

]
^y& 1 w dA 5 0. (13)E]z A(z)

The area integral of w, which appears here, may also
be evaluated using the thermohaline balance (11), which
leads to

dQ
(y)2Q w dA 5 ^J & 1 , (14)z E dzA(z)

where

(z)Q(z) 5 J dA (15)E
A(z)

is the vertical heat flux across A(z). Combining (13) and
(14) we find a relation between the meridional circu-
lation and heat transport in the form

] dQ
21 (y)^y& 5 (Q ) ^yu 1 I & 1 , (16)z 1 2[ ]]z dz

which is familiar in quasigeostrophic settings (e.g.,
Green 1970). Here, however, it is generalized for dia-
batic conditions. Notice that the integral of y in (13)
and (16) has a geostrophic term at depths where C is
blocked by topography, for unblocked contours it is
entirely ageostrophic. The essence of (16) is that, in the
presence of lateral boundaries, the Coriolis force can be
rewritten as a divergence of a vertical transport of mo-
mentum—an ‘‘interlevel form stress’’—that is set by the
lateral heat flux across C and the vertical heat flux south
of C.We also learn from this relation how the watermass
conversion rate Q enters the momentum balance. More
important is, however, that the role of the eddies in the
circumpolar belt is revealed: They are responsible for
transferring horizontal momentum in the water column
and heat laterally. These processes are interlinked;
downward momentum transport is equivalent to south-
ward heat transport.

6. The zonal momentum balance of the ACC
Quasigeostrophic models (McWilliams et al. 1978;

Wolff et al. 1991; Marshall et al. 1993; Olbers 1993)
and PE models (Killworth and Nanneh 1994; Stevens
and Ivchenko 1997) have determined the magnitudes of
the different contributions to the momentum balance in
the zonal average. We summarize the results of these
numerical investigations in the light of the above frame-
work. Taking a time mean, the complete zonally inte-
grated balance of zonal momentum becomes

]F ]t ]
2 f ^y & 5 5 2 uy 1 dp , (17)O7 8 7 8]z ]z ]y ridges

where we have introduced the level expression of the
interfacial form stress

dQ
21 (y)F 5 2 f (Q ) ^yu 1 I & 1 . (18)z 1 2dz

The advective fluxes contained in F and uy can be
split into mean and eddy terms, for example, yu 5 yu
1 y9u9 . The sum of the pressure differences is extended
over all ridges interrupting the path C; each ridge con-
tributes the difference between the values on the eastern
side and the western side, that is, dp 5 p(xeast, z) 2
p(xwest, z). The vertical integral of this term yields the
bottom form stress.
Summarizing the aforementioned investigations, the

‘‘canonical’’ balance of zonal momentum is then char-
acterized as follows.
Ekman layer (0 $ z $ 2E): At depths directly in-

fluenced by the wind stress the dominant balance is
between the divergence of the frictional stress ^t & and
the Coriolis force f ^y & (due to ageostrophic motion)
or—as evident from the analysis above—the divergence
of the interlevel (or facial) form stress,

]F ]t
2 f ^y & 5 ¯ . (19)7 8]z ]z

By use of (14) at z 5 0 and integration over the Ekman
layer, we find

0

2 f ^y & dz 5 2F (z 5 2E ) ¯ ^t & (20)E 0
2E

stating that the momentum input by wind stress at the
sea surface is balanced by the interlevel/facial form
stress at the bottom of the Ekman layer.
Intermediate layer (2E $ z $ 2H): Below the Ek-

man layer but above the minimum depth H of topog-
raphy along the path of consideration, the balance is
between the lateral Reynolds stress divergence and the
Coriolis force. All other terms are smaller by almost an
order of magnitude. The dominant terms—the Reynolds
stress divergence and the Coriolis force—are, however,
more than two orders of magnitude smaller than the
dominant terms in the Ekman layer. In other words: the

Zonal momentum balance
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Here u is the horizontal velocity and w the vertical
velocity, u the perturbation of temperature about a hor-
izontally averaged state Q(z), and J 5 (J (x) , J (y)) and
J (z) are the horizontal and vertical flux components of
heat, given by the advective and turbulent (sub-eddy-
scale) parts (I, I (z)),

J 5 uu 1 I J (z) 5 w u 1 I (z) . (12)
Integration of the mass balance equation (10) over the
area A(z) yields after some mathematical substitutions
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The area integral of w, which appears here, may also
be evaluated using the thermohaline balance (11), which
leads to
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where

(z)Q(z) 5 J dA (15)E
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is the vertical heat flux across A(z). Combining (13) and
(14) we find a relation between the meridional circu-
lation and heat transport in the form
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Green 1970). Here, however, it is generalized for dia-
batic conditions. Notice that the integral of y in (13)
and (16) has a geostrophic term at depths where C is
blocked by topography, for unblocked contours it is
entirely ageostrophic. The essence of (16) is that, in the
presence of lateral boundaries, the Coriolis force can be
rewritten as a divergence of a vertical transport of mo-
mentum—an ‘‘interlevel form stress’’—that is set by the
lateral heat flux across C and the vertical heat flux south
of C.We also learn from this relation how the watermass
conversion rate Q enters the momentum balance. More
important is, however, that the role of the eddies in the
circumpolar belt is revealed: They are responsible for
transferring horizontal momentum in the water column
and heat laterally. These processes are interlinked;
downward momentum transport is equivalent to south-
ward heat transport.
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and Ivchenko 1997) have determined the magnitudes of
the different contributions to the momentum balance in
the zonal average. We summarize the results of these
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work. Taking a time mean, the complete zonally inte-
grated balance of zonal momentum becomes
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The advective fluxes contained in F and uy can be
split into mean and eddy terms, for example, yu 5 yu
1 y9u9 . The sum of the pressure differences is extended
over all ridges interrupting the path C; each ridge con-
tributes the difference between the values on the eastern
side and the western side, that is, dp 5 p(xeast, z) 2
p(xwest, z). The vertical integral of this term yields the
bottom form stress.
Summarizing the aforementioned investigations, the

‘‘canonical’’ balance of zonal momentum is then char-
acterized as follows.
Ekman layer (0 $ z $ 2E): At depths directly in-

fluenced by the wind stress the dominant balance is
between the divergence of the frictional stress ^t & and
the Coriolis force f ^y & (due to ageostrophic motion)
or—as evident from the analysis above—the divergence
of the interlevel (or facial) form stress,
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By use of (14) at z 5 0 and integration over the Ekman
layer, we find

0

2 f ^y & dz 5 2F (z 5 2E ) ¯ ^t & (20)E 0
2E

stating that the momentum input by wind stress at the
sea surface is balanced by the interlevel/facial form
stress at the bottom of the Ekman layer.
Intermediate layer (2E $ z $ 2H): Below the Ek-
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Coriolis force. All other terms are smaller by almost an
order of magnitude. The dominant terms—the Reynolds
stress divergence and the Coriolis force—are, however,
more than two orders of magnitude smaller than the
dominant terms in the Ekman layer. In other words: the
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entirely ageostrophic. The essence of (16) is that, in the
presence of lateral boundaries, the Coriolis force can be
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The advective fluxes contained in F and uy can be
split into mean and eddy terms, for example, yu 5 yu
1 y9u9 . The sum of the pressure differences is extended
over all ridges interrupting the path C; each ridge con-
tributes the difference between the values on the eastern
side and the western side, that is, dp 5 p(xeast, z) 2
p(xwest, z). The vertical integral of this term yields the
bottom form stress.
Summarizing the aforementioned investigations, the

‘‘canonical’’ balance of zonal momentum is then char-
acterized as follows.
Ekman layer (0 $ z $ 2E): At depths directly in-

fluenced by the wind stress the dominant balance is
between the divergence of the frictional stress ^t & and
the Coriolis force f ^y & (due to ageostrophic motion)
or—as evident from the analysis above—the divergence
of the interlevel (or facial) form stress,
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By use of (14) at z 5 0 and integration over the Ekman
layer, we find
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2 f ^y & dz 5 2F (z 5 2E ) ¯ ^t & (20)E 0
2E

stating that the momentum input by wind stress at the
sea surface is balanced by the interlevel/facial form
stress at the bottom of the Ekman layer.
Intermediate layer (2E $ z $ 2H): Below the Ek-

man layer but above the minimum depth H of topog-
raphy along the path of consideration, the balance is
between the lateral Reynolds stress divergence and the
Coriolis force. All other terms are smaller by almost an
order of magnitude. The dominant terms—the Reynolds
stress divergence and the Coriolis force—are, however,
more than two orders of magnitude smaller than the
dominant terms in the Ekman layer. In other words: the
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Here u is the horizontal velocity and w the vertical
velocity, u the perturbation of temperature about a hor-
izontally averaged state Q(z), and J 5 (J (x) , J (y)) and
J (z) are the horizontal and vertical flux components of
heat, given by the advective and turbulent (sub-eddy-
scale) parts (I, I (z)),

J 5 uu 1 I J (z) 5 w u 1 I (z) . (12)
Integration of the mass balance equation (10) over the
area A(z) yields after some mathematical substitutions

]
^y& 1 w dA 5 0. (13)E]z A(z)

The area integral of w, which appears here, may also
be evaluated using the thermohaline balance (11), which
leads to

dQ
(y)2Q w dA 5 ^J & 1 , (14)z E dzA(z)

where

(z)Q(z) 5 J dA (15)E
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is the vertical heat flux across A(z). Combining (13) and
(14) we find a relation between the meridional circu-
lation and heat transport in the form

] dQ
21 (y)^y& 5 (Q ) ^yu 1 I & 1 , (16)z 1 2[ ]]z dz

which is familiar in quasigeostrophic settings (e.g.,
Green 1970). Here, however, it is generalized for dia-
batic conditions. Notice that the integral of y in (13)
and (16) has a geostrophic term at depths where C is
blocked by topography, for unblocked contours it is
entirely ageostrophic. The essence of (16) is that, in the
presence of lateral boundaries, the Coriolis force can be
rewritten as a divergence of a vertical transport of mo-
mentum—an ‘‘interlevel form stress’’—that is set by the
lateral heat flux across C and the vertical heat flux south
of C.We also learn from this relation how the watermass
conversion rate Q enters the momentum balance. More
important is, however, that the role of the eddies in the
circumpolar belt is revealed: They are responsible for
transferring horizontal momentum in the water column
and heat laterally. These processes are interlinked;
downward momentum transport is equivalent to south-
ward heat transport.

6. The zonal momentum balance of the ACC
Quasigeostrophic models (McWilliams et al. 1978;

Wolff et al. 1991; Marshall et al. 1993; Olbers 1993)
and PE models (Killworth and Nanneh 1994; Stevens
and Ivchenko 1997) have determined the magnitudes of
the different contributions to the momentum balance in
the zonal average. We summarize the results of these
numerical investigations in the light of the above frame-
work. Taking a time mean, the complete zonally inte-
grated balance of zonal momentum becomes

]F ]t ]
2 f ^y & 5 5 2 uy 1 dp , (17)O7 8 7 8]z ]z ]y ridges

where we have introduced the level expression of the
interfacial form stress

dQ
21 (y)F 5 2 f (Q ) ^yu 1 I & 1 . (18)z 1 2dz

The advective fluxes contained in F and uy can be
split into mean and eddy terms, for example, yu 5 yu
1 y9u9 . The sum of the pressure differences is extended
over all ridges interrupting the path C; each ridge con-
tributes the difference between the values on the eastern
side and the western side, that is, dp 5 p(xeast, z) 2
p(xwest, z). The vertical integral of this term yields the
bottom form stress.
Summarizing the aforementioned investigations, the

‘‘canonical’’ balance of zonal momentum is then char-
acterized as follows.
Ekman layer (0 $ z $ 2E): At depths directly in-

fluenced by the wind stress the dominant balance is
between the divergence of the frictional stress ^t & and
the Coriolis force f ^y & (due to ageostrophic motion)
or—as evident from the analysis above—the divergence
of the interlevel (or facial) form stress,

]F ]t
2 f ^y & 5 ¯ . (19)7 8]z ]z

By use of (14) at z 5 0 and integration over the Ekman
layer, we find

0

2 f ^y & dz 5 2F (z 5 2E ) ¯ ^t & (20)E 0
2E

stating that the momentum input by wind stress at the
sea surface is balanced by the interlevel/facial form
stress at the bottom of the Ekman layer.
Intermediate layer (2E $ z $ 2H): Below the Ek-

man layer but above the minimum depth H of topog-
raphy along the path of consideration, the balance is
between the lateral Reynolds stress divergence and the
Coriolis force. All other terms are smaller by almost an
order of magnitude. The dominant terms—the Reynolds
stress divergence and the Coriolis force—are, however,
more than two orders of magnitude smaller than the
dominant terms in the Ekman layer. In other words: the

Integrate over area
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balances of mass and heat, which we write in the form
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Here u is the horizontal velocity and w the vertical
velocity, u the perturbation of temperature about a hor-
izontally averaged state Q(z), and J 5 (J (x) , J (y)) and
J (z) are the horizontal and vertical flux components of
heat, given by the advective and turbulent (sub-eddy-
scale) parts (I, I (z)),

J 5 uu 1 I J (z) 5 w u 1 I (z) . (12)
Integration of the mass balance equation (10) over the
area A(z) yields after some mathematical substitutions

]
^y& 1 w dA 5 0. (13)E]z A(z)

The area integral of w, which appears here, may also
be evaluated using the thermohaline balance (11), which
leads to

dQ
(y)2Q w dA 5 ^J & 1 , (14)z E dzA(z)

where

(z)Q(z) 5 J dA (15)E
A(z)

is the vertical heat flux across A(z). Combining (13) and
(14) we find a relation between the meridional circu-
lation and heat transport in the form

] dQ
21 (y)^y& 5 (Q ) ^yu 1 I & 1 , (16)z 1 2[ ]]z dz

which is familiar in quasigeostrophic settings (e.g.,
Green 1970). Here, however, it is generalized for dia-
batic conditions. Notice that the integral of y in (13)
and (16) has a geostrophic term at depths where C is
blocked by topography, for unblocked contours it is
entirely ageostrophic. The essence of (16) is that, in the
presence of lateral boundaries, the Coriolis force can be
rewritten as a divergence of a vertical transport of mo-
mentum—an ‘‘interlevel form stress’’—that is set by the
lateral heat flux across C and the vertical heat flux south
of C.We also learn from this relation how the watermass
conversion rate Q enters the momentum balance. More
important is, however, that the role of the eddies in the
circumpolar belt is revealed: They are responsible for
transferring horizontal momentum in the water column
and heat laterally. These processes are interlinked;
downward momentum transport is equivalent to south-
ward heat transport.

6. The zonal momentum balance of the ACC
Quasigeostrophic models (McWilliams et al. 1978;

Wolff et al. 1991; Marshall et al. 1993; Olbers 1993)
and PE models (Killworth and Nanneh 1994; Stevens
and Ivchenko 1997) have determined the magnitudes of
the different contributions to the momentum balance in
the zonal average. We summarize the results of these
numerical investigations in the light of the above frame-
work. Taking a time mean, the complete zonally inte-
grated balance of zonal momentum becomes
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2 f ^y & 5 5 2 uy 1 dp , (17)O7 8 7 8]z ]z ]y ridges

where we have introduced the level expression of the
interfacial form stress

dQ
21 (y)F 5 2 f (Q ) ^yu 1 I & 1 . (18)z 1 2dz

The advective fluxes contained in F and uy can be
split into mean and eddy terms, for example, yu 5 yu
1 y9u9 . The sum of the pressure differences is extended
over all ridges interrupting the path C; each ridge con-
tributes the difference between the values on the eastern
side and the western side, that is, dp 5 p(xeast, z) 2
p(xwest, z). The vertical integral of this term yields the
bottom form stress.
Summarizing the aforementioned investigations, the

‘‘canonical’’ balance of zonal momentum is then char-
acterized as follows.
Ekman layer (0 $ z $ 2E): At depths directly in-

fluenced by the wind stress the dominant balance is
between the divergence of the frictional stress ^t & and
the Coriolis force f ^y & (due to ageostrophic motion)
or—as evident from the analysis above—the divergence
of the interlevel (or facial) form stress,

]F ]t
2 f ^y & 5 ¯ . (19)7 8]z ]z

By use of (14) at z 5 0 and integration over the Ekman
layer, we find

0

2 f ^y & dz 5 2F (z 5 2E ) ¯ ^t & (20)E 0
2E

stating that the momentum input by wind stress at the
sea surface is balanced by the interlevel/facial form
stress at the bottom of the Ekman layer.
Intermediate layer (2E $ z $ 2H): Below the Ek-

man layer but above the minimum depth H of topog-
raphy along the path of consideration, the balance is
between the lateral Reynolds stress divergence and the
Coriolis force. All other terms are smaller by almost an
order of magnitude. The dominant terms—the Reynolds
stress divergence and the Coriolis force—are, however,
more than two orders of magnitude smaller than the
dominant terms in the Ekman layer. In other words: the
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follow. We discuss relations between line integrals along
C and area integrals over A(z) that are derived from the
balances of mass and heat, which we write in the form

]w
= ·u 1 5 0 (10)

]z
(z)]J

= ·J 1 1 wQ 5 0. (11)z]z

Here u is the horizontal velocity and w the vertical
velocity, u the perturbation of temperature about a hor-
izontally averaged state Q(z), and J 5 (J (x) , J (y)) and
J (z) are the horizontal and vertical flux components of
heat, given by the advective and turbulent (sub-eddy-
scale) parts (I, I (z)),

J 5 uu 1 I J (z) 5 w u 1 I (z) . (12)
Integration of the mass balance equation (10) over the
area A(z) yields after some mathematical substitutions

]
^y& 1 w dA 5 0. (13)E]z A(z)

The area integral of w, which appears here, may also
be evaluated using the thermohaline balance (11), which
leads to

dQ
(y)2Q w dA 5 ^J & 1 , (14)z E dzA(z)

where

(z)Q(z) 5 J dA (15)E
A(z)

is the vertical heat flux across A(z). Combining (13) and
(14) we find a relation between the meridional circu-
lation and heat transport in the form

] dQ
21 (y)^y& 5 (Q ) ^yu 1 I & 1 , (16)z 1 2[ ]]z dz

which is familiar in quasigeostrophic settings (e.g.,
Green 1970). Here, however, it is generalized for dia-
batic conditions. Notice that the integral of y in (13)
and (16) has a geostrophic term at depths where C is
blocked by topography, for unblocked contours it is
entirely ageostrophic. The essence of (16) is that, in the
presence of lateral boundaries, the Coriolis force can be
rewritten as a divergence of a vertical transport of mo-
mentum—an ‘‘interlevel form stress’’—that is set by the
lateral heat flux across C and the vertical heat flux south
of C.We also learn from this relation how the watermass
conversion rate Q enters the momentum balance. More
important is, however, that the role of the eddies in the
circumpolar belt is revealed: They are responsible for
transferring horizontal momentum in the water column
and heat laterally. These processes are interlinked;
downward momentum transport is equivalent to south-
ward heat transport.

6. The zonal momentum balance of the ACC
Quasigeostrophic models (McWilliams et al. 1978;

Wolff et al. 1991; Marshall et al. 1993; Olbers 1993)
and PE models (Killworth and Nanneh 1994; Stevens
and Ivchenko 1997) have determined the magnitudes of
the different contributions to the momentum balance in
the zonal average. We summarize the results of these
numerical investigations in the light of the above frame-
work. Taking a time mean, the complete zonally inte-
grated balance of zonal momentum becomes
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2 f ^y & 5 5 2 uy 1 dp , (17)O7 8 7 8]z ]z ]y ridges

where we have introduced the level expression of the
interfacial form stress

dQ
21 (y)F 5 2 f (Q ) ^yu 1 I & 1 . (18)z 1 2dz

The advective fluxes contained in F and uy can be
split into mean and eddy terms, for example, yu 5 yu
1 y9u9 . The sum of the pressure differences is extended
over all ridges interrupting the path C; each ridge con-
tributes the difference between the values on the eastern
side and the western side, that is, dp 5 p(xeast, z) 2
p(xwest, z). The vertical integral of this term yields the
bottom form stress.
Summarizing the aforementioned investigations, the

‘‘canonical’’ balance of zonal momentum is then char-
acterized as follows.
Ekman layer (0 $ z $ 2E): At depths directly in-

fluenced by the wind stress the dominant balance is
between the divergence of the frictional stress ^t & and
the Coriolis force f ^y & (due to ageostrophic motion)
or—as evident from the analysis above—the divergence
of the interlevel (or facial) form stress,
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2 f ^y & 5 ¯ . (19)7 8]z ]z

By use of (14) at z 5 0 and integration over the Ekman
layer, we find

0

2 f ^y & dz 5 2F (z 5 2E ) ¯ ^t & (20)E 0
2E

stating that the momentum input by wind stress at the
sea surface is balanced by the interlevel/facial form
stress at the bottom of the Ekman layer.
Intermediate layer (2E $ z $ 2H): Below the Ek-

man layer but above the minimum depth H of topog-
raphy along the path of consideration, the balance is
between the lateral Reynolds stress divergence and the
Coriolis force. All other terms are smaller by almost an
order of magnitude. The dominant terms—the Reynolds
stress divergence and the Coriolis force—are, however,
more than two orders of magnitude smaller than the
dominant terms in the Ekman layer. In other words: the
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the Coriolis force f ^y & (due to ageostrophic motion)
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stating that the momentum input by wind stress at the
sea surface is balanced by the interlevel/facial form
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entirely ageostrophic. The essence of (16) is that, in the
presence of lateral boundaries, the Coriolis force can be
rewritten as a divergence of a vertical transport of mo-
mentum—an ‘‘interlevel form stress’’—that is set by the
lateral heat flux across C and the vertical heat flux south
of C.We also learn from this relation how the watermass
conversion rate Q enters the momentum balance. More
important is, however, that the role of the eddies in the
circumpolar belt is revealed: They are responsible for
transferring horizontal momentum in the water column
and heat laterally. These processes are interlinked;
downward momentum transport is equivalent to south-
ward heat transport.

6. The zonal momentum balance of the ACC
Quasigeostrophic models (McWilliams et al. 1978;

Wolff et al. 1991; Marshall et al. 1993; Olbers 1993)
and PE models (Killworth and Nanneh 1994; Stevens
and Ivchenko 1997) have determined the magnitudes of
the different contributions to the momentum balance in
the zonal average. We summarize the results of these
numerical investigations in the light of the above frame-
work. Taking a time mean, the complete zonally inte-
grated balance of zonal momentum becomes

]F ]t ]
2 f ^y & 5 5 2 uy 1 dp , (17)O7 8 7 8]z ]z ]y ridges

where we have introduced the level expression of the
interfacial form stress

dQ
21 (y)F 5 2 f (Q ) ^yu 1 I & 1 . (18)z 1 2dz

The advective fluxes contained in F and uy can be
split into mean and eddy terms, for example, yu 5 yu
1 y9u9 . The sum of the pressure differences is extended
over all ridges interrupting the path C; each ridge con-
tributes the difference between the values on the eastern
side and the western side, that is, dp 5 p(xeast, z) 2
p(xwest, z). The vertical integral of this term yields the
bottom form stress.
Summarizing the aforementioned investigations, the

‘‘canonical’’ balance of zonal momentum is then char-
acterized as follows.
Ekman layer (0 $ z $ 2E): At depths directly in-
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or—as evident from the analysis above—the divergence
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sea surface is balanced by the interlevel/facial form
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raphy along the path of consideration, the balance is
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the different contributions to the momentum balance in
the zonal average. We summarize the results of these
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The advective fluxes contained in F and uy can be
split into mean and eddy terms, for example, yu 5 yu
1 y9u9 . The sum of the pressure differences is extended
over all ridges interrupting the path C; each ridge con-
tributes the difference between the values on the eastern
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p(xwest, z). The vertical integral of this term yields the
bottom form stress.
Summarizing the aforementioned investigations, the

‘‘canonical’’ balance of zonal momentum is then char-
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fluenced by the wind stress the dominant balance is
between the divergence of the frictional stress ^t & and
the Coriolis force f ^y & (due to ageostrophic motion)
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layer, we find
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2E

stating that the momentum input by wind stress at the
sea surface is balanced by the interlevel/facial form
stress at the bottom of the Ekman layer.
Intermediate layer (2E $ z $ 2H): Below the Ek-

man layer but above the minimum depth H of topog-
raphy along the path of consideration, the balance is
between the lateral Reynolds stress divergence and the
Coriolis force. All other terms are smaller by almost an
order of magnitude. The dominant terms—the Reynolds
stress divergence and the Coriolis force—are, however,
more than two orders of magnitude smaller than the
dominant terms in the Ekman layer. In other words: the

Are heat fluxes
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layer were a rigid ocean bottom. Note that as opposed to mountain drag, interracial form 
drag is not a depth-integrated zonal force. The zonally averaged pressure gradient 
remains zero for the circumpolar region above submarine ridges. Interracial form drag 
causes a vertical flux of zonal momentum from the upper layer to the lower layer, leaving 
the depth-integrated zonal momentum balance unchanged. An equivalent expression for 
the interfacial form drag - ~ ~' Op'/Ox dx can be obtained simply by integrating by parts 
over the zonally connected circumpolar region. The two-la_~er concept can be extended 
to the case of continuous stratification where ~' ---T'/Oz, with T' the temperature 
perturbation about its average value and Oz the vertical gradient of potential tempera- 
ture. Considering geostrophic motions where l/p00p'/Ox = fv' results in the final 
expression for the form drag 

v '  T '  ¢ P' O;---~' dx = - ¢  ;' OP' dx = ¢ Ox ~ dx. (3) 

This form drag is a vertical flux of eastward momentum which is proportional to the 
meridional eddy heat flux: poleward heat flux corresponds to downward flux of eastward 
momentum. Form drag is equivalent to the vertical component of Eliassen-Palm flux and 
it is only the vertical divergence of this flux which accelerates zonal currents (HosraNS, 
1983). 

THE MODEL 

The following prediction of the transport of the ACC is based on two assumptions. 
First, eddies are assumed to transmit eastward wind stress downward into the deep water 
where bottom form drag can balance this stress. Thus, the downward eddy flux of 
eastward momentum is taken equal to the wind stress throughout the water column; 

v ' T '  
P0f 0z = z~" (4) 

We can test this relation using ISOS current meter and central Drake Passage hydro- 
graphic data to compute eddy heat flux. Table 1 gives values of the left-hand-side of 
equation (4) to be compared to a value of about 2 dyn cm -2 for eastward wind stress over 
the ACC (NowLL~ and KLINCK, 1986). The eddy heat fluxes have the correct sign to 
transmit the wind-imparted zonal momentum downward. The magnitudes indicated are 
larger than that of the wind stress over the current, but this difference is not disturbing in 
light of the uncertainty in the values calculated. (See Table 1 and Fig. 5 for 
error estimates.) Other contributions toward this discrepancy could include spacial 
variation of eddy heat flux around the ACC and the role of meridional eddy 
fluxes of zonal momentum within the current. These topics are touched upon in the 
Discussion. 

The second assumption is that the eddy fluxes result primarily from a baroclinic 
instability process in which eddies grow by tapping available potential energy associated 
with the large-scale baroclinic field. For such a process, GREEN (1970) and STONE (1972, 
1974) suggested that the down-gradient eddy heat flux v'T' could be parameterized in 

Compare with Johnson & Bryden
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important is, however, that the role of the eddies in the
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split into mean and eddy terms, for example, yu 5 yu
1 y9u9 . The sum of the pressure differences is extended
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p(xwest, z). The vertical integral of this term yields the
bottom form stress.
Summarizing the aforementioned investigations, the

‘‘canonical’’ balance of zonal momentum is then char-
acterized as follows.
Ekman layer (0 $ z $ 2E): At depths directly in-

fluenced by the wind stress the dominant balance is
between the divergence of the frictional stress ^t & and
the Coriolis force f ^y & (due to ageostrophic motion)
or—as evident from the analysis above—the divergence
of the interlevel (or facial) form stress,
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By use of (14) at z 5 0 and integration over the Ekman
layer, we find
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2 f ^y & dz 5 2F (z 5 2E ) ¯ ^t & (20)E 0
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stating that the momentum input by wind stress at the
sea surface is balanced by the interlevel/facial form
stress at the bottom of the Ekman layer.
Intermediate layer (2E $ z $ 2H): Below the Ek-

man layer but above the minimum depth H of topog-
raphy along the path of consideration, the balance is
between the lateral Reynolds stress divergence and the
Coriolis force. All other terms are smaller by almost an
order of magnitude. The dominant terms—the Reynolds
stress divergence and the Coriolis force—are, however,
more than two orders of magnitude smaller than the
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follow. We discuss relations between line integrals along
C and area integrals over A(z) that are derived from the
balances of mass and heat, which we write in the form

]w
= ·u 1 5 0 (10)

]z
(z)]J

= ·J 1 1 wQ 5 0. (11)z]z

Here u is the horizontal velocity and w the vertical
velocity, u the perturbation of temperature about a hor-
izontally averaged state Q(z), and J 5 (J (x) , J (y)) and
J (z) are the horizontal and vertical flux components of
heat, given by the advective and turbulent (sub-eddy-
scale) parts (I, I (z)),

J 5 uu 1 I J (z) 5 w u 1 I (z) . (12)
Integration of the mass balance equation (10) over the
area A(z) yields after some mathematical substitutions

]
^y& 1 w dA 5 0. (13)E]z A(z)

The area integral of w, which appears here, may also
be evaluated using the thermohaline balance (11), which
leads to

dQ
(y)2Q w dA 5 ^J & 1 , (14)z E dzA(z)

where

(z)Q(z) 5 J dA (15)E
A(z)

is the vertical heat flux across A(z). Combining (13) and
(14) we find a relation between the meridional circu-
lation and heat transport in the form

] dQ
21 (y)^y& 5 (Q ) ^yu 1 I & 1 , (16)z 1 2[ ]]z dz

which is familiar in quasigeostrophic settings (e.g.,
Green 1970). Here, however, it is generalized for dia-
batic conditions. Notice that the integral of y in (13)
and (16) has a geostrophic term at depths where C is
blocked by topography, for unblocked contours it is
entirely ageostrophic. The essence of (16) is that, in the
presence of lateral boundaries, the Coriolis force can be
rewritten as a divergence of a vertical transport of mo-
mentum—an ‘‘interlevel form stress’’—that is set by the
lateral heat flux across C and the vertical heat flux south
of C.We also learn from this relation how the watermass
conversion rate Q enters the momentum balance. More
important is, however, that the role of the eddies in the
circumpolar belt is revealed: They are responsible for
transferring horizontal momentum in the water column
and heat laterally. These processes are interlinked;
downward momentum transport is equivalent to south-
ward heat transport.

6. The zonal momentum balance of the ACC
Quasigeostrophic models (McWilliams et al. 1978;

Wolff et al. 1991; Marshall et al. 1993; Olbers 1993)
and PE models (Killworth and Nanneh 1994; Stevens
and Ivchenko 1997) have determined the magnitudes of
the different contributions to the momentum balance in
the zonal average. We summarize the results of these
numerical investigations in the light of the above frame-
work. Taking a time mean, the complete zonally inte-
grated balance of zonal momentum becomes

]F ]t ]
2 f ^y & 5 5 2 uy 1 dp , (17)O7 8 7 8]z ]z ]y ridges

where we have introduced the level expression of the
interfacial form stress

dQ
21 (y)F 5 2 f (Q ) ^yu 1 I & 1 . (18)z 1 2dz

The advective fluxes contained in F and uy can be
split into mean and eddy terms, for example, yu 5 yu
1 y9u9 . The sum of the pressure differences is extended
over all ridges interrupting the path C; each ridge con-
tributes the difference between the values on the eastern
side and the western side, that is, dp 5 p(xeast, z) 2
p(xwest, z). The vertical integral of this term yields the
bottom form stress.
Summarizing the aforementioned investigations, the

‘‘canonical’’ balance of zonal momentum is then char-
acterized as follows.
Ekman layer (0 $ z $ 2E): At depths directly in-

fluenced by the wind stress the dominant balance is
between the divergence of the frictional stress ^t & and
the Coriolis force f ^y & (due to ageostrophic motion)
or—as evident from the analysis above—the divergence
of the interlevel (or facial) form stress,

]F ]t
2 f ^y & 5 ¯ . (19)7 8]z ]z

By use of (14) at z 5 0 and integration over the Ekman
layer, we find

0

2 f ^y & dz 5 2F (z 5 2E ) ¯ ^t & (20)E 0
2E

stating that the momentum input by wind stress at the
sea surface is balanced by the interlevel/facial form
stress at the bottom of the Ekman layer.
Intermediate layer (2E $ z $ 2H): Below the Ek-

man layer but above the minimum depth H of topog-
raphy along the path of consideration, the balance is
between the lateral Reynolds stress divergence and the
Coriolis force. All other terms are smaller by almost an
order of magnitude. The dominant terms—the Reynolds
stress divergence and the Coriolis force—are, however,
more than two orders of magnitude smaller than the
dominant terms in the Ekman layer. In other words: the
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Coriolis force acting on the fluid of the layer is small
(only the ageostrophic part enters the balance):

f ^y & 5 f ^y ag& ¯ 0, (21)

but it is the difference of the two big interlevel/facial
stresses at the top and bottom of the layer. In the frame-
work of interlevel/facial form stress the balance is thus
expressed by the approximate constancy of this stress.
The constant is determined by (20), and we find

F ¯ 2^t 0&. (22)

In this intermediate layer the stress associated with the
heat flux is thus transmitted almost unchanged, it has
the size of the wind stress but the process is neither
frictional nor due to a vertical Reynolds stress.
Deep layer (2H $ z $ 2Dmax): At depths where the

topography interrupts the circumpolar path the bottom
form stress comes into action. The balance occurs be-
tween this stress and the Coriolis force, which now has
a large geostrophic component—the two terms are of
the same magnitude as the terms in the Ekman layer.
Other terms are negligible. We thus have

]F
2 f ^y & 5 ¯ dp , (23)O

]z ridges

and integration over the deep layer yields
2H ]D

2 f ^y & dz 5 F (z 5 2H ) ¯ 2 p .E D7 8]x2Dmax

The balance thus occurs between the flux of momentum
by interlevel/facial form stress at the top of the blocked
layer and the pressure force on the topography, the bot-
tom form stress.
Total balance (0 $ z $ 2D): It is quite obvious from

the above considerations, but also confirmed in the nu-
merical experiments of the QG and FRAM models, that
the vertically integrated balance occurs predominantly
between the wind stress and the bottom form stress; that
is,

]D
^t & ¯ 2 p . (24)0 D7 8]x

For an eastward wind we must obviously have a south-
ward geostrophic flow (d p negative, f negative) in the
valleys between the blocking topography.
Primitive equation and QG models indicate that the

standing eddy contribution dominates the heat flux ^J (y)&.
If the intermediate layer outcrops at the surface, as in
the real circumpolar flow and the FRAM experiment,
the above canonical framework must be modified to
include the direct acceleration by the wind (see Kill-
worth and Nanneh 1994). For QG models the above
balances hold with Q [ 0 and (I, I (z)) [ 0; that is, only
the advective part of the interfacial form stress is pres-
ent.

7. The Sverdrup balance

Despite these solid results on the dynamics of the
ACC, WLR reconsider Sverdrup dynamics (following
Stommel 1957) to put the problem of momentum bal-
ance aside. The transport estimates along 558S (Baker
1982) or 548S (Godfrey 1989) obtained from the simple
flat-bottom Sverdrup balance are indeed intriguing, but
it should be clear that the Sverdrup balance does not
pose a dynamically closed problem: even if it could
possibly be used to estimate the transport of the ACC,
in the same way as the Sverdrup balance determines the
transport of the Gulf Stream by a simple mass conser-
vation argument, this approach can certainly not explain
the dynamical balance of the current. The use of another
quantity—the barotropic vorticity—and its balance can-
not circumvent the fullfilment of the momentum bal-
ance. It can indeed be shown (see next section) that a
properly posed vorticity problem must consider the bal-
ance (6).
The Sverdrup balance follows from the planetary vor-

ticity balance derived from (1). Vertical integration from
the surface to the bottom z 5 2D(x) results in

z50

bV 5 2 f w(2D) 1 curlt)
z52D

5 2 f w (2D) 1 curl(t 2 t ). (25)g 0 D

The term involving the geostrophic vertical velocity
wg(2D) 5 2(1/ f )J(pD, D) at the bottom generates
barotropic vorticity by stretching the water column
when it has to pass a topographic barrier. WLR propose
to neglect this term, they argue that ‘‘the vertical ve-
locity must be zero by regional averaging and that the
Sverdrup balance should hold in that regional sense.’’
As WLR also mention and as is evident from obser-
vations, ‘‘the current reaches the bottom . . . where it
experiences non-zero vertical velocities.’’ These are,
however, not just local features, as WLR assume, since
the current has to cross three major midocean ridges of
large zonal extent and has to pass the sill in Drake
Passge and numerous smaller barriers. Simple scaling
reveals the danger to miss just one (half ) of these fea-
tures in this regional average: for a ridge with slope of
1023 and a horizontal velocity of 0.01 m s21 at the bot-
tom we get fwg ; 1029 m s22 (a fairly conservative
estimate on the low side), whereas a meridional trans-
port of 100 Sv (Sv [ 106 m3 s21) implies bV ; 10210

m s22, an order of magnitude smaller. In correspon-
dence, scaling of the so-called bottom torque J(pD, D)
shows that it is not small at all when compared with
the input of vorticity by the wind stress. In fact, the
dominance of the stretching term can only be avoided
if the bottom current very closely follows the contours
of bathymetry.
Integrating (25) zonally and using as before the bal-

ance of mass (5) we find

Deep layer
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Why is the wind stress curl not enough?
The vorticity balance
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] ]D
t 2 t 1 p 5 0, (26)0 D D7 8]y ]x

which is the vorticity counterpart of the form drag force
balance [as mentioned above, the zonally integratedmo-
mentum balance (6) is the vorticity balance for the piece
of ocean south of the latitude given by the contour C].
So we are again stuck to the physics of form stress:
either we accept a large friction—at least in some area
as Drake Passage—or we have to face the importance
of form drag.
But is the flat-bottom Sverdrup balance—in the local

or the zonally accumulated form—applicable to the
ACC, or is the rough agreement of transport estimates
derived from it with observed values just a coincidence?
Wells and DeCuevas (1995) considered the budget of
vorticity over areas bounded by transport streamlines in
the FRAM experiment. There is no evidence of a local
flat-bottom Sverdrup balance anywhere in the ACC; in-
stead, a local balance occurs between the planetary ad-
vection (the b term), the bottom torque (the stretching
term), and the advective term of relative vorticity [so
this should be included in (25)]. Integrating in the
‘‘Sverdrupian range’’ outside Drake Passage (408W
eastward to 708W along 558S), bottom torque and ad-
vection of relative vorticity integrate to large but almost
compensating values, whereas the b term and the wind
stress curl get values that also compensate but are a
factor of 5 smaller. Should we regard this as a Sverdrup
regime? Integrating further through the passage the b
term must tend to zero and a balance between the bottom
torque and the wind stress curl emerges in the complete
zonal average (in accordance with the momentum bal-
ance). Of course, this is a model but it is the most
complete one we currently have.

8. The curl problem

Finally I comment on WLR’s suggestion that the
transport of the ACC may entirely be determined by the
curl of the wind stress. In the vorticity balance, indeed,
only the curl of the wind stress appears, so it is tempting
to speculate that the solution only depends on the curl
and not the wind stress itself. Though contradicting our
basic understanding of the behavior of stress-driven zon-
al flows, this fallacy is not easy to unravel (it is, of
course, trivial that a constant wind stress does generate
transport in a channel). As a matter of fact, there is an
important example where transports only depend on the
curl: the barotropic wind-driven circulation in a basin
(the baroclinic state of this flow depends on the stress).
In a periodic geometry, however, even the simplest
transport model contains an important difference in the
boundary conditions, which at first sight may be a purely
mathematical problem but has a deeper physical mean-
ing.
Consider the vorticity balance in the form

]c
2eπ c 1 b 5 J(p , D) 1 curlt , (27)D 0]x

where our concern is to determine the transport pattern
U 5 2cy, V 5 cx, which can be represented by a
streamfunction c because of mass conservation. We
have, for simplicity, represented the friction in (25) as
linear bottom friction of the barotropic flow: curl t D 5
eπ2c (the conclusions do not depend on this specific
choice). Integration of the resulting familiar barotropic
vorticity equation (with prescribed forcing by the wind
curl and the bottom torque) needs the specification of
boundary conditions, which naturally are the kinematic
conditions of zero normal flow. In a basin this is
achieved by c 5 const on the rim and, without restric-
tion, the constant can be set to zero. In multiply con-
nected domains—as the Southern Ocean, or in simpler
geometry, as a channel—zero normal flow requires c
to be constant on each boundary but the constants are
not equal; in fact, their difference is the unknown net
transport value. The reason for this difficulty can be
traced back to the elimination of a part of the baroclinic
pressure field when stepping to the vorticity framework;
here the information on the net transport has been lost.
A complete solution must of course include a balanced
pressure field satisfying the momentum equation cor-
responding to (27),

eU 1 f k 3 U 5 2h=pD 2 =E 1 t 0. (28)

Here U 5 (U, V), and E derives—together with the
baroclinic part in pD—from the vertical integral of the
baroclinic pressure. It turns out that E is the total baro-
clinic potential energy of the in situ density, referred to
the surface. This field does not impart any vorticity into
the system; however, (27) must be solved such that the
resulting U renders =E as the gradient of a scalar. In a
basin, given the transport U, this pressure can be con-
structed uniquely by contour integration, starting with
an arbitrary value at an arbitrary point on the boundary.
In channel geometry, however, the unique reconstruc-
tion of the pressure from the gradient is possible if, and
only if, integration around each continent vanishes:

ds · =ER
L

5 ds · [2eU 2 fk 3 U 2 h=p 1 t ]R D 0
L

5 ds · [t 2 t 1 p =h] 5 0. (29)R 0 D D
L

From (27) and Stokes theorem we notice that it is suf-
ficient to consider (29) for one arbitrary contour L for
each continent (there are thus as many constraints as
unknown streamfunction differences). Only if comple-
mented by these integral contraints, the vorticity prob-

Includes the pressure at depth
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northward Ekman transport.’’ Munk and Palmén do not
need any defense from my side but apparently WLP
take the momentum balance in the Ekman layer as the
balance of the whole system. This is certainly appro-
priate for an unbounded domain with a motionless abyss
but not for a bounded domain with a meridional cir-
culation and deep currents. There must indeed be an
agency that transmits the wind stress to greater depths
(see sections 4 and 5) where it can be taken up by bottom
friction or form stress (see section 6).
After all these arguments, the form drag—as a phys-

ical process—and the momentum balance [3]—as an
independent statement about conservation of momen-
tum in the system—seems to have disappeared from the
WLR scenario: ‘‘the proportionality’’ of the pressure
difference across the deep ridges and the wind stress
‘‘is simply required for meridional mass balance and
form drag talk is obscurantist in relation to the Circum-
polar Current: the physics that it really describes seems
to have nothing to do with that great current, but instead
with mass conservation in the quite independent merid-
ional circulation.’’ The Sverdrup balance model of
Stommel (1957) and the ‘‘Sverdrupian’’ estimate of the
ACC transport by Baker (1982) and others are recon-
sidered. But apart from the fact that such a scenario is
not dynamically closed, the ingredients of Sverdrup dy-
namics and more general, the barotropic vorticity dy-
namics, are not seen in its correct context: WLR try to
convince us that the zonal wind stress cannot have a
responsible role in the balance of the ACC since vor-
ticity is implemented to the flow via the curl: ‘‘adding
a constant to the field of zonal wind stress, for example,
would alter the meridional circulation, but, leaving the
curl unchanged, would not affect the transport of the
Circumpolar Current.’’ We discuss the Sverdrup balance
and the equivalence of the vorticity dynamics and the
momentum dynamics in sections 7 and 8.

2. The interrelation of the momentum and mass
balance and the meridional circulation
Starting from the simplified zonal momentum balance

(absorbing the density into the pressure and stress)
]p ]t

2 f y 5 2 1 (1)
]x ]z

the relations [2] to [5] in WLR are obtained by vertical
and zonal integration. Repeating here these equations,
we have

0

2 f y dz 5 ^t & (2)E 07 8
2E

2E

2 f y dz 5 0 (3)E7 8
2H

2H ]D
2 f y dz 5 p 2 t , (4)E D D7 8 7 8]x2D(x)

where pD(x) 5 p(x, z 5 2D(x)) is the bottom pressure.
The zonal integral is indicated by angle brackets,

^ · · · & :5 dx · · · ,R
C

and we are considering, as WLR, an Ekman layer 0 .
z . 2E, an intermediate layer 2E . z . 2H above
the depth z 5 2H of the highest ridge, and the bottom
layer between z 5 2H and the bottom at z 5 2D(x).
Furthermore, t 0 is the zonal wind stress, and t D is the
frictional stress at the bottom. As WLR, we assume that
the wind stress is absorbed in the Ekman layer, meaning
that t [ 0 beneath z5 2E, and that t Dmay be neglected
[as other small terms have been neglected in (1)]. We
include t D for later reference.
WLR interpret (2)–(4) basically in the framework of

mass balance, of course ‘‘(2) specifies the meridional
Ekman flux, (4) identifies the net meridional geostrophic
flow that can exist below the ridge crests.’’ The balance
of these mass fluxes, however, is not derived from these
equations nor from the total balance of momentum [Eq.
(6) below] but from the balance of the total mass south
of the path C,

0

y dz 5 0, (5)E7 8
2D(x)

and the vanishing of the geostrophic transport and the
neglection of any ageostrophic terms in the intermediate
layer. Using (5) the integral over the entire depth yields
the total balance of momentum [the sum of (2) to (4)]
in the form

]D
t 2 t 1 p 5 0, (6)0 D D7 8]x

which of course is completely independent of any spe-
cific form of mass exchange in the vertical.
Hence, Eq. (6) has its own right in the dynamics of

the system. After all, it is one of the most fundamental
constraints of the system, it is the balance of momentum
in the whole water column: in the absence of body forces
the fluxes of momentum into the system must balance.2
WLR complain that Munk and Palmén have ignored
‘‘the Coriolis acceleration associated with the northward
Ekman transport’’ in their seminal discussion of the mo-
mentum balance. The Coriolis acceleration only appears
in the balance of the individual (nonmaterial) layers but
has—as a consequence of mass conservation—no effect
on the mass of the total water column, that is, there is
no net Coriolis acceleration or force on the whole sys-

2 It should be mentioned that the balance as presented in the form
(6) is actually the budget of vorticity of the volume south of the
latitude considered. To obtain a budget of momentum we must in-
tegrate (6) over a finite latitudinal strip.

The momentum equation is a boundary condition on the vorticity equation
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] ]D
t 2 t 1 p 5 0, (26)0 D D7 8]y ]x

which is the vorticity counterpart of the form drag force
balance [as mentioned above, the zonally integratedmo-
mentum balance (6) is the vorticity balance for the piece
of ocean south of the latitude given by the contour C].
So we are again stuck to the physics of form stress:
either we accept a large friction—at least in some area
as Drake Passage—or we have to face the importance
of form drag.
But is the flat-bottom Sverdrup balance—in the local

or the zonally accumulated form—applicable to the
ACC, or is the rough agreement of transport estimates
derived from it with observed values just a coincidence?
Wells and DeCuevas (1995) considered the budget of
vorticity over areas bounded by transport streamlines in
the FRAM experiment. There is no evidence of a local
flat-bottom Sverdrup balance anywhere in the ACC; in-
stead, a local balance occurs between the planetary ad-
vection (the b term), the bottom torque (the stretching
term), and the advective term of relative vorticity [so
this should be included in (25)]. Integrating in the
‘‘Sverdrupian range’’ outside Drake Passage (408W
eastward to 708W along 558S), bottom torque and ad-
vection of relative vorticity integrate to large but almost
compensating values, whereas the b term and the wind
stress curl get values that also compensate but are a
factor of 5 smaller. Should we regard this as a Sverdrup
regime? Integrating further through the passage the b
term must tend to zero and a balance between the bottom
torque and the wind stress curl emerges in the complete
zonal average (in accordance with the momentum bal-
ance). Of course, this is a model but it is the most
complete one we currently have.

8. The curl problem

Finally I comment on WLR’s suggestion that the
transport of the ACC may entirely be determined by the
curl of the wind stress. In the vorticity balance, indeed,
only the curl of the wind stress appears, so it is tempting
to speculate that the solution only depends on the curl
and not the wind stress itself. Though contradicting our
basic understanding of the behavior of stress-driven zon-
al flows, this fallacy is not easy to unravel (it is, of
course, trivial that a constant wind stress does generate
transport in a channel). As a matter of fact, there is an
important example where transports only depend on the
curl: the barotropic wind-driven circulation in a basin
(the baroclinic state of this flow depends on the stress).
In a periodic geometry, however, even the simplest
transport model contains an important difference in the
boundary conditions, which at first sight may be a purely
mathematical problem but has a deeper physical mean-
ing.
Consider the vorticity balance in the form

]c
2eπ c 1 b 5 J(p , D) 1 curlt , (27)D 0]x

where our concern is to determine the transport pattern
U 5 2cy, V 5 cx, which can be represented by a
streamfunction c because of mass conservation. We
have, for simplicity, represented the friction in (25) as
linear bottom friction of the barotropic flow: curl t D 5
eπ2c (the conclusions do not depend on this specific
choice). Integration of the resulting familiar barotropic
vorticity equation (with prescribed forcing by the wind
curl and the bottom torque) needs the specification of
boundary conditions, which naturally are the kinematic
conditions of zero normal flow. In a basin this is
achieved by c 5 const on the rim and, without restric-
tion, the constant can be set to zero. In multiply con-
nected domains—as the Southern Ocean, or in simpler
geometry, as a channel—zero normal flow requires c
to be constant on each boundary but the constants are
not equal; in fact, their difference is the unknown net
transport value. The reason for this difficulty can be
traced back to the elimination of a part of the baroclinic
pressure field when stepping to the vorticity framework;
here the information on the net transport has been lost.
A complete solution must of course include a balanced
pressure field satisfying the momentum equation cor-
responding to (27),

eU 1 f k 3 U 5 2h=pD 2 =E 1 t 0. (28)

Here U 5 (U, V), and E derives—together with the
baroclinic part in pD—from the vertical integral of the
baroclinic pressure. It turns out that E is the total baro-
clinic potential energy of the in situ density, referred to
the surface. This field does not impart any vorticity into
the system; however, (27) must be solved such that the
resulting U renders =E as the gradient of a scalar. In a
basin, given the transport U, this pressure can be con-
structed uniquely by contour integration, starting with
an arbitrary value at an arbitrary point on the boundary.
In channel geometry, however, the unique reconstruc-
tion of the pressure from the gradient is possible if, and
only if, integration around each continent vanishes:

ds · =ER
L

5 ds · [2eU 2 fk 3 U 2 h=p 1 t ]R D 0
L

5 ds · [t 2 t 1 p =h] 5 0. (29)R 0 D D
L

From (27) and Stokes theorem we notice that it is suf-
ficient to consider (29) for one arbitrary contour L for
each continent (there are thus as many constraints as
unknown streamfunction differences). Only if comple-
mented by these integral contraints, the vorticity prob-

          depends on the windstress, not the wind stress curl:E
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] ]D
t 2 t 1 p 5 0, (26)0 D D7 8]y ]x
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mentum balance (6) is the vorticity balance for the piece
of ocean south of the latitude given by the contour C].
So we are again stuck to the physics of form stress:
either we accept a large friction—at least in some area
as Drake Passage—or we have to face the importance
of form drag.
But is the flat-bottom Sverdrup balance—in the local

or the zonally accumulated form—applicable to the
ACC, or is the rough agreement of transport estimates
derived from it with observed values just a coincidence?
Wells and DeCuevas (1995) considered the budget of
vorticity over areas bounded by transport streamlines in
the FRAM experiment. There is no evidence of a local
flat-bottom Sverdrup balance anywhere in the ACC; in-
stead, a local balance occurs between the planetary ad-
vection (the b term), the bottom torque (the stretching
term), and the advective term of relative vorticity [so
this should be included in (25)]. Integrating in the
‘‘Sverdrupian range’’ outside Drake Passage (408W
eastward to 708W along 558S), bottom torque and ad-
vection of relative vorticity integrate to large but almost
compensating values, whereas the b term and the wind
stress curl get values that also compensate but are a
factor of 5 smaller. Should we regard this as a Sverdrup
regime? Integrating further through the passage the b
term must tend to zero and a balance between the bottom
torque and the wind stress curl emerges in the complete
zonal average (in accordance with the momentum bal-
ance). Of course, this is a model but it is the most
complete one we currently have.

8. The curl problem

Finally I comment on WLR’s suggestion that the
transport of the ACC may entirely be determined by the
curl of the wind stress. In the vorticity balance, indeed,
only the curl of the wind stress appears, so it is tempting
to speculate that the solution only depends on the curl
and not the wind stress itself. Though contradicting our
basic understanding of the behavior of stress-driven zon-
al flows, this fallacy is not easy to unravel (it is, of
course, trivial that a constant wind stress does generate
transport in a channel). As a matter of fact, there is an
important example where transports only depend on the
curl: the barotropic wind-driven circulation in a basin
(the baroclinic state of this flow depends on the stress).
In a periodic geometry, however, even the simplest
transport model contains an important difference in the
boundary conditions, which at first sight may be a purely
mathematical problem but has a deeper physical mean-
ing.
Consider the vorticity balance in the form
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2eπ c 1 b 5 J(p , D) 1 curlt , (27)D 0]x

where our concern is to determine the transport pattern
U 5 2cy, V 5 cx, which can be represented by a
streamfunction c because of mass conservation. We
have, for simplicity, represented the friction in (25) as
linear bottom friction of the barotropic flow: curl t D 5
eπ2c (the conclusions do not depend on this specific
choice). Integration of the resulting familiar barotropic
vorticity equation (with prescribed forcing by the wind
curl and the bottom torque) needs the specification of
boundary conditions, which naturally are the kinematic
conditions of zero normal flow. In a basin this is
achieved by c 5 const on the rim and, without restric-
tion, the constant can be set to zero. In multiply con-
nected domains—as the Southern Ocean, or in simpler
geometry, as a channel—zero normal flow requires c
to be constant on each boundary but the constants are
not equal; in fact, their difference is the unknown net
transport value. The reason for this difficulty can be
traced back to the elimination of a part of the baroclinic
pressure field when stepping to the vorticity framework;
here the information on the net transport has been lost.
A complete solution must of course include a balanced
pressure field satisfying the momentum equation cor-
responding to (27),

eU 1 f k 3 U 5 2h=pD 2 =E 1 t 0. (28)

Here U 5 (U, V), and E derives—together with the
baroclinic part in pD—from the vertical integral of the
baroclinic pressure. It turns out that E is the total baro-
clinic potential energy of the in situ density, referred to
the surface. This field does not impart any vorticity into
the system; however, (27) must be solved such that the
resulting U renders =E as the gradient of a scalar. In a
basin, given the transport U, this pressure can be con-
structed uniquely by contour integration, starting with
an arbitrary value at an arbitrary point on the boundary.
In channel geometry, however, the unique reconstruc-
tion of the pressure from the gradient is possible if, and
only if, integration around each continent vanishes:

ds · =ER
L

5 ds · [2eU 2 fk 3 U 2 h=p 1 t ]R D 0
L

5 ds · [t 2 t 1 p =h] 5 0. (29)R 0 D D
L

From (27) and Stokes theorem we notice that it is suf-
ficient to consider (29) for one arbitrary contour L for
each continent (there are thus as many constraints as
unknown streamfunction differences). Only if comple-
mented by these integral contraints, the vorticity prob-
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Conclusions

• You cannot predict the transport of the ACC based on Sverdrup 
balance alone 

• The momentum imparted to the ocean by the wind is transferred 
downwards by interfacial form stress and removed from the water 
column by topographic form stress. 

• WLR never mention interfacial stress, and to some extent this s 
their downfall.
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follow. We discuss relations between line integrals along
C and area integrals over A(z) that are derived from the
balances of mass and heat, which we write in the form

]w
= ·u 1 5 0 (10)

]z
(z)]J

= ·J 1 1 wQ 5 0. (11)z]z

Here u is the horizontal velocity and w the vertical
velocity, u the perturbation of temperature about a hor-
izontally averaged state Q(z), and J 5 (J (x) , J (y)) and
J (z) are the horizontal and vertical flux components of
heat, given by the advective and turbulent (sub-eddy-
scale) parts (I, I (z)),

J 5 uu 1 I J (z) 5 w u 1 I (z) . (12)
Integration of the mass balance equation (10) over the
area A(z) yields after some mathematical substitutions

]
^y& 1 w dA 5 0. (13)E]z A(z)

The area integral of w, which appears here, may also
be evaluated using the thermohaline balance (11), which
leads to

dQ
(y)2Q w dA 5 ^J & 1 , (14)z E dzA(z)

where

(z)Q(z) 5 J dA (15)E
A(z)

is the vertical heat flux across A(z). Combining (13) and
(14) we find a relation between the meridional circu-
lation and heat transport in the form

] dQ
21 (y)^y& 5 (Q ) ^yu 1 I & 1 , (16)z 1 2[ ]]z dz

which is familiar in quasigeostrophic settings (e.g.,
Green 1970). Here, however, it is generalized for dia-
batic conditions. Notice that the integral of y in (13)
and (16) has a geostrophic term at depths where C is
blocked by topography, for unblocked contours it is
entirely ageostrophic. The essence of (16) is that, in the
presence of lateral boundaries, the Coriolis force can be
rewritten as a divergence of a vertical transport of mo-
mentum—an ‘‘interlevel form stress’’—that is set by the
lateral heat flux across C and the vertical heat flux south
of C.We also learn from this relation how the watermass
conversion rate Q enters the momentum balance. More
important is, however, that the role of the eddies in the
circumpolar belt is revealed: They are responsible for
transferring horizontal momentum in the water column
and heat laterally. These processes are interlinked;
downward momentum transport is equivalent to south-
ward heat transport.

6. The zonal momentum balance of the ACC
Quasigeostrophic models (McWilliams et al. 1978;

Wolff et al. 1991; Marshall et al. 1993; Olbers 1993)
and PE models (Killworth and Nanneh 1994; Stevens
and Ivchenko 1997) have determined the magnitudes of
the different contributions to the momentum balance in
the zonal average. We summarize the results of these
numerical investigations in the light of the above frame-
work. Taking a time mean, the complete zonally inte-
grated balance of zonal momentum becomes

]F ]t ]
2 f ^y & 5 5 2 uy 1 dp , (17)O7 8 7 8]z ]z ]y ridges

where we have introduced the level expression of the
interfacial form stress

dQ
21 (y)F 5 2 f (Q ) ^yu 1 I & 1 . (18)z 1 2dz

The advective fluxes contained in F and uy can be
split into mean and eddy terms, for example, yu 5 yu
1 y9u9 . The sum of the pressure differences is extended
over all ridges interrupting the path C; each ridge con-
tributes the difference between the values on the eastern
side and the western side, that is, dp 5 p(xeast, z) 2
p(xwest, z). The vertical integral of this term yields the
bottom form stress.
Summarizing the aforementioned investigations, the

‘‘canonical’’ balance of zonal momentum is then char-
acterized as follows.
Ekman layer (0 $ z $ 2E): At depths directly in-

fluenced by the wind stress the dominant balance is
between the divergence of the frictional stress ^t & and
the Coriolis force f ^y & (due to ageostrophic motion)
or—as evident from the analysis above—the divergence
of the interlevel (or facial) form stress,

]F ]t
2 f ^y & 5 ¯ . (19)7 8]z ]z

By use of (14) at z 5 0 and integration over the Ekman
layer, we find

0

2 f ^y & dz 5 2F (z 5 2E ) ¯ ^t & (20)E 0
2E

stating that the momentum input by wind stress at the
sea surface is balanced by the interlevel/facial form
stress at the bottom of the Ekman layer.
Intermediate layer (2E $ z $ 2H): Below the Ek-

man layer but above the minimum depth H of topog-
raphy along the path of consideration, the balance is
between the lateral Reynolds stress divergence and the
Coriolis force. All other terms are smaller by almost an
order of magnitude. The dominant terms—the Reynolds
stress divergence and the Coriolis force—are, however,
more than two orders of magnitude smaller than the
dominant terms in the Ekman layer. In other words: the


