Topographic Enhancement of Eddy Efficiency in Baroclinic Equilibration

JPO, 44 (8), 2107-2126, 2014

by

Paola Cessi

as told by Navid

CASPO theory seminar, 28 May 2016

what's the problem?

what sets the thermocline depth *h*? how topography affects it?

topography makes thermocline shallower

flat bottom

ridge

isosurfaces of θ colors from 0 °C to 8 °C white lines: time-mean θ

meridional heat transport sets the thermocline depth

quasi-adiabatic
(no diapycnal mixing)
$$0 \approx \mathcal{H}(y) = \rho_0 c_p L_x \int_{-H}^{0} \langle v(\theta - \theta_0) \rangle \, \mathrm{d}z$$
$$= \mathcal{H}_{\mathrm{mean}} + \mathcal{H}_{\mathrm{eddy}}$$
$$\approx -c_p L_x \frac{\tau}{f_0} \langle \theta \rangle + \rho_0 c_p L_x \int_{-H}^{0} \langle v_g \theta \rangle \, \mathrm{d}z$$
$$= -c_p L_x \frac{\tau}{f_0} \Delta \theta y / L_y + \rho_0 c_p L_x h \underbrace{v_g \theta(y)}_{\text{efficiency}}$$
therefore near $y = L_y$ (title of paper)

$$h = \frac{\tau \,\Delta\theta}{f_0 \rho_0 \,\widetilde{v_g \theta}}$$

the goal is to understand how topography affects the *efficiency*

model setup

MITgcm, hydrostatic Boussinesq eqs. on a β -plane

model spinup for $\tau_0=0.2$ N/m²

fields decomposition

$$A = \langle A \rangle(y,z) + A^{\dagger}(x,y,z) + A'(x,y,z,t)$$

time mean of the zonal mean time mean of the deviation from the zonal mean

the rest...

$$\int A^{\dagger} \, \mathrm{d}x = 0 \qquad \qquad \int A' \, \mathrm{d}t = 0$$

averages over latitude circles Vs over streamlines

topography makes the thermocline shallower

flat Vs ridge results I

Fig. 6

(Munk & Palmen)

flat Vs ridge results II

when there is topography as wind increases the heat flux is mainly be done by the SE rather than the TE

flat Vs ridge results III

a simplified 2-layer QG model

PV at each layer

 $q_1 = \nabla^2 \psi_1 + F_1(\psi_2 - \psi_1)$

$$q_2 = \nabla^2 \psi_2 + F_2(\psi_1 - \psi_2) + \frac{f_0}{H_2} h_b$$

decompose the flow fields into:

$$\begin{split} \psi_j(x,y,t) &= \langle \psi_j \rangle(y) + \psi_j^{\dagger}(x,y) + \psi'(x,y,t) & j = 1,2 \\ & \text{MEAN} & \begin{array}{c} \text{Standing Wave} & \text{Transient} \\ & \text{(SE)} & \text{(TE)} \end{array} \end{split}$$

a simplified 2-layer QG model

we get then an equation for the TE

$$\begin{aligned} (\partial_t + U_1 \partial_x)(q_1^{\dagger} + q_1') + \mathsf{J}(\psi_1^{\dagger} + \psi_1', q_1^{\dagger} + q_1') + \partial_y \langle q_1 \rangle \partial_x(\psi_1^{\dagger} + \psi_1') &= -\frac{\partial_y \tau}{\rho_0 H_1} \\ (\partial_t + U_2 \partial_x)(q_2^{\dagger} + q_2') + \mathsf{J}(\psi_2^{\dagger} + \psi_2', q_2^{\dagger} + q_2') + \partial_y \langle q_2 \rangle \partial_x(\psi_2^{\dagger} + \psi_2') &= -\frac{r}{H_2} \left[\nabla^2 (\psi_2^{\dagger} + \psi_2') - \partial_y U_2 \right] \end{aligned}$$

which if we time average gives us the equations for the standing wave component

$$U_1 \partial_x q_1^{\dagger} + \partial_y \langle q_1 \rangle \partial_x \psi_1^{\dagger} + \mathsf{J}(\psi_1^{\dagger}, q_1^{\dagger}) + \overline{\mathsf{J}(\psi_1', q_1')} \\ - \partial_y \langle (\partial_x \psi_1^{\dagger}) q_1^{\dagger} \rangle - \partial_y \langle (\partial_x \psi_1') q_1' \rangle = 0$$

where did the wind stress go?

$$U_{2}\partial_{x}q_{2}^{\dagger} + \partial_{y}\langle q_{2}\rangle\partial_{x}\psi_{2}^{\dagger} + \mathsf{J}(\psi_{2}^{\dagger}, q_{2}^{\dagger}) + \overline{\mathsf{J}(\psi_{2}', q_{2}')} \\ - \partial_{y}\langle (\partial_{x}\psi_{2}^{\dagger})q_{2}^{\dagger}\rangle - \partial_{y}\langle (\partial_{x}\psi_{2}')q_{2}'\rangle = -\frac{r}{H_{2}}\nabla^{2}\psi_{2}^{\dagger}$$

a simplified 2-layer QG model

$$\partial_x \psi^{\dagger} \sim U \quad , \quad \partial_y \psi^{\dagger} \ll U \implies \text{neglect } \partial_y$$

 σ

neglect terms quadratic in ψ^\dagger

 h_b

the standing wave components

$$U_1 \partial_x^2 \psi_1^{\dagger} + U_1 F_1 \psi_2^{\dagger} + \beta \psi_1^{\dagger} - F_1 U_2 \psi_1^{\dagger} = K \partial_x q_1^{\dagger}$$

$$U_2 \partial_x^2 \psi_2^{\dagger} + U_2 F_2 \psi_1^{\dagger} + \beta \psi_2^{\dagger} - F_2 U_1 \psi_2^{\dagger} = K \partial_x q_2^{\dagger} - \frac{r}{H_2} \partial_x \psi_2^{\dagger} - \frac{f_0}{H_2} U_2 h_b$$

(ridge>deformation)

$$\sigma \gg \frac{1}{\sqrt{F_2}}$$

 $\frac{K}{\sigma U_2} \ll 1$

(K is small or TE effect negligible)

(Rhines scale = ridge)
$$\sqrt{\frac{U_1}{\beta}} \approx \sigma$$

using this approximation one can proceed to calculate ...

 $U_2\psi_1^{\dagger} \approx U_1\psi_2^{\dagger}$

... the heat transport in the QG model

$$\mathcal{H}_{\text{mean}} + \mathcal{H}_{\text{SE}} + \mathcal{H}_{\text{TE}}$$

$$\langle \psi_1^{\dagger} \partial_x \psi_2^{\dagger} \rangle + \langle \psi_1' \partial_x \psi_2' \rangle = K \left(U_1 - U_2 \right) \left(1 + \frac{\langle (\partial_x \psi_2^{\dagger})^2 \rangle}{U_2^2} \right)$$
eddy heat transport is augmented by the presence of

the standing wave ψ_2 due to the topography

... and the thermocline slope in the QG model

$$s = f_0 \frac{U_1 - U_2}{g'} = \frac{\tau_0 / (\rho_0 K f_0)}{1 + \frac{\langle (\partial_x \psi_2^{\dagger})^2 \rangle}{U_2^2}}$$

the planetary scale slope isopycnal is reduced due to the standing wave ψ_2

the QG model captures the qualitative behavior

Fig. 9

local cross-stream heat fluxes

how fast the eddies are carried by the flow?

eddies propagate much faster without topography

authors argue that eddy production is done through *convective instability* for the flat case and through *absolute instability* for the ridge case

convective Vs absolute instability

see https://vimeo.com/55486114

local cross-stream heat fluxes

EKE is produced mainly downstream the ridge

discussion

- We never clearly see the SE in the full model (only its signature in the Hovmöller diagram)...
- \blacktriangleright Why $\mathcal{H}_{\rm mean} \approx \mathcal{H}_{\rm Ekman}$?
- "The inability of existing parameterizations to account for local instability and nonlocal eddy life cycles constitutes the main obstacle toward a more complete theory of baroclinic equilibration in the presence of large topography and the more general problem of inhomogenous geostrophic turbulence."