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what’s the problem? 

1981). By choosing this constant to be the temperature
of the abyss (08C), we can allow ourselves to ignore the
contribution to the heat transport by the deep mean
flows, such as the bottom Ekman flow, where u ’ u0.
In the adiabatic limit, and with no-flux conditions on

the solid walls, H must tend to zero with the diffusivity.
We can use this constraint on the heat transport to de-
rive a scaling for the thermocline depth h. We divide the
heat transport into a part due to the zonal- and time-
averaged meridional velocity Hmean and a part due to
the time-dependent motions Heddy. With our choice of
u0, Hmean is simply the heat transported by the upper
Ekman layer:

Hmean [ r0cpLx

ð0

2H
hyihui dz’2cpLx

t

f
Du

y

Ly

, (2)

that is, an equatorward heat transport determined solely
by externally specified parameters. The eddy heat
transport is

Heddy 5 r0cpLx

ð 0

2H
hygui dz , (3)

where we have denoted with yg [ y 2 hyi the velocity
that departs from the zonal and time average. The sub-
script g indicates that this component of the flow is
mostly due to geostrophic motions. In a flat-bottomed
case, with no mean zonal pressure gradients or standing
eddies, Heddy can be due only to transient eddy fluctu-
ations. Furthermore, we expect hygui to be almost zero
below the thermocline, where there is little background
temperature gradient for the eddies to stir.We therefore
define a characteristic value of the eddy heat transport
over the thermocline of depth h as

ygue (y)[ h21
ð 0

2h
hygui dz . (4)

The quantity ygue is a key parameter that measures the
efficiency of the eddies at transporting heat. Using this
definition, we have

Heddy ; r0cpLxhygue . (5)

The approximate vanishing of the total heat transport,
that is,H5Hmean 1Heddy ’ 0, leads to a scaling of the
thermocline depth near the northern boundary given by

h;
t0Du

r0jf jygue
. (6)

The scaling for h is not completely satisfactory since it
depends on the unknown eddy heat transport efficiency:h
is determined by the competition between the re-
stratifying effect of the eddies and the overturning due to
the Ekman cell. Another way to interpret (6) is to con-
sider hygui to be specified by the closure theory of Gent
and McWilliams (1990) as hygui 5 2Khuiy, where the
eddy flux is directed along isotherms and is proportional
to the meridional buoyancy gradient, ensuring that the
eddies act adiabatically to reduceAPE. The termK is the
Gent–McWilliams eddy transfer coefficient. With such
a closure, the slope of the thermocline, s[ 2huiy/huiz, is
easily obtained (Karsten et al. 2002; Henning and Vallis
2005; Nikurashin and Vallis 2012) and is given by

s5
t

r0 fK
. (7)

From the slope s, the depth of each isotherm can be
calculated given its surface value, and then h is defined
as the depth of the lowest isotherm on the northern
boundary of the channel (Marshall and Radko 2003).
While the Gent–McWilliams closure is convenient for
models, (6) is more general. Here the goal is to un-
derstand how topographically induced asymmetry af-
fects the eddy transport efficiency ygue .
When topography is present, the meridional heat flux

across latitude circles (and the corresponding downward
flux of momentum) is dominated by standing eddy com-
ponents, rather than transient eddies (e.g., Treguier and
McWilliams 1990; Wolff et al. 1991; Volkov et al. 2010),
suggesting a qualitatively different balance.With the zonal
and time average denoted by brackets, and the time av-
erage denoted by an overbar, the anomalies are defined as

A05A2A

Ay5A2 hAi , (8)

FIG. 2. Schematic depicting the idealized ACC-like problem in
question. The black arrows indicate the westerly surface wind
stress. The colored surfaces are isotherms, whose position at the
surface is fixed by the surface thermal boundary condition.
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flat bottom ridge 

topography makes thermocline shallower 

shallower, and the heat transport is confined to this
shallower layer. As a practical matter, we define the
thermocline depth h as the first moment of the hui profile
via the expression

h5 2

ð 0

2H
zhui dz

ð 0

2H
hui dz

, (16)

evaluated at the northern boundary, where the ther-
mocline is deepest. This is a standard definition of the
thermocline depth (Gnanadesikan 1999; Gnanadesikan
et al. 2007; Munday et al. 2013). According to (16), the
thermocline depth at the northern boundary is ap-
proximately 1200m in the flat-bottom experiment and
1000m in the ridge experiment. This means that ygue ,
the eddy efficiency, is higher with topography present.
Accordingly, the thermocline slope is shallower and
there is much less APE with topography present: 1.2 PJ
compared with 3.0 PJ in the flat-bottomed case. [APE
was computed using the definition of Winters et al.
(1995).]
The difference in efficiency increases as the wind

stress increases. Figure 6 (top-left panel) shows the
thermocline depth as a function of wind stress, for both
the flat and ridge experiments, for the following values
of t0: 0.0125, 0.025, 0.05, 0.1, 0.2, 0.4, and 0.8Nm22. This
range constitutes six successive doublings of the wind
stress. It is clear that the dependence of h on t0 is sig-
nificantly weaker in the ridge case. The difference is
even more pronounced when comparing the APE
(bottom-left panel); for the strongest winds, the APE is
over 4 times greater without topography. This is because
as the winds increase, the geostrophic flow, and the

associated temperature transport ygue , become more and
more efficient at transporting heat poleward, leading to
a weak dependence of h on t0. In all cases, ygue increases
more slowly than linearly with t0, leading to an increase,
albeit weak, of h with t0. (We note that even with the
weakest wind stress, h is much deeper than the mixed
layer and is therefore not dependent on the KPP
scheme.)
We also ran the ridge experiment with a domain of

increased zonal extent (4000 km rather than 2000 km)
for the reference value of t0 5 0.2Nm22. One motiva-
tion for this experiment was to evaluate whether the
relatively short domain was truncating the storm-track
region and influencing the equilibration. The results are
shown with the star symbol in Fig. 6; h, ygue , andAPE (an
extensive quantity, therefore rescaled by a factor of 2)
are nearly identical for the double-length run, confirm-
ing that our conclusions are not strongly dependent on
the zonal extent of the domain. We shall consider this
double-length simulation further in section 6, when we
discuss the nature of baroclinic instability in the pres-
ence of topography.
It is informative to also consider the heat transport

decomposition in terms of zonal averages, which dis-
tinguishes between the standing and transient eddy
components, defined in (10). Figure 7 shows that, with
topography, as the wind forcing increases, it is primarily
HSE that compensates for the increasing value ofHmean.
Moving from the weakest to strongest winds, the ratio
HTE/HSE decreases, with HTE going from completely
dominant to completely negligible.

c. Zonal volume transport

In addition to the stratification, h also contributes to
the determination of the zonal transport T, defined as

FIG. 4. Colors show an instantaneous snapshot of the u field from each reference experiment [(left) flat and (right)
ridge]. The color scale ranges from 08 to 88C. The field has been clipped at y5 1000 km, the meridional midpoint, to
reveal a zonal cross section. The white contours are the time-mean isotherms u, illustrating the statistical zonal
symmetry of the flat-bottomed case and the standing wave in the ridge.
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1981). By choosing this constant to be the temperature
of the abyss (08C), we can allow ourselves to ignore the
contribution to the heat transport by the deep mean
flows, such as the bottom Ekman flow, where u ’ u0.
In the adiabatic limit, and with no-flux conditions on

the solid walls, H must tend to zero with the diffusivity.
We can use this constraint on the heat transport to de-
rive a scaling for the thermocline depth h. We divide the
heat transport into a part due to the zonal- and time-
averaged meridional velocity Hmean and a part due to
the time-dependent motions Heddy. With our choice of
u0, Hmean is simply the heat transported by the upper
Ekman layer:

Hmean [ r0cpLx
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t
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, (2)

that is, an equatorward heat transport determined solely
by externally specified parameters. The eddy heat
transport is

Heddy 5 r0cpLx

ð 0

2H
hygui dz , (3)

where we have denoted with yg [ y 2 hyi the velocity
that departs from the zonal and time average. The sub-
script g indicates that this component of the flow is
mostly due to geostrophic motions. In a flat-bottomed
case, with no mean zonal pressure gradients or standing
eddies, Heddy can be due only to transient eddy fluctu-
ations. Furthermore, we expect hygui to be almost zero
below the thermocline, where there is little background
temperature gradient for the eddies to stir.We therefore
define a characteristic value of the eddy heat transport
over the thermocline of depth h as

ygue (y)[ h21
ð 0

2h
hygui dz . (4)

The quantity ygue is a key parameter that measures the
efficiency of the eddies at transporting heat. Using this
definition, we have

Heddy ; r0cpLxhygue . (5)

The approximate vanishing of the total heat transport,
that is,H5Hmean 1Heddy ’ 0, leads to a scaling of the
thermocline depth near the northern boundary given by

h;
t0Du

r0jf jygue
. (6)

The scaling for h is not completely satisfactory since it
depends on the unknown eddy heat transport efficiency:h
is determined by the competition between the re-
stratifying effect of the eddies and the overturning due to
the Ekman cell. Another way to interpret (6) is to con-
sider hygui to be specified by the closure theory of Gent
and McWilliams (1990) as hygui 5 2Khuiy, where the
eddy flux is directed along isotherms and is proportional
to the meridional buoyancy gradient, ensuring that the
eddies act adiabatically to reduceAPE. The termK is the
Gent–McWilliams eddy transfer coefficient. With such
a closure, the slope of the thermocline, s[ 2huiy/huiz, is
easily obtained (Karsten et al. 2002; Henning and Vallis
2005; Nikurashin and Vallis 2012) and is given by

s5
t

r0 fK
. (7)

From the slope s, the depth of each isotherm can be
calculated given its surface value, and then h is defined
as the depth of the lowest isotherm on the northern
boundary of the channel (Marshall and Radko 2003).
While the Gent–McWilliams closure is convenient for
models, (6) is more general. Here the goal is to un-
derstand how topographically induced asymmetry af-
fects the eddy transport efficiency ygue .
When topography is present, the meridional heat flux

across latitude circles (and the corresponding downward
flux of momentum) is dominated by standing eddy com-
ponents, rather than transient eddies (e.g., Treguier and
McWilliams 1990; Wolff et al. 1991; Volkov et al. 2010),
suggesting a qualitatively different balance.With the zonal
and time average denoted by brackets, and the time av-
erage denoted by an overbar, the anomalies are defined as

A05A2A

Ay5A2 hAi , (8)

FIG. 2. Schematic depicting the idealized ACC-like problem in
question. The black arrows indicate the westerly surface wind
stress. The colored surfaces are isotherms, whose position at the
surface is fixed by the surface thermal boundary condition.

2110 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 44

model setup 

South Pole

thermocline 
height 

wind stress 

=2000 km 

=2000 km 

3 km 

⌧ = ⌧0 sin (⇡y/Ly)

MITgcm, hydrostatic Boussinesq eqs. on a β-plane

+ 

surface θ is relaxed 
to θ*=8 oC  y/Ly  

with relaxation time 30 days

quasi-adiabatic 
interior 

bottom drag 
r=0.0011 m2s-2

Equatorward

Fig. 2 

section 3

deformation radius=15 km



model spinup for τ0=0.2 Ν/m2 

flat bottom ridge 

equilibration 
~100 yr 

isosurfaces of θ 
colors from 0 oC to 8 oC 

 

section 3

https://vimeo.com/55486114



fields decomposition 
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H(y) = ⇢0cpLx

Z 0

�H

hv(✓ � ✓0)i dz

= Hmean +HSE +HTE

= H⇥
mean +H⇥

TE

HSE +HTE ⇡ H⇥
TE

described in Abernathey et al. (2011), to which the
reader is referred for further details. The domain is a box
Lx 5 2000 km 3 Ly 5 2000 km 3 H 5 2985m. The grid
spacing is 5 km in the horizontal. There are 40 levels in
the vertical, spaced 10mapart at the surface and increasing
to 200m at depth. Linear bottom drag is applied in the
bottom level of the model with a coefficient r 5 1.1 3
1023ms21. With a deformation radius of approximately
15km, this model adequately resolves the mesoscale dy-
namics.
The model’s potential temperature equation can be

written as

ut 1 u ! $u5 kh=
2
hu1 (kyuz)z2 l(us 2 u*)dn,1 . (14)

Here kh is a spatially uniform horizontal diffusivity, and
ky is a vertical diffusivity. Advection is performed using
a second-order moment scheme (Prather 1986). Explicit
diffusivity (kh and ky) is set to zero, and a detailed
analysis has shown that the effective numerical diapycnal
diffusivity in this model is weaker than 1025m2 s21,
meaning the interior is almost adiabatic (Hill et al. 2012).
However, the K-profile parameterization (KPP) scheme
(Large et al. 1994) is employed to simulate the surface
mixed layer, where ky is greatly enhanced. The final term
represents the surface forcing, active only in the topmodel
level; l is a temperature relaxation inverse time scale.
The surface temperature us is relaxed to a linear function
of latitude of the form u* 5 Du(y/Ly). The minimum
temperature is 08C, and we choose a maximum temper-
ature Du 5 88C. This leads to a maximum buoyancy
contrast ofDb5 gaDT5 1.63 1022m s22. The relaxation
time scale l21 is chosen to be 30 days (Haney 1971), which
keeps the actual surface temperature very close to the
prescribed profile. In practice, we do not achieve a truly
vanishing MHT due to the diabatic effects in the surface
layer. Our model contains a weak overturning cell in the
top 200m (the extent of the surface diabatic layer), similar
to the one noted by Kuo et al. (2005). However, this is
a small effect, andwe remain very close to the limit of zero
net MHT.

In simulations with topography, a Gaussian-shaped
ridge is present in the middle of the domain. The moti-
vation for this form was to capture the large meridional
obstructions encountered by the ACC along its path,
such as Kerguelen Plateau or the Scotia Arc. The depth
in this case is given by

2H1 hb [ 2H1 h0e
2x2/s2

. (15)

We selected h0 5 1000m, about one-third of the total
depth, and s5 75 km, leading to a steep ridge. However,
the topographic length scale s is still large compared
to the deformation radius of about 15 km in the middle
of the domain. The high-resolution runs presented here
are computationally demanding, limiting the choices of
parameter exploration. We focus on the wind forcing,
comparing the dependence of the stratification and
zonal transport, with and without topography, rather
than exploring different topographic geometries. Al-
though the form of the topography determines the types
of standing waves, broad large-scale topographies such
as the one we have selected lead to the most energetic
standing waves (Treguier and McWilliams 1990). An
additional experiment in a domain twice as long (in the x
direction) indicates that the domain size is sufficient to
properly model the storm track.
The model equilibrates after about 100 yr of spinup.

Snapshots of the temperature field from the equilibrated
state are shown in Fig. 4. The time-mean isotherms are
also superimposed. While both simulations contain
mesoscale eddies, the figure illustrates how the flat-
bottomed case is statistically symmetric in x, while the
ridge case contains a standing wave in the time-mean
temperature field.

b. Meridional heat transport and thermocline depth

The heat balance is illustrated in Fig. 5 for both the
flat-bottomed and ridge reference experiments (t0 5
0.2Nm22). (Both can be considered streamwise-
averaged views, since the Q contours in the flat-
bottomed case are zonally symmetric.) The upper
panel demonstrates that Hmean and Heddy are quite
similar in both cases, withHmean remaining very close to
the approximation defined in (2). The term Heddy com-
pensates Hmean almost completely, keeping the net H
very close to zero. The maximum value of Hmean is 96
TW. Scaled up to the length of the full ACC, this cor-
responds to a transport of 1.1 PW, larger than SOSE by
a factor of 2. The maximum value of HQ

mean is 82 TW,
lower by about 15%.
The bottom panel shows the vertical structure of the

eddy heat transport, along with the zonal or streamwise
mean isotherms. In the ridge case, the thermocline is

FIG. 3. Cartoon illustrating the interaction between standing and
transient eddies. The black curve represents a time-mean stream-
line, and the arrows along this curve represent the cross-stream
transient eddy flux.

2112 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 44

I’m feeling the heat 
no matter the type 

of average….



T[
ðLy

0

ð 0

2H
hui dz dy’H

ðLy

0
hubi dy

1
ga

f

ðLy

0

ð 0
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dz dy , (17)

where ub is the bottom zonal velocity, and the thermal
wind balance has been used to obtain the approximate
expression in (17). Because huiy is fixed by the surface
forcing, T } h2, as long as the bottom velocity is negli-
gible. However, in calculations with a flat bottom, hubi
can be very large. This is because the zonal momentum
budget requires

ðLy

0

"#
t

r0

$
2 rhubi2 hpbhbxi

%
dy5 0, (18)

where r is the coefficient of bottom drag, and pb is the
bottom pressure. If hbx 5 0, then the bottom drag is the
onlymeans to remove the zonalmomentum imparted by
the wind, and hubi is inversely proportional to r (and
linearly proportional to t) and thus large for weak fric-
tion.With topography, the wind stress is balanced by the
orographic form stress (Munk and Palmén 1951; Olbers
1998), and hubi can be much smaller than the baroclinic

component in the thermal wind balance. To illustrate
this difference, Fig. 6 (bottom-right panel) shows the
zonally averaged bottom zonal velocity averaged over
the center half of the channel, as a function of t0, with
and without the ridge: with the ridge, the bottom ve-
locity is one order of magnitude smaller and largely in-
dependent of the bottom drag. The net result is that the
zonally averaged zonal flow is much smaller when the
ridge is present throughout the water column, and T is
dominated by the second term on the rhs of (17). The
total and thermal wind contributions are plotted in
Fig. 8, showing this important difference.

4. Eddy heat flux enhancement by standing waves

To understand the enhancement of eddy heat trans-
port in the presence of topography, the resulting de-
crease of thermocline depth h, and the reduction of
bottom flow, it is useful to examine a quasigeostrophic
(QG) two-layer model, forced by wind stress t and dis-
sipated by bottom drag. This model, in which eddy ef-
fects are parameterized by downgradient diffusion of
potential vorticity, quantifies and explains how the
standing wave contributes to enhancing the efficiency of
the eddy equilibration.

FIG. 5. (top) The heat transport components,H5Hmean1Heddy, from the reference experiments in TW. (left) The
meridional heat transport in the flat-bottomed experiments and (right) the cross-Q heat transport in the ridge ex-
periments. The meridional coordinate on the right is yeq, the ‘‘equivalent latitude,’’ defined according to the area
enclosed byQ contours. (bottom)Cross-streameddy temperature flux by the geostrophic flow hygui in color. The gray
contours show the zonal-mean isotherms hui, contoured every 0.58C.Only the top 2000m are plotted; below this there
is no significant heat flux or stratification.
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The QG model is most easily analyzed by parti-
tioning the flow into three components: a zonal and
time average (denoted by angle brackets), a standing
wave (denoted by a dagger), and a transient eddy
component (denoted by a prime). The streamfunctions
cn and potential vorticities (PVs) qn for layers n 5 1, 2
are given by

cn 5 hcni(y)1cy
n(x, y)1c0

n(x, y, t), and (19)

qn 5 hqni(y)1qyn(x, y)1 q0n(x, y, t) . (20)

The time average (denote by an overbar) of the primed
quantities is also zero: c0

n 5 0. The relation between PV
and the streamfunction is

q1 5=2c11by1F1(c22c1), and (21)

q25=2c21by1F2(c1 2c2)1
f0hb
H2

. (22)

The bottom topography hb is the departure from the
zonal average of the expression in (15), and
Fn 5 f 20 /(g

0Hn). The layer depths areH1,2, and g 0 5 Db is
the maximum buoyancy contrast defined in section 3.
For the purpose of comparison with the primitive

equations, it is useful to consider the QG dynamics of
the waves and eddies to be embedded in the large-scale
dynamics of the zonally and time-averaged flow, which
we consider to obey the planetary-scale equations. The
coupled system of the waves and eddies interacting with
a planetary-scale flow allows one to consider the strati-
fication parameter, here identified with H1 to be slowly
varying in y and determined as part of the solution. We
identify the planetary-scale flow with the time and zon-
ally averaged flow, such that 2hcniy 5 Un, with Un

slowly varying in y, so that hq1,2iy 5 [b 2 F1,2(U2,1 2
U1,2)]. Formally, this requires amultiple-scale expansion
that separates the synoptic-scale flow, here identified
with cy

n and c0
n, from the planetary-scale flow hci. The

details are given in Pedlosky (1987, their chapter 6.24),
and for the two-layer model they lead to

FIG. 6. Comparison of global variables in flat-bottom (circles, solid lines) and ridge (triangles, stars, and dashed
lines) experiments. (top left) The stratification depth h at the northern boundary, evaluated from (16). (top right) The
magnitude of the meridional heat transport within the thermocline by the geostrophic flow ygue , averaged meridio-
nally over the northern half of the domain. (bottom left) The available potential energy. (bottom right) The zonal-
mean zonal flow at the bottom, averaged over the center third of the domain, plotted in log–log space. The dashed
line indicates a linear dependence. The solid line is the prediction from the analytical model of section 4. The star
symbol indicates a computation with doubled domain length.
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Fig. 7 
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In the classical oceanographic treatment of the planetary-
scale component of the flow, the rectified contribution of
transient eddies and standing waves is neglected. How-
ever, this is not appropriate for the periodic geometry
considered here. Instead, the planetary-scale flow is de-
termined by the zonal and time average of (23) and (24),
which when integrated in y with suitable boundary con-
ditions give the following constraints for Un:

hcy
1xq

y
1i1 hc0

1xq
0
1i52

t

r0H1

, and (25)

hcy
2xq

y
2i1 hc0

2xq
0
2i5

rU2

H2

, (26)

where r is the bottom drag coefficient. The planetary-
scale momentum budget and the heat budgets are im-
plicit in (25) and (26).

The standing wave is governed by

U1q
y
1x1 (b2F1U21F1U1)c

y
1x1J(cy

1,q
y
1)

2hcy
1xq

y
1iy1J(c0

1,q
0
1)2 hc0

1xq
0
1iy50, and (27)
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y
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2 hcy
2xq

y
2iy 1 J(c0

2, q
0
2)2 hq02xq02iy

52r=2cy
2/H2 . (28)

The system (25)–(28) can be simplified by adopting the
framework considered by Hart (1979) in the barotropic
context, where the topography, mean flow, and standing
wave are slowly varying in y, so that the terms in (27)–
(28) that are nonlinear in cy can be neglected when
considering the dynamics of the wave. As inHart (1979),
this approximation requires the amplitude of the wave
to be smaller than the amplitude of the zonally averaged
flow, so that cy

x ;U, but cy
y ! U. This ordering allows

the explicit calculation of the standing wave and of
the mean flow U1 and U2 [through (25) and (26)]. Con-
sideration of the coupled QG/planetary-scale dynamics
allows us to consider H1,2 to be also slowly varying in y.
The wave response can be easily obtained by param-

eterizing the time-mean transient eddy PV fluxes
hc0

nxq
0
ni as downgradient diffusion of PV, that is,

J(c0
1,2,q

0
1,2)52K=2q1,2 . (29)

The parameterization [(29)] ensures that the transient
eddies act to damp the standing waves, as found in

FIG. 7. The different components of the meridional heat trans-
port averaged over the middle of the domain from y 5 800 km to
y 5 1600 km, plotted on a log–log scale, as a function of the wind
stress amplitude t0. The components are Hmean (cyan), HSE (yel-
low), HTE (magenta), and H (black) the total meridional heat
transport. The latter three quantities are negative and so have been
multiplied by 21 in order to appear on the logarithmic scale. The
flat-bottom experiments are shown in solid lines/circles, while the
ridge experiments are dashed lines/triangles. There is no standing
eddy component for the flat-bottomed case.

FIG. 8. Total (black) and thermal wind (red) zonal transports as
a function of t0 for the flat and ridge experiments.
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when there is topography as wind increases the heat flux 
is mainly be done by the SE rather than the TE 
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flat Vs ridge results III 
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In the classical oceanographic treatment of the planetary-
scale component of the flow, the rectified contribution of
transient eddies and standing waves is neglected. How-
ever, this is not appropriate for the periodic geometry
considered here. Instead, the planetary-scale flow is de-
termined by the zonal and time average of (23) and (24),
which when integrated in y with suitable boundary con-
ditions give the following constraints for Un:
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where r is the bottom drag coefficient. The planetary-
scale momentum budget and the heat budgets are im-
plicit in (25) and (26).

The standing wave is governed by
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The system (25)–(28) can be simplified by adopting the
framework considered by Hart (1979) in the barotropic
context, where the topography, mean flow, and standing
wave are slowly varying in y, so that the terms in (27)–
(28) that are nonlinear in cy can be neglected when
considering the dynamics of the wave. As inHart (1979),
this approximation requires the amplitude of the wave
to be smaller than the amplitude of the zonally averaged
flow, so that cy

x ;U, but cy
y ! U. This ordering allows

the explicit calculation of the standing wave and of
the mean flow U1 and U2 [through (25) and (26)]. Con-
sideration of the coupled QG/planetary-scale dynamics
allows us to consider H1,2 to be also slowly varying in y.
The wave response can be easily obtained by param-

eterizing the time-mean transient eddy PV fluxes
hc0

nxq
0
ni as downgradient diffusion of PV, that is,
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The parameterization [(29)] ensures that the transient
eddies act to damp the standing waves, as found in

FIG. 7. The different components of the meridional heat trans-
port averaged over the middle of the domain from y 5 800 km to
y 5 1600 km, plotted on a log–log scale, as a function of the wind
stress amplitude t0. The components are Hmean (cyan), HSE (yel-
low), HTE (magenta), and H (black) the total meridional heat
transport. The latter three quantities are negative and so have been
multiplied by 21 in order to appear on the logarithmic scale. The
flat-bottom experiments are shown in solid lines/circles, while the
ridge experiments are dashed lines/triangles. There is no standing
eddy component for the flat-bottomed case.

FIG. 8. Total (black) and thermal wind (red) zonal transports as
a function of t0 for the flat and ridge experiments.
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a simplified 2-layer QG model 

 j(x, y, t) = h ji(y) +  

†
j (x, y) +  

0(x, y, t)

MEAN Standing Wave 
(SE) 

Transient 
(TE) 

j = 1, 2

PV at each layer 
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q1 = r2 1 + F1( 2 �  1) + [� � F1(U2 � U1)]y| {z }
=Q1
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=Q2

+
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decompose the flow fields into: 



a simplified 2-layer QG model 

which if we time average gives us the 
equations for the standing wave component  

where did the 
wind stress go? 

section 4

we get then an equation for the TE 
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a simplified 2-layer QG model 
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the standing wave components 
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using this approximation one 
can proceed to calculate …

(ridge>deformation)

(K is small 
or 

TE effect negligible)

(Rhines scale = ridge)
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… the heat transport in the QG model 

eddy heat transport is augmented by the presence of 
the standing wave ψ2 due to the topography 
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… and the thermocline slope in the QG model 

the planetary scale slope isopycnal is reduced 
due to the standing wave ψ2

section 4
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Notice thatassuming thesamevalueofKwith orwithout
topography leads to values of h that are comparatively
smaller than those obtained in the eddy-resolving com-
putations in the ridge case. The next section shows that the
isolated ridge, while enhancing the eddy diffusivity near
the ridge, suppresses it in the rest of domain, leading to an
average diffusivity that is smaller than in the flat case. This
additional response complicates the equilibration process.

5. Local cross-stream heat flux

In the flat-bottom case, the eddy statistics are homo-
geneous in the x direction, and the cross-stream heat
fluxes (Ekman and transient eddy) are distributed evenly
along the front. Prior studies of idealized circumpolar
currents with topographic ridges (MacCready andRhines
2001; Hallberg andGnanadesikan 2001; Thompson 2010)
have shown that eddy thickness fluxes (related to the
eddy buoyancy flux) are concentrated in regions near and
downstream of topographic ridges. A similar conclusion
was reached by Thompson and Sallée (2012) in an anal-
ysis of altimetric data; they found that Lagrangian tra-
jectories cross the ACC fronts preferentially in a few
locations downstream ofmajor topographic features such
as the Drake Passage or Kerguelen Plateau. We find the
same result in our simplified eddy-resolving computa-
tions: eddy heat fluxes are concentrated near and down-
stream of the ridge, unlike the QG prediction where the
eddy fluxes are enhanced directly over the ridge, in direct
proportion to the local gradient.
To explore the distribution of the eddy heat flux

along the front, and its localization downstream of the

ridge, we analyze the vertically integrated tempera-
ture flux

F[
ð0

2H
yudz5

ð0

2H
(yu1y0u0)dz5Fmean1Feddy (43)

in the (x, y) plane. The two separate fields Fmean and Feddy

correspond to the components due to the time mean and
the time-fluctuating flow, respectively. Dotted with n̂Q and
integrated along the Q contours, these components cor-
respond to HQ

mean and HQ
eddy, the two components of the

cross-stream heat transport identified in section 2. The raw
flux F is generally dominated by the rotational component
of the eddy flux, which does not contribute to the in-
tegrated cross-stream flux, but can obscure the physics of
cross-stream transport (Marshall and Shutts 1981; Illari
andMarshall 1983; Jayne andMarotzke 2002; Bishop et al.
2013). This rotational part can be eliminated by solving the
elliptic Poisson problem =2f(x, y) 5 $ ! F subject to the
boundary condition fy 5 0 at the northern and southern
walls. As shown by Fox-Kemper et al. (2003), this de-
composition is not unique; the choice of boundary con-
dition serves to highlight the cross-stream portion of
the flux. The divergent component of F is then given by
Fdiv(x, y) 5 $f. We solve for f numerically using an al-
gebraic multigrid solver (this python-based solver is freely
available online at https://code.google.com/p/pyamg),
separating the mean and eddy parts of f and Fdiv.
We plot Fdiv

eddy in Fig. 11 (left panels) as arrows in the
(x, y) plane, for both flat and ridge experiments. The
projection of the flux normal to Q contours, Fdiv

eddy ! n̂Q, is
in color. The divergent flux is largely perpendicular to the

FIG. 9. The depth of the interface H1 at y 5 L, solution of (33),
(36), and (42), as a function of the wind stress amplitude t0, with
(dashed line) and without (solid line) the ridge. The parameter
values are the same as the primitive equation computations, except
that the bottom drag is 20 times larger.

FIG. 10. The total time-averaged interface height g0H1 1
f0(c

y
1 2cy

2) solution of (33) for t0 5 0.2. The eddy diffusivity is
given byK5 2300m2 s21. All the other parameters are the same as
the primitive equation computations, except that the bottom drag
is 20 times larger.
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the QG model 
captures the qualitative behavior 

Fig. 9 
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local cross-stream heat fluxes

the ridge enhances 
diffusivity near it 
but suppresses it 
overall resulting in 

smaller mean 
diffusivity 

F =

Z 0
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u✓ dz =

Z 0
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�
u✓ + u0✓0

�
dz

= Fmean + Feddy

Fig. 11 

section 5

Q contours (in gray) and is nearly entirely downgradient
(Marshall and Shutts 1981). In comparison with the flat
case, the cross-stream flux in the ridge case is much more
localized, occurring mostly in the vicinity of the strong
meander downstreamof the ridge. In fact, close inspection
of the arrows in Fig. 11 reveals that Fdiv

eddy is mostly a zonal
flux across the Q contours running north–south. These
zonal fluxes go in both directions out and away from the
trough of the standingwave, consistent with the cartoon in
Fig. 3. The term Fdiv

mean is equal and opposite to the eddy
flux, and it is not shown. We note that locally there are
both Ekman and geostrophic contributions to Fdiv

mean, but
the geostrophic component vanishes when integrated
along each contour (de Szoeke and Levine 1981).
From the divergent eddy heat flux, it is possible to

construct a local cross-stream eddy diffusivity. We de-
fine this diffusivity as

Kdiv
? (x, y)52

1

H

Fdiv
eddy ! n̂Q
j$Qj , (44)

where H is the full depth. This quantity measures the
local efficiency of eddies at transporting heat across theQ

contours. The termKdiv
? is plotted in Fig. 11 (right panels).

For the flat-bottom experiment, Kdiv
? is zonally uniform,

peaking around 4000m2 s21 in the northern part of the
domain. For the ridge, the region of highest diffusivity is
downstream of the ridge, particularly in the trough of the
standingmeander, where diffusivities exceed 5000m2 s21,
while it is largely suppressed elsewhere. The net result is
that the diffusivity is on average smaller in the ridge ex-
periment; nevertheless, the efficiency of the eddy trans-
fer, as measured by ygue is clearly larger. This is because
the region of strong Kdiv

? coincides with a region of large
j$Qj, giving a high correlation and a more effective local
cross-stream flux. It is now clear why the QG model,
which assumes that the diffusivity away from the ridge is
the same with and without topography, leads to a pre-
diction for h that is too small: the suppression of eddy
diffusivity away from the ridge is not taken into account.

Dependence of localization on winds

To illustrate the localization of the eddy fluxes as
a function of the wind, we show in Fig. 12 (right panel)
the cross-stream divergent flux, Fdiv

eddy ! n̂Q, as a function
of S and t0, where S is the arclength along a Q contour.

FIG. 11. (left) The local eddy heat transport Fdiv
eddy(x, y). The arrows show the direction and magnitude of the

divergent, vertically integrated flux, while the colors show the projection across Q contours. The Q contours are in
gray. (right) The corresponding eddy diffusivity Kdiv

? , as defined in (44).
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how fast the eddies are carried by the flow?

baroclinicity, is in sharp contrast with the global in-
stability, where the growth rate depends on the
shear, the stratification, and b, but not on the depth-
averaged flow.
In summary, with the ridge, mean buoyancy gradients

are locally enhanced and eddies propagate more slowly
than in the flat case. Because there is a weak eastward
propagation, the maximum in eddy activity is found
downstream of the ridge. The difference in absolute
versus convective instability is especially apparent in the
initial transient development (Fig. 14, upper panel): in
the flat case (upper-left panel of Fig. 14), there is a slow
development of classical baroclinic instability beginning
with ‘‘elevator’’ modes with purely meridional motion
and eventually the development of a slow secondary
instability in the orthogonal direction (Berloff et al.
2009) leading to finite-amplitude eddies. With the ridge
(upper-right panel of Fig. 14), a stationary wave is im-
mediately formed, with eddies quickly reaching finite
amplitude in the lee of the ridge.
In the steady, equilibrated state, the source for eddy

kinetic energy is given by the conversion term w0b0 (e.g.,
Cessi et al. 2006). From the bottom panel of Fig. 14, we
can see that this term is highly localized downstream
of the ridge, indicating that the local eddy growth seen in
the initial transient development remains a feature of
the equilibrated state. It is interesting that the maximum
w0b0 is not collocated with the maximum cross-stream

heat transport (Fig. 11), which is farther downstream;
this reinforces the notion that downstream propaga-
tion is responsible for the downstream eddy heat flux
maximum.
As the eddies equilibrate in the ridge case, there is

an additional positive feedback that enhances their
local growth; the poleward heat transport by eddies
restratifies the interior, reducing the vertical extent of
the zonal shear and thus the baroclinic component
of the mean eastward zonal flow, proportional to h.
This process further slows down the mean flow, re-
ducing the eastward propagation of eddies and allow-
ing continued extraction of mean flow energy into the
eddy component.

7. Discussion and conclusions

We have explored the equilibration of an idealized
baroclinic current with and without a topographic ridge,
with the goal of understanding how zonal asymmetry
affects the baroclinic equilibration process. In our sim-
plified experiments, in which the interior of the ocean is
quasi adiabatic, the thermocline depth is determined by
the competition between poleward cross-frontal heat
transport by the geostrophic eddies and the equatorward
heat transport by the Ekman circulation. We find that,
with localized topography, the eddy field accomplishes
the same cross-frontal heat transport as in the flat case,

FIG. 13. Hovmoeller diagram of surface temperature anomalies u0 at y5 1000 km as a function of x and t (top) with
and (bottom) without the ridge. The dashed line indicates the surface zonal velocity and the solid line indicates the
barotropic zonal velocity.
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flat bottom 

ridge 

eddies 
propagate 

much faster 
without 

topography 

authors argue that eddy production is done 
through convective instability for the flat case 

and 
through absolute instability for the ridge case 

Fig. 13 

section 6



convective Vs absolute instability

section 6

see https://vimeo.com/55486114

https://vimeo.com/55486114


local cross-stream heat fluxes

EKE is produced mainly downstream the ridge  

but over a shallower layer and a narrower horizontal
region. In this sense the geostrophic turbulence is ‘‘more
efficient’’ with a ridge. A simple two-layer QG model
partially explains the mechanism for this enhancement:
the presence of a standing wave leads to 1) a stronger
frontal temperature gradient and 2) increased arclength
of time-mean temperature contours. Both of these fac-
tors allow the same amount of heat to be transported in
a shallower layer. By solving for the standing wave
amplitude, the QG model makes a quantitative pre-
diction for the enhancement factor based solely on the
external parameters.
However, the picture is complicated by differences in

transient eddy behavior. Overall, the transient eddy
diffusivity is weaker in the presence of the ridge; the
cross-frontal eddy flux is concentrated in a narrow storm
track and suppressed elsewhere. Also, the localization
itself increases as a function of the winds. An explana-
tion for these differences is in the baroclinic instability
mechanism generating transient eddies: global eddy

growth and equilibration versus a local growth. The
geostrophic turbulence of the zonally symmetric, flat-
bottomed channel can be viewed as a finite-amplitude
equilibration of the classic global (or convective) baro-
clinic instability problems posed by Charney (1947) or
Phillips (1951). Instead, the ridge experiments illustrate
the nonlinear equilibration of local (or absolute) in-
stability discussed by Pierrehumbert (1984), where eddy
growth is suppressed away from the localized region of
enhanced baroclinicity. In the local instability problem,
the growth rate of eddies depends not only on the local
baroclinic shear, but also on the vertically averaged
zonal flow; a fast, vertically averaged mean flow sweeps
the disturbances away from the region of baroclinicity
before they can extract energy.
These considerations suggest why eddy fluxes in

the storm-track region are exceedingly difficult to pa-
rameterize using existing frameworks (Hallberg and
Gnanadesikan 2001, 2006). The emergence of eddies
from local (or absolute) rather than global (convective)

FIG. 14. (top) Initial instability growth phase in each reference experiment, as reflected in the surface u field. Note
the two figures are at different times. (bottom) The steady-state, vertically integrated conversion from potential
energy to eddy kinetic energy w0b0 in the same experiments.
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conversion from 
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discussion 

We never clearly see the SE in the full model (only its signature in the 
Hovmöller diagram)…  

Why                                        ? 

                             as wind stress increases. How this translates to the 
averaging-over-streamlines picture? 

“The inability of existing parameterizations to account for local instability and 
nonlocal eddy life cycles constitutes the main obstacle toward a more 
complete theory of baroclinic equilibration in the presence of large 
topography and the more general problem of inhomogenous geostrophic 
turbulence.”

Hmean ⇡ HEkman

HSE � HTE


