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TOPOGRAPHICALLY GENERATED STEADY 
CURRENTS IN BAROTROPIC TURBULENCE 

A. M. TREGUIER 

National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307, U S A  

(Received 1 September 1988; in jnal  form 11 November 1988) 

Steady currents develop in oceanic turbulence above topography even in the absence of steady forcing. 
Mesoscale steady currents are correlated with mesoscale topography with anticyclonic eddies above 
topographic bumps, and large scale westward flows develop when fi  is non-zero. The relationship 
between those two kinds of steady currents, as well as their dependence on various parameters, is 
studied using a barotropic quasi-geostrophic channel model. The percentage of steady energy is found 
to depend on the forcing, friction and topography in a non-monotonic fashion. For example, the 
percentage of steady currents grows with the energy level in the linear regime (low energies) and 
decreases when the energy level increases in the nonlinear regime (high energies). Mesoscale steady 
currents are the energy source for the steady westward flow 0, and therefore 0 is the maximum when 
large scale and mesoscale currents are of the same order of magnitude. This happens when the ratio S 
of the large scale slope P H / f o  and the mesoscale rms topographic slope a is of order one. 0 decreases 
for both small and large values of S .  

KEY WORDS: Ocean turbulence, topographic eddies. 

1. INTRODUCTION 

One important effect of bottom roughness on an overlying turbulent flow is to 
generate steady currents, even in the absence of a steady forcing. In the existing 
studies, steady currents are traditionally divided into “mesoscale” and “large scale” 
currents. 

Mesoscale steady currents have horizontal scales similar to the typical size of 
oceanic eddies, roughly 100 km, and are generated by mesoscale topographic 
features. Their emergence in quasi-geostrophic turbulence above topography has 
been demonstrated by the free decaying turbulence experiments of Bretherton and 
Haidvogel (1  976). In those simulations, the flow evolves toward a quasi-steady 
pattern characterized by anticyclonic eddies above the topographic elevations (and 
cyclonic above depressions). Similar steady currents appear even when the flow 
remains strongly fluctuating, as in the statistical equilibrium solution of Salmon et 
al. (1976), or the forced barotropic model of Herring (1977). 

Large scale steady currents are defined as following “large scale” (2  I000 km) 
potential vorticity gradients. The distinction between “mesoscale” and “large scale’’ 
currents arises naturally when the former are generated by mesoscale topography, 
and the latter by the large scale potential vorticity gradient due to the p-effect. 
When large scale currents are associated with large scale topographic features, the 
distinction becomes arbitrary since bottom topography has a broad band spec- 
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44 A. M. TREGUIER 

trum. However, it is still possible (and useful) to distinguish the two kinds of 
currents in numerical models with idealized topographies. For example, Haidvogel 
and Brink (1986) used a large scale topography representing the continental slope 
with mesoscale variations on it, and showed that a steady alongslope large scale 
current is generated when there is no steady forcing. 

Early studies showed how pre-existing large scale currents are affected by the 
topography. The simulations of Bretherton and Karweit (1975) demonstrated that 
an eastward flow is effectively slowed down by the topography, whereas a 
westward flow is not. The topographic drag is not symmetric on a f i  plane because 
an eastward flowing current generates a standing Rossby wave above a topo- 
graphic feature and therefore loses energy whereas a westward flowing current 
does not. This asymmetry intuitively helps one to understand why a steady 
westward flow is generated when the forcing has a zero time mean. However, in 
numerical simulations of such flows (like the ones to be presented here), the 
topographic term in the large scale momentum balance does not behave like an 
asymmetric drag. It is not a sink of eastward momentum at all times and is not 
always larger when the large scale flow is eastward. A better explanation of the 
westward flow generation in a-plane topographic turbulence is given by Holloway 
(1987). Three processes are involved 

1) Nonlinear eddy interactions generate a “mesoscale” steady flow correlated 

2) The f i  effect tends to induce a westward phase of this steady mesoscale flow. 
3) Since positive pressure anomalies (positive P )  tend to lie westward of 

topographic elevations, the spatially averaged topographic drag ( - P d h / d x )  
is negative, and tends to generate westward momentum. 

with the topography, as mentioned above. 

Holloway’s explanation shows that the two kinds of steady currents are linked, 
the presence of a steady mesoscale flow being necessary for the existence of the 
large scale westward currents. However, most previous studies have ignored that 
fact and focused on one or the other category. The first aim of the numerical 
simulations presented here is to show the relationship betwen the two kinds of 
steady currents by using energy budgets, and to determine their relative import- 
ance in terms of energy content. The other aim of our study is a more complete 
exploration of the parameter space. Analysis of weakly nonlinear flow over 
topography (Samelson and Allen, 1987) on one hand, and statistical turbulence 
models (Herring, 1977; Holloway, 1978) on the other hand suggest a different 
dependence of steady currents on the parameters. Our simulations confirm the 
existence of a quasi-linear and a nonlinear regime, which result in a non- 
monotonic dependence of the percentage of steady currents on the forcing, friction, 
or topography. 

In order to achieve this extensive exploration of the parameter space, we have 
focused on a simple problem, and considered only barotropic flows. Steady 
currents generated by the topography are certainly bottom-intensified, and the 
present study is only a first step towards understanding the more complicated 
baroclinic case. 
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BAROTROPIC TURBULENCE 45 

In the following section, steady solutions valid in unforced flows are reviewed, 
and the energy equations show how those solutions may be modified when forcing 
and friction are present. The behavior suggested by this analysis is then demon- 
strated by numerical experiments on an $plane (Section 4) and on a p-plane 
(Section 5), following a brief description of the model and strategy (Section 3). The 
results are summarized in Section 6. 

2. STEADY SOLUTIONS AND THEIR DYNAMICS 

2. I Equations 

Barotropic quasi-geostrophic flow in a zonal p-plane channel is described by a 
streamfunction 

where $ is zero on the north and south boundaries, and periodic in the east-west 
direction. The prediction equation for + is the quasi-geostrophic vorticity equation 

where [ = V 2 +  is the relative vorticity, z the wind stress, E - ~  the bottom friction 
decay time, v the coefficient of biharmonic friction, and K=f,h/H with H the total 
ocean depth, h(x ,y )  the bottom topography and fo the Coriolis frequency. The 
meridional velocity vanishes on the north and south walls of the channel: 

-=O, a+ for y = y ,  and y=y,, ax (3) 

and additional boundary conditions are needed because of the biharmonic friction 
operator 

V2$ = 0, V4+ = 0, for y = y ,  and y = y,. (4) 

The prediction equation for U must be derived from momentum or energy 
conservation (McWilliams, 1977). The zonal momentum equation integrated over 
the channel shows the relation between U and the topography 

au 
at PH 
- = T + A -  ' j j 5 dx dy  - EU, 

where A is the total area, and T = A - ' J f v R d x d y  is the topographic drag. 
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46 A. M. TREGUIER 

2.2 Simple Steady Solutions 

Let us first review the steady solutions of (2) and (5) when there is no forcing or 
friction. The steady components will be noted by an overbar, representing a time- 
average. $ satisfies J ( $  - B y ,  r+ h”+ By) =O and therefore $ - O y  = 9(%+ E +  py), 9 
being an arbitrary function. The simplest solution is for a linear B 

ic-’ being a constant. In the inviscid case icZ may be negative, but only when the 
finite resolution of the model allows enstrophy to concentrate at the smallest scale, 
and therefore all “physical” solutions correspond to a positive ic2 (Carnevale and 
Frederiksen, 1987). When /l is zero, a solution is possible without a large scale 
current 0. The characteristics of the solution are shown better by its Fourier 
transform in wavenumber 

(I; is therefore a low-pass 
(K<<K),  $ is proportional 

space p ( K ) ,  

- h“*( K )  
Il/*(K) =- 

K Z  + K 2 ’  

filtered version of the topographic field. At large scales 
to the topography. At small scales ( K  >> ic), the vorticity 

is proportional to -h”, and the vorticity and the topography are anticorrelated. 
Note that the topographic drag vanishes for this inviscid solution, even on a p- 

plane. A topographic drag must exist during the initial adjustment, but at 
equilibrium advection by U cancels the tendency for westward propagation 
induced by p and the topographic drag is zero. It may seem paradoxical that 0 is 
independent of h“ in (6), and does not vanish in the limit h”-+O. In that limit no 
topographic drag can exist even during the initial adjustment. Therefore U is no 
longer coupled with the mesoscale flow and is just an arbitrary invariant 
(Carnevale and Frederiksen, 1987). 

Besides being the simplest solution, (6) is the most likely solution in at least two 
cases. The first case is statistical equilibrium flows, e.g., flows with a finite number 
of degrees of freedom and totally free of forcing and dissipation. Such flows 
happen only in truncated numerical models and not in physical fluids, but are 
nevertheless interesting because the flow tends towards a maximum entropy 
solution (provided the ergodic hypothesis is satisfied) which can be calculated 
analytically and depends only on the time invariants (total energy, total enstrophy 
and topography). Salmon et al. (1976) and more recently Carnevale and 
Frederiksen (1987) have shown that statistical equilibrium flows above topography 
are not completely steady in most cases, but they have a steady component 
satisfying (6). 

The second case in which (6) appears as a possible solution is freely decaying 
turbulence. When only high order friction is present, energy decays very slowly but 
relative enstrophy is strongly dissipated. Bretherton and Haidvogel (1976) have 
suggested that potential enstrophy also decreases and that the flow tends towards 
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BAROTROPIC TURBULENCE 41 

the solution (6 )  because is has the minimum potential enstrophy for a given 
energy. However, potential enstrophy decreases only if the vorticity [ is larger than 
the topography h" for the small spatial scales. The numerical simulations confirm 
that steady currents qualitatively similar to (6)  develop, but the theoretical 
solution is not achieved exactly, and a large dissipation is needed for the flow to 
be completely steady. 

2.3 Steady Currents Dynamics in a Forced Flow 

2.3.1 f-plane case 

In a flow with forcing and dissipation, a forcing term must be present to maintain 
steady currents against dissipation. The steady energy equation is obtained by 
multiplying (2) by $, integrating over the domain and averaging in time 

The fluctuating quantities are noted by primes, the time average by an overbar, 
and the time average of the forcing is assumed to be zero. Equation (8) shows that 
steady currents are generated by nonlinear interactions only. The topographic term 
J($', &)$ vanishes when integrated over the domain, and no contribution arises 
from J($',E)$ because the time average of that term is zero. The nonlinear term 
J ( $ , [ )  allows the generation of a zero frequency component $ by the interaction 
of two components $ and [ having frequencies o and -0, respectively. On the 
other hand, the topographic term J($ ,  E) cannot transfer energy between frequen- 
cies since the topography E is constant in time. 

A consequence is that no steady currents can exist in a linear solution without 
steady forcing. In a weakly nonlinear flow, a rough scaling of (8), neglecting 
biharmonic friction and assuming that the spatial scales associated with $' and I$ 
are similar, suggests that the importance of the steady currents should grow as the 
eddy enstrophy grows and as the friction decreases: 

This scaling is in agreement with the solution of Samelson and Allen (1987). Those 
authors calculated steady currents for flow over topography on a p-plane with 
weak forcing, friction and nonlinearity, and a weak dependence on the y 
coordinate. In their analytical solution, $/$' varies like ?/: the ratio of the 
nondimensional forcing and the nondimensional bottom friction. 

In a fully nonlinear regime, on the other hand, steady currents are expected to 
decrease when the relative vorticity (' becomes large compared to the topography 
E. In that limit, the flow behaves like flat-bottom turbulence and, if the effects of 
boundaries are small enough so that the flow is isotropic and spatially homo- 
geneous, no large rectified currents can develop. The percentage of steady currents 
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48 A. M. TREGUIER 

should be a decreasing function of the rms vorticity (' in the nonlinear regime 
(Herring, 1977). 

The consideration of the quasi-linear and the nonlinear limits suggests that the 
percentage of steady currents does not depend monotonically on the energy level. 
Similarly, a complex dependence on the topography may be expected. The 
nonlinear forcing term J($ ' ,  (')$ depends on h indirectly because h modifies the 
correlations between $', (' and 6. When h increases from zero for a given energy 
level, the percentage of steady currents first grows, but it may decrease when h is 
large enough so that the flow is quasi-linear. The simulations presented in the 
following sections confirm this behavior. 

_ _ _ _  

2.3.2 P-plane case 

In the P-plane case, it is useful to write separate energy equations for mesoscale 
and large scale currents. The equation for the mesoscale 6 is simply (8) with an 
additional energy transfer - U T  on the right hand side. This term is proportional 
to the steady topographic drag T = A -  f f &dx d y  ( A  being the domain area). The 
energy equation for the westward flow U ,  

U T = & U 2 ,  (9) 

shows the coupling between the mesoscale steady flow $ and the large scale steady 
flow 0. In the absence of steady forcing, the topographic drag term UT is the only 
possible energy source. In our simulations, the westward steady flow 0 can draw 
energy from the steady mesoscale flow $ because T is negative. For a forced 
steady eastward flow (as in Bretherton and Karweit, 1975), the topographic drag T 
is also negative, and therefore the large scale flow loses energy. 

Scaling (9) shows that the westward flow 0 depends on the rms velocity of the 
mesoscale steady currents U, and on the correlation C between V and h: 

h"- U%-UC.  
E 

Since U and C in turn depend on the energy level, the topography and 8, the effect 
of the parameters on the westward flow cannot be deduced from a simple scaling, 
but will be inferred from the numerical simulations presented in Section 5. 

3. MODEL AND STRATEGY 

3.1 Numerical Model 

A zonal channel domain has been chosen here in order to be able to model the 
large scale zonal flow U induced by the /J effect, while retaining some of the 
simplicity and spatial homogeneity associated with periodic boundary conditions. 
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BAROTROPIC TURBULENCE 49 

Table I Parameters of the experiment F4" 

Geometry Domain size 
Grid size 
Resolution 
Ocean depth 

Rms S,IP 

Time scale 

Biharmonic friction 

Forcing Type 

Friction Bottom friction 

L 
dx 
N 
H 
Stress 
T O  

T, 
E 

A 

1280 km 
20 km 
64 points 

S000m 

7.5 1 0 - 4 ~ 2 ~ - 2  

10- s-1 

20 days 

1.s10'0m4s-' 
Topography Rms height h lOOm 

6 = h/H 0.02 
Spectral shape B ( K )  K 2  
Rms slope a 1.4 10-3 

"In all following tables, parameters are the same as here except when otherwise indicated. The 
wind forcing type is either "stress" for a uniform zonal stress, or "curl" for a large scale curl with 
white wavenumber spectrum betweeen wavelengths of 1280 and 43Ukm. In both cases the 
amplitude of the forcing is given by the rms zonal stress z0. The topographic spectral shape is 
designated by B ( K ) = K  I ,  B ( K ) = K - '  or B(K)=(14) for spectrum (14) with a peak a t  
wavelength 160 km. 

In a doubly periodic domain, it is possible to add a linear trend ( U y )  to the 
streamfunction and use the additional equation (5) to calculate it, as was done by 
Holloway (1987). However, this is possible only in the barotropic case (Bretherton 
and Karweit, 1975). In the baroclinic case, it is impossible to derive a consistent 
equation for the time change of the large scale shear U(z). A channel model is 
therefore necessary for later comparison with baroclinic simulations. 

We have used the model of McWilliams and Chow (1981), modified to include 
bottom topography. The model solves the barotropic vorticity equation in finite- 
difference form. The nonlinear advection terms are calculated using an Arakawa 
Jacobian. The equation for U used in the model is the integral of the momentum 
equation on the south boundary 

This equation is equivalent to (5) (McWilliams, 1977) and the finite difference form 
of (5) is satisfied in the model. The equations are integrated in time using a leap- 
frog scheme with an occasional predictor-corrector scheme to avoid time splitting 
of the solution. Friction terms are lagged in time. 

3.2 Parameters 

Table 1 gives the summary of the parameter values for a typical experiment, F4. 
Since a large number of simulations was necessary, a low resolution (64x64 grid 
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50 A. M. TREGUIER 

points) has been chosen. The size of the grid is 20km, and the size of the square 
domain is 1280 km. 

The forcing function is characterized by its time behavior and its spatial pattern. 
Two kinds of spatial patterns are used. The simplest one is a uniform zonal stress 
t,. This was the forcing used in Haidvogel and Brink’s (1986) study of coastal 
currents. This forcing is special in the sense that there is no input of vorticity. In 
the absence of topography, the solution would be simply a uniform fluctuating 
zonal flow U .  A more general forcing pattern consisting of a large scale wind stress 
curl is also used. The curl field is generated by assuming an isotropic white 
spectrum between wavelengths of 1280 and 430km and a random phase, and 
performing a Fourier transform. The corresponding zonal wind stress, which is 
needed for the transport equation, is calculated from the curl by assuming that the 
wind stress field is non-divergent. 

As for the time dependence, the simplest is a periodic function, as used by 
Haidvogel and Brink (1986). However, a periodic forcing makes the response very 
sensitive to small changes in parameters when the response has a resonant 
character. Another characteristic found in preliminary simulations with a periodic 
forcing is that a significant change in the steady current occurs when the energy 
level reaches a certain value, because the response evolves from a “periodic” 
behavior into a “chaotic” one (those terms refer to the qualitative appearance of 
the time series). This sharp transition between two regimes is associated with 
systems having few degrees of freedom, and it is not our purpose to study it. 
Therefore we prefer to eliminate it by using a non-periodic forcing. Note that 
Haidvogel and Brink obtained only the “periodic” type of response. Possibly, with 
a larger energy level or a topography with more degrees of freedom, they would 
also have observed a transition to a “chaotic” behavior. 

Our choice for the time dependence of the forcing is a Markovian process as in 
Treguier and Hua (1987) 

’) = - o,z + G(x, y, t) ,  
at 

where G(x, y, t) is a white noise process. A Markovian process with a time scale 
T,=2z/wc of a few days is quite representative of atmospheric variability. In fact, 
time scales smaller than 20 days tend to be filtered out since resonant barotropic 
Rossby waves with smaller periods cannot exist in our small (1280km) domain. 
The only inconvenient aspect of the Markovian process is its non-zero time mean, 
which could generate steady currents even in the absence of any nonlinear 
rectification. This may be seen by considering its frequency spectrum 

G being a white noise process, IG21 is constant and the time average S,(O) is non 
zero. In order to ensure that the variance at zero frequency is small compared with 
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BAROTROPIC TURBULENCE 51 

the total variance, one has to consider a series long enough compared with the 
characteristic time scale of the process. Our criterion for a “small” mean is that the 
input of steady energy from the wind in the energy budget must be at most 3 %  of 
the total input (eddy+steady energy). From the spectrum (12), a series of length 
l O T ,  would seem sufficient. However, the oceanic response is a low-pass filter in 
time and in some cases we had to calculate diagnostics on time periods of 200r 
for our criterion to be satisfied. 

The topographic field is randomly generated from a specified isotropic spectrum 
as in most previous studies in periodic models. The only difference is that we 
impose the boundary condition ah/ax=O at the north and south boundaries in 
order to avoid the formation of boundary layers. When ahlax is non-zero at the 
boundaries J($ ,  E) is balanced by biharmonic friction, and a boundary layer forms 
with a width L b  depending on the biharmonic friction coefficient v .  Such a 
boundary layer was observed in test experiments and its width of order one grid 
point agreed with the value L b  derived from the vorticity balance at the boundary, 

a being the rms topographic slope. 
The model topography is characterized by its rms height h or the nondimen- 

sional height d=h/H and its wavenumber spectrum B(K)  which may be either a 
K - ’ ,  a K P 3  spectrum, or a spectrum defined by 

A K  
3( K :  + K4)‘ B(K)  = 

This spectrum with a peak at wavenumber K = K ,  is less realistic but shows the 
influence of small scale topographies. The topographic scale can be represented by 
the wavenumber R,  defined as 

The rms topographic slope a is defined by a = R,h. 

3.3 Statistical Significance of the Results 

Most previous studies of flow over topography considered only one random 
realization of the topographic field, assuming that the flow was spatially homo- 
geneous and ergodic, and that averaging in space and time was equivalent to an 
average over various realizations. However, one simulation (whatever its length) 
provides only one independent estimate of the steady currents. We thus performed 
various sets of simulations to get an idea of the statistical significance of this 
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52 A. M. TREGUIER 

estimate. Within each set of experiments, the parameters remained identical and 
only the random phase of the topography varied. We found that when the 
horizontal scale of the topography is large enough compared with the scale of the 
domain (mainly when a K 3  spectrum is used) the energy of the steady currents 
may vary by 20% to 50% from one simulation to the other, especially for the 
cases with low energy levels. On the other hand, when a K - ’  spectrum is used, the 
steady currents vary at most by 5 % .  The strong dependence of the steady currents 
on the spatial pattern of the topography when the domain contains only a few 
large scale topographic features (case of the K P 3  spectrum) is linked to the lack of 
spatial homogeneity in flow over topography noticed by Treguier and Hua (1988, 
Figure 12). In  order to have a reliable estimate, one needs to average over a 
domain large enough compared with the typical topographic scale, or over 
different realizations. In most simulations presented here, the topography has a 
K - 2  spectrum. A few simulations have been performed with a K - 3  spectrum to 
show qualitatively the effect of an increase of the topographic scale. Since the 
quantitative results of such a simplified model are not of much interest, averaging 
was thought unnecessary. 

The steady currents as well as the energy budgets have been calculated by 
averaging over the last 10 years of simulation. In simulations on an f-plane with a 
low energy level, 5 years were usually enough. On the other hand, for simulations 
with a high energy level or on a P-plane, there were still variations of about 10% 
between diagnostics based on 10 years and diagnostics based on 20 years. 
However, we do not consider 10% to be statistically significant and therefore we 
have run most simulations for 11 years (performing the diagnostics on the last 10 
years). 

4. SIMULATIONS IN AN $PLANE CHANNEL 

4.1 Dynumics 

Steady currents are a very important component of the response in most of our 
experiments. In simulation F4 for example, a small topographic rms height (100m) 
is sufficient to generate a large steady flow (representing about half of the total 
kinetic energy). This result however is model dependent. Barotropic models 
overestimate topographic effects because the bottom velocity is larger than that in 
stratified models in which the wind forcing acts only near the surface. 

The time series of kinetic energy for experiment F4 (Figure 1) shows that long 
time scale variations are present in the response even though the characteristic 
time scale of the forcing is only of 20 days. The zonal transport variations are 
closer to the forcing time scale. In the absence of 8, the time averaged transport is 
expected to be small, although non zero since the topographic drag does not 
vanish exactly, mainly because of dissipation. Here the time averaged transport is 
55 Sv which is relatively small compared to the typical variations (z 330 Sv). 

Although there is no reason to expect either a maximum entropy solution of a 
minimal enstrophy solution to be achieved, steady currents in simulation F4 are 
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Figure 1 Time series of the depth-integrated kinetic energy (in rn3s-') for experiment F4. 

qualitatively similar to the simple inviscid solution (6). The correlation of the 
streamfunction and the topography at large scale, as well as the anticorrelation of 
the relative vorticity and the topography at small scale, appear clearly in the mean 
fields of Figure 2a. The linear relation (6) between $ and [+h" is only 
approximately verified because of the forcing and dissipation as shown by the 
scatter plot in Figure 2b. As in Bretherton and Haidvogel's (1976) solution, 
different regions of the flow tend to have different values of the characteristic scale 
271/1c, in the present case ranging roughly from 600km to 900km. Since 271/1c is 
close to the size of the domain (1280 km), the anticorrelation between the vorticity 
[ and the topography is good (the coefficient is 0.9), while the correlation between 
the streamfunction $ and the topography shows up only in scales larger than 
600 km (the correlation coefficient is 0.3). A characteristic of the theoretical 
solution (6) pointed out by Herring (1977) is that at small scales % . E =  -6'. This 
relation is approximately verified for this simulation for spatial scales smaller than 
600km as rhown in Figure 3a, except at very small scales where biharmonic 
friction becomes important. The agreement is even better when the energy level is 
higher (Figure 3b) since the characteristic scale 27c/1c is larger than the domain size 
in that case. Such an agreement was also found in freely decaying turbulence 
experiments by Holloway (1978). 

When the flow is forced by a large scale curl instead of a uniform wind stress, 
the percentage of steady energy tends to be lower (Table 2) and the departure 
from a single linear relationship between the streamfunction and potential vorticity 
is somewhat larger, especially at low energy levels. We have not tried to quantify 
the departure as a function of various parameters. Our main point here is that 
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54 A. M. TREGUIER 

TOPOGRAPHY ii RELATIVE VORTICITY 5 

POTENTIAL VORTICITY P MEAN STREAMFLNCTNJN 

20x10-7 

IoxIo-7 

0 

- 10 x 10-7 

- 2 0 ~  10-7 

-25000 -10000 0 10000 25000 

Figure 2 (a) Time-averaged fields for experiment F4. Contour intervals are 40m for the topography, 
5 x  IO-’s-’ for the relative vorticity r, 4000m2s-’ for the streamfunction $, and 3 x  IO-’s-’ for the 
potential vorticity g=e+k;  (b) Potential vorticity 4 as a function of $ for all grid points in experiment 
F4. 
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L \ 
t \ I  

10-6 10-5 

To-6 1 \, 

-1 iii L -11 

WAVENUMBER (rn-') 

Figure 3 
(upper graph) and experiment F7 (lower graph). 

-[& (solid lines) and kZ (dashed lines) as functions of the wavenumber for experiment F4 

although forcing and friction prevent it from being realized, the inviscid solution 
(6) remains a useful reference to analyse the steady flow and understand its 
correlation with the topographic field. Bretherton and Haidvogel (1976) and 
Herring (1977) reached similar conclusions based on their respective models. 

The energy budget is represented in Figure 4. The mean forcing term does not 
appear since it is negligible compared with the energy input by wind fluctuations. 
As pointed out in Section 3, steady currents are forced by nonlinear interactions, 
and draw their energy from the mesoscale fluctuations. The topography does not 
appear in domain-averaged statistics. If the transfer terms were plotted as a 
function of wavenumber, the topography would appear as a transfer from large 
horizontal scales to smaller scales (Treguier and Hua, 1988). 

4.2 Dependence on the Energy Level 

In order to demonstrate the existence of the linear and nonlinear regimes 
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56 A. M. TREGUIER 

Table 2 Influence of the energy level in f-plane experiments. Units are 
10-4m2s-2 for the rms zonal stress T~ and lO-’s-’ for the bottom 
friction coefficient E 

Run 

~ 

F1 
F2 
F3 
F4 
F5 
F6 
FI  
F8 
F9 
F10 
F1 I 
F12 
F13 
F14 
F15 
F16 
F17 

Parameters 
(when different 
from Table I )  
- 

T o =  1 
T ~ =  2.5 
T o =  5 ’ 
T o =  7.5 
T o =  10 
To= 15 
To = 20 
curl, T ~ =  1 
curl, T ~ =  2.5 
curl, T,,= 5 
curl, T,,= 7.5 
curl, T ~ =  10 
curl, T~ = 15 

T ~ =  10, ~ = 4  
T o =  10, E = 2  
T o =  10, E Z 0 . 5  
T ~ =  10, ~ = 0 . 2 5  

Total rms u 
(cmis) 

2 
4 
9 

13 
17 
21 
35 

3 
8 

15 
23 
31 
45 
9 

13 
24 
36 

Steady 
kinetic 
energy 

12 % 

57 % 
47 % 
36 % 
27 % 
38 % 
38 % 
36 % 
34 % 
27 % 
19 % 
39 % 
60 % 
40 % 

(5h) 
correlation 

0.5 
0.6 
0.8 
0.9 
0.9 
1 .o 
1 .o 
0.6 
0.7 
0.9 
0.9 
1 .o 
1 .o 
0.1 
0.9 
1 .o 
1 .o 

Figure 4 Energy budget for experiment F4. T is the wind forcing, BF bottom friction, and NL 
nonlinear transfers. The thickness of the arrows is proportional to the strength of the energy transfers. 
The numbers in the boxes are :he kinetic energies in cm2 s-’. 

suggested in Section 2, various experiments have been performed with increasing 
forcing (Table 2). Curve 1 of Figure 5 clearly demonstrates the non-monotonic 
dependence of the percentage of steady energy as a function of the total rms 
velocity u. The percentage of steady energy grows in the linear regime (at low 
energies) because the nonlinear transfer term in the energy budget grows more 
rapidly than the forcing term. On the other hand, the relative importance of steady 
currents decreases in the nonlinear regime (at high energies) since the nonlinear 
transfer term grows at a slower rate than the forcing term, because the flow is less 
constrained by the topography. Note that the steady currents always grow in 
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BAROTROPIC TURBULENCE 

0.7 ~ 

0.6 

- 0.5 
I* + 
2 Y 0.4 

0.3 

0.2 

12 

51 

0.1 I I I I I I I I I 

0 10 20 30 40 50 

rms u (cm.s-1) 
Figure 5 Percentage of steady kinetic energy as a function of the total rms velocity u for experiments 
of Table 2. Curve 1 (open squares): experiments F1 to F7 with a stress forcing. Curve 2 (crosses): 
experiments F8 to F13 with a curl forcing. Curve 3 (black dots): experiments F14 to F17 with variable 
bottom friction. 

absolute value as the forcing energy increases, only their relative importance 
compared with the eddy currents decreases. 

The position of the maximum depends on the forcing and dissipation mech- 
anisms, as shown by curve 2 of Figure 5 (drawn for simulations forced by a large 
scale curl instead of a uniform stress) and curve 3 (simulations where the forcing is 
constant and the bottom friction coefficient varies). In the quasi-linear regime, 
simulations with a stronger dissipation have less steady energy for a similar energy 
level (curve 3 is below curve 1). The percentage of steady currents in our weakly 
nonlinear simulations is not simply proportional to the ratio of nondimensional 
forcing and friction S/i: as suggested by the analytical calculation of Samelson and 
Allen (1987). This is not surprising since this particular result of their model 
depends crucially on the a priori assumption that the forcing and dissipation 
parameters are of the same order of magnitude, whereas the ratio of forcing and 
dissipation varies widely in our experiments. 

4.3 Dependence on the Topography 

The effect of the topographic rms height h cannot be studied independently from 
the effect of the energy level, since increasing the topographic height increases the 
dissipation. This happens because a higher topography enhances the cascade of 
energy toward small scales and therefore increases the amount of biharmonic 
friction. For example, the energy is 7 times smaller for simulation F31 with high 
topography ( h =  800m) than for simulation F18 with low topography ( h  = 50m) 
although the forcing strength is the same (Table 3). In simulation F18, the energy 
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58 A. M. TREGUIER 

Table 3 Influence of the topography in $plane experiments. Units are 10-4mZs-2 for 
the rms zonal stress T,, and for the rms bottom slope a 

Run Parameters 
(when different from Table I) 

total rrns u Steady ( j h )  
kinetic correlation 
energy 

F18 
F19 
F20 
F2 I 
F22 
F23 
F24 
F25 
F26 
F27 
F28 
F29 
F30 
F3 1 
F32 
F48 
F49 
F33 
F34 
F36 
F37 
F38 
F39 
F40 
F4 1 
F42 
F43 
F44 
F45 
F46 
F47 

‘I,,= 2.5, 6=0.01, a = 0.8 
to= 7.5, 6=0.01, a = 0.8 
7,= 15, 6=0.01, = 0.8 
T,,= 2.5, 6=0.04, a = 2.8 
T,= 7.5, 6=0.04, a = 2.8 
T,= 15, 6=0.04, a = 2.8 
~ , = 2 0 ,  6=0.04, a = 2.8 
‘I,,= 2.5, 6=0.08, a = 5.6 
T,,= 7.5, 6=0.08, a = 5.6 
z 0 =  10, 6=0.08, a = 5.6 
T,,= 15, 6=0.08, = 5.6 
~,,=18.5, 6=0.08, a = 5.6 
‘1,,=25, 6=0.08, a = 5.6 
T ~ =  2.5, 6=0.16, a = 11.1 
‘1,=15, 6=0.16, a =11.1 
~ , = 2 0 ,  6=0.16, a =11.1 
~ , = 2 5 ,  6=0.16, a =11.1 
r,=30, 6=0.16, a =11.1 
to= 2.5, a=0.8, B ( K ) = K 3  
T,,= 2.5, a=4.9, B(K)=(14) 
T,,= 7.5, a=0.8, B ( K ) = K 3  
‘I,= 7.5, a=4.9, B(K)=(14) 
I,= 5, 6=0.16, a =11.1 
T,= 10, 6=0.16, a = 11.1 
T~ = 2.5, a = 3.7, B ( K )  = (14) 
T,,= 5.0, a=0.8, B ( K ) = K 3  
T,, = 5.0, a = 4.9, B(K) = (14) 
T,,= 7.5, a=4.1, B(K)=(14) 
~ , = 1 5 ,  a=0.8, B ( K ) = K 3  
7,=15, ~ = 4 . 1 ,  B(K)=(14) 
~ , = 1 5 .  a=4.9, B(K)=(14) 

5 
13 
26 
4 

12 
25 
34 
3 
9 

13 
20 
25 
35 
2 

14 
20 
26 
32 
4 
4 

13 
13 
4 
8 
4 
9 
8 

13 
13 
26 
26 

32 % 
37 % 
19 % 
25 % 
61 % 
66 % 
63 % 

55 % 
63 % 

14 % 

71 % 
72 % 
72 % 

5% 
61 % 
67 % 
71 % 
73 % 

35 % 
56 % 
22 % 
18 % 
44% 

48 % 

28 % 
56 % 
11 % 
8% 

27 % 

42 % 

32 % 

0.8 
1 .o 
1 .o 
0.5 
0.8 
0.9 
0.9 
0.4 
0.6 
0.6 
0.7 
0.8 
0.8 
0.3 
0.5 
0.6 
0.1 
0.7 
0.6 
0.9 
0.9 
1.0 
0.4 
0.5 
0.9 
0.8 
1 .o 
1 .o 
0.9 
1 .o 
1 .o 

is mainly dissipated by bottom friction and lateral friction represents only 2 %  of 
the total energy dissipation, whereas it represents 50 % in experiment F31. This 
large influence of the topography on the energy level did not appear in Treguier 
and Hua (1988) probably because those simulations were baroclinic and the 
topographic spectrum was truncated at a wavelength of 130 km instead of 64 km in 
the present case. 

Figure 6 shows the percentage of steady energy for various simulations in a 
(u, 6) plane ( u  being the rms velocity and 6 = h/H the nondimensional topographic 
height). Increasing 6 increases the maximum percentage of steady currents. For the 
experiments with 6=0.01 the percentage of steady kinetic energy remains below 
40% whereas it reaches a maximum of about 72% with 6=0.08. Increasing 6 also 
shifts the position of the maximum to the right (to larger u). This is consistent 
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0. I6 

0.08 

6 0.04 

0.02 

0.01 

I I I56 I 20 

71% 73% 

70. /I 
66% 

5 10 15 20 25 30 35 

R M S  u (cm/s) 
Figure 6 
and experiments F18 to F38 (Table 3). Contours are drawn subjectively. 

Percentage of steady kinetic energy in a (u,logS) plane for experiments F l  to F7 (Table 2) 

with a dependence on the ratio Ro/6, Ro being the Rossby number u/fL. When h 
grows at a fixed energy level (along a vertical line in Figure 6),  the percentage of 
steady currents first increases as found by Herring (1977) and Holloway (1978). A 
new result of our simulations is the decrease for high topographies. In that limit, 
the flow tends toward a quasi-linear regime where nonlinear terms become less 
important compared to forcing and dissipation. 

Simulations have also been performed with different topographic spectra. One 
may expect a decrease in the topographic horizontal scale to have the same effect 
as an increase of 6, since it is the topographic slope a rather than the topographic 
height which emerges from a scaling of the vorticity equation. This appears to be 
true qualitatively, but not quantitatively. Figure 7 shows the steady energy as a 
function of the rms topographic slope a for simulations with different energy levels. 
The percentage of steady currents grows first, and then decreases as the topo- 
graphic horizontal scale K;' becomes smaller. The maximum of the curves shifts 
towards smaller values of a when forcing increases. For large K, steady currents 
decrease because the flow becomes relatively more linear, as happened for large 6. 
However, the dynamics of the large 6 simulations are quite different from those of 
the large K, simulations. With a large 6, the fluctuating field contains energetic 
topographic Rossby waves, and the eddy vorticity is large. With a large R,, the 
fluctuating field consists mainly of a large scale flow U' directly forced by the 
wind, and the eddy vorticity is small. The generation of eddy vorticity from the 
large scale flow is not efficient when the topographic horizontal scale R;' is small 
compared with the length scale U'8 (0 being a typical time scale). Since U' 
represents most of the eddy energy when K, increases, there is no decrease of the 
global energy level due to enhanced small scale dissipation, contrary to the case of 
increasing 6. 
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60 A. M. TREGUIER 

10% t 1 
I -1 

0.5 I .5 2.5 3.5 4.5 

a (x Io -~ )  
Figure 7 Percentage of steady kinetic energy as a function of the rms slope a for the experiments of 
Table 3 where the topographic spectrum (6=0.02 is fixed). Open squares: experiments with 7 =  

2.5 x Black squares: experiments with r=7.5 x w4. 
Black circles: experiments with 7 =  15 x 

Open circles: experiments with 7 = 5  x 

Because of those different dynamics, the effect of topography on steady currents 
cannot be represented by the single parameter a. For example, simulations F27 
and F38 in Table 3 have identical energy levels and similar values of a, but the 
percentages of steady currents are very different (63 % and 22 o/, respectively) 
because 6 and R,  vary. 

5. SIMULATIONS IN A fi-PLANE CHANNEL 

5.1 Dynamics 

The presence of the f i  effect does not affect much the eddy space and time scales, 
nor the eddy energy level. The global shape of the frequency spectra is the same as 
in the f-plane case, although resonant peaks corresponding to the largest scale 
(smallest frequency) barotropic Rossby waves are present when /? is non zero. 

The steady flow, on the contrary, is completely modified by the fl  effect. First, 
the amount of steady energy is lower than in the f-plane case. Since it is not due 
to a smaller reservoir of eddy energy, the decrease of the nonlinear transfer term 
can be understood only in terms of modified correlations, due to the phase 
propagation induced by f i .  Secondly, the large scale steady flow D is much larger. 
For simulation B3 in Table 4, + L f 2  represents two thirds of the total steady kinetic 
energy (us less than 1 o/, for simulation F4 with / ?=O) .  The time-averaged transport 
is 41 1 Sv, and 0 = 6 cm/s. 

The importance of 0 is obvious in the steady streamfunction maps (Figure 8). 
As in the f-plane case, it is useful to compare the solution with the theoretical 
form (6). Now two relationships have to be tested. In the inviscid solution, the x- 
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BAROTROPIC TURBULENCE 61 

Table 4 Influence of the energy level in j-plane experiments. Units are 10-4m2 s-' 
for the rms zonal stress r0 and 10-l 'm-ls- l  for j. u is the total rms velocity (cm/s), 
ti the rms velocity associated with the "mesoscale" steady flow $ (cm/s) and fr the 
steady uniform westward flow (cm/s) 

Run Parameters tt ti 0 Steady ( [ h )  
(when different from T d e  I )  kinetic correlation 

energy 

B1 
B2 
B3 
B4 
B5 
B6 
B7 
B8 
B9 
B10 
B11 

r0 = 2.5, j = 1.5 
r0= 5, j= lS  
T~ = 7.5, j = 1.5 
r 0 =  10, j= 1.5 
~ , = 1 5 ,  j=1.5 
r0=20,  j=1.5 
r0=30, j= 1.5 
curl, ro= 1, j= 1.5 
curl, r0=2.5, j= 1.5 
curl, r0 = 5, j = 1.5 
curl, r0 = 7.5, j = 1.5 

4 
9 

13 
18 
27 
36 
53 
8 

15 
22 
43 

2 1 29% 
4 4 36% 
5 6 38% 
6 9 38% 
9 14 39% 

11 20 39% 
15 29 37% 
3 3 32% 
7 6 35% 

10 9 36% 
17 19 35% 

0.6 
0.7 
0.7 
0.8 
0.8 
0.8 
0.8 
0.6 
0.7 
0.8 
0.8 

TOPOGRAPHY RELATIVE WRTICITY 5 

MEAN STREAMFUNCTION POTENTIAL VURTICITY 5 

Figure 8 Time-averaged fields for experiment B3. Contour intervals are 40m for the topography, 
3 x  lO-'s-' for the relative vorticity r, 5000m2s-' for the streamfunction $, and 10-6s-' for the 
potential vorticity 4= c+ I; 
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62 A. M. TREGUIER 

$ - <T>, 
Figure 9 (a) Zonally averaged total streamfunction (T)x as a function of latitude for experiment B3; 
(b) Potential vorticity 4 - p ~  as a function of q-(q)x for all grid points for the same experiment. 

averaged “mesoscale” streamfunction vanishes (($),=O) and therefore the total 
streamfunction satisfies (Y)x= - Uy. In simulation B3, this relation is only 
approximately satisfied as appears in Figure 9a, which shows (T)x as a function 
of latitude. The departure from a linear relationship is greater near the boundaries. 
However, the agreement is much better in most of our simulations than it was in 
Bretherton and Haidvogel’s (1976) free turbulence experiments (see their Figure 
1 1 ) .  Because (Y)x is not a linear function of y, (T - U y )  contains a linear trend 
and does not satisfy (6). However, T - (T)x tends to be linearly related with %+ h 
as shown in Figure 9b. The larger scatter than in Figure 2b, as well as the fact 
that the correlation coefficient between the relative vorticity and the topography 
drops from 0.9 in simulation F4 to 0.7 in simulation B3, both confirm that the 
departure from the theoretical solution is larger when is non zero. This was 
expected, since without that departure the time-averaged topographic drag would 
vanish and U would be zero according to the energy equation (9). Nonetheless, the 
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BAROTROPIC TURBULENCE 

0 
U 

63 

Figure 10 Energy budget for experiment B3. The thickness of the arrows is proportional to the 
strength of the energy transfers. The numbers in the boxes are the kinetic energies in cm2s-’. 

theoretical solution (6) is still a useful reference in analysing steady currents in 
B-plane topographic turbulence. 

In the energy budget (Figure 10) the zonal flow U and the “mesoscale” I) have 
been separated, in order to show better the two-step process leading to the 
generation of 0. In this special case of a uniform zonal stress, only the U’ 
component is directly forced by the wind and I) would remain zero in the absence 
of topography. Mesoscale fluctuations I)’ ar forced by a term which could be 
called the “eddy topographic drag” U” with 

As in the f-plane case, the steady mesoscale flow is forced by nonlinear 
interactions. Then, in a second step, energy is transferred from $ to the mean 
zonal flow 0 through the topographic drag term DT The energy equilibrium for 
0 is simply (9) since the steady forcing is one order of magnitude smaller than the 
other terms. Evaluating the terms in (lo), we find that for this simulation 
mesoscale and large scale steady currents are of the same order of magnitude (01 
Ux l), and the correlation C between t7 and h is small (C%&/K%0.05). C measures 
how a solution departs from the inviscid solution (6),  since C is zero in the’inviscid 
case. It will be shown in the following sections that C is small unless f i  becomes 
large compared to the mesoscale rms topographic slope. 
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64 A. M. TREGUIER 

Table 5 Influence of the topography in /&plane experiments. Units are lo-" m-I  s-I  for p, 
10-4m2s-2  for T,,, and for the topographic slope a. u is the total rms velocity (crnis), U the 
rms velocity associated with the "mesoscale" steady flow IJ (crn/s), and 0 the steady uniform 
westward flow (cm/s) 

Run Parameters 
(when dijerent from Table I )  

u l i  0 Steady ( j h )  
kinetic correlation 
energy 

B12 
B13 
B14 
B15 
B16 
B17 
B18 
B19 
B20 
B2 I 
B22 
B23 
B24 
B25 
B26 
B27 
B28 
B29 
B30 
B3 1 
B32 
833 
834 

T ~ =  2.5, p= 0.5 
T ~ =  2.5, p= 2 
T"= 2.5, p= 5 

r0= 15, p= 0.5 
T o = l 5 ,  B= 2 
~,=15,  ,8= 5 
T o = l 5 ,  BY20 
T,,= 2.5, p= 20, 6 =0.005, I=  0.3 
T ~ =  2.5, p= 5, 6 =0.01, a =  0.7 
T,,= 15, p= 5, 6 =O.OI, a= 0.7 
T,,= 2.5, p= 1.5, 6 =O.OI, a= 0.7 
T ~ =  2.5, p= 1.5, 6 =0.04, z =  2.8 
T ~ =  2.5, p= 1.5, 6 =0.08, a =  5.6 
7,=15, p= 1.5,6 =0.16, a = l l . l  
~ , = 1 5 ,  p= 1.5,6 =0.01, a= 0.7 
~,,=15, /I= 1.5, 6 =0.04, a= 2.8 
T,,= 15, p= 1.5, 6 =0.08, x =  5.6 
T ~ =  15, p= 1.5, 6 =0.16, a = l l . l  
T ~ =  2.5, p= 1.5, B ( K ) = K 3 ,  X =  0.8 
T,,= 2.5, p= 1.5, B(K)=(14), z= 4.9 
T,,= 7.5, B= 1.5, B ( K ) = K 3 ,  x =  0.8 
T ~ =  7.5, /?= 1.5, B(K)=(14), z= 4.9 

T o =  2.5, p=20 

4 2  1 
4 2  2 
4 1  2 
4 0.3 1 

27 14 12 
26 7 14 
26 5 13 
26 2 8 
4 0.1 1 
4 0.5 1 

26 3 8 
4 1 0.6 
4 2 0.6 
3 1 0.2 
2 0.4 0.04 

27 6 11 
25 14 I1 
20 15 5 
14 10 2 
4 1  1 
4 2  I 

13 4 6 
13 5 6 

B35 r,=15, f i=  1.5, B ( K ) = K 3 ,  a= 0.8 26 8 13 
B36 z,,=15, p= 1.5, B(K)=(14J, a= 4.9 26 6 9 

0.6 
0.6 
0.4 
0.1 
0.9 
0.7 
0.5 
0.3 
0.03 
0.3 
0.4 
0.5 
0.5 
0.4 
0.3 
0.7 
0.8 
0.7 
0.5 
0.5 
0.9 
0.6 
1 .o 
0.7 
1 .o 

5.2 Dependence on the Energy Level 

The steady zonal flow 0 grows as the energy level grows (Table 4), as was found 
by Holloway (1987) and Haidvogel and Brink (1987). Haidvogel and Brink also 
noted an increase in steady currents when the frequency of the forcing was 
decreased, which was at least partly due to the increased energy of the response 
for low frequency forcing. The growth of both the mesoscale and the large scale 
steady energy becomes slightly slower at the highest energy levels and therefore the 
percentage of steady energy begins to decrease (Table 3) as in the f-plane case, but 
the decrease happens at larger energies. 

5.3 Effects of and a 

Increasing the topographic height 6 or the rms topographic slope a decreases the 
energy level by enhancing biharmonic friction as happened in the f-plane case 
(Table 5). The effect of topography on steady currents is stherefore not easy to 
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- 
+ a -  

0 I I I I I I 

0 2 4 6 0 
S 

Figure 11 Steady westward flow D as a function of S=BH/ foa .  The lower curve is for experiment in 
Tables 4 and 5 with to=2.5 and the upper curve for r0=15. The squares along the curves are for 
experiments in which j varies. Crosses are for experiments in which 6 varies, and triangles for 
experiments in which the topographic spectrum varies. 

study independently. Fortunately, the effect of /? and h on the westward flow 
can be understood in terms of a single parameter, S=/?H/foa. S is the ratio of the 
“large scale” bottom slope equivalent to the /?-effect, /?H/ fo ,  and the “mesoscale” 
bottom slope CI. The importance of this parameter was noted in the weakly 
nonlinear case by Samelson and Allen (1987). and is confirmed in the nonlinear 
case by our simulations. 

Figure 1 1  represents D as a function of S for low energy simulations with 
different /? (lower curve) and high energy simulations with different /? (upper 
curve). The dependence is non-monotonic. For s ~ l ,  there may be a large 
reservoir of mesoscale steady energy, but the steady streamfunction is well 
correlated with the topography, $ is close to the inviscid solution (61, and 
therefore the time averaged topographic drag 7 is very small. The westward flow 
0 is small in the limit of small S .  On the other hand, when S is large, the phase 
propagation induced by /? prevents the efficient generation of mesoscale steady 
currents. Since U is small, the topographic drag T is also small, and D decreases in 
the limit of large S.  This decrease was observed by Haidvogel and Brink (1986), 
since S was much larger than one in all their simulations. The maximum westward 
flow in Figure 1 1  occurs for S 2 1 and is closer to S = 1 in the low energy limit as 
in Samelson and Allen (1987). When S x l ,  mesoscale and large scale steady 
currents are of the same order of magnitude almost whatever the energy level 
(Figure 12). Since the westward steady flow 0 draws its energy from the mesoscale 
steady flow this situation is the most favorable for an efficient westward flow 
generation; hence, the maximum of 0 for S x l .  Note that a plot of the steady 
topographic drag T as a function of S would be identical in shape, since from (9) 

G.A.F.D.- -C 
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LOG ( S )  
Figure 12 
scale, for all experiments of Table 4 and Table 5 .  

Ratio t7/g of large scale to mesoscale steady currents as a function of S in a logarithmic 

T = E ~ ,  and the bottom friction coefficient E is the same for all simulations in 
Figure 11. 

Of course, the variations of V from one simulation to the other cannot be all 
related to changes in S. Experiments with different values of 6 and p do not fit on 
the same curve in Figure 11, because changing p does not affect the energy level 
whereas changing 6 does. We also find, as for the f-plane case, that variations of 
topographic height h do not have exactly the same effect as variations of the 
topographic horizontal scale, and therefore the effect of the topography is not 
completely described by the parameter LY alone. Even with those limitations, S 
appears as the most useful parameter to characterize qualitatively the behavior of 
the steady westward flow. 

Figure 12 shows that the ratio of large scale and mesoscale steady currents D/ii 
is an increasing function of S, with a smaller dependence on other parameters 
(different energy level is the main source of scatter). O/ii does not grow when h 
grows as the scaling (10) of the energy equation suggests but rather decreases, 
because the better correlation of the mesoscale steady currents with the topo- 
graphy makes the topographic drag smaller. From (lo), O/ii would appear to 
depend strongly on the bottom friction coefficient. This is not the case in our 
experiments because a decrease in E allows the flow to be closer to the inviscid 
solution (6), and a decrease of the topographic drag T compensates the decrease of 
E. The same compensation occurs in Samelson and Allen's (1987) weakly nonlinear 
solution. Their first order steady streamfunction is perfectly correlated with the 
topography and the time-averaged topographic drag T vanishes at leading order, 
because the bottom friction parameter appears only at second order. 
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6.  CONCLUSION 

The generation of steady currents in barotropic topographic turbulence has been 
analysed. The relationship between mesoscale steady currents following mesoscale 
topographic features, and the large scale zonal flow due to the f l  effect, is clear 
when energy budgets are considered. When there is no steady forcing, mesoscale 
steady currents can be maintained against dissipation by drawing energy from 
mesoscale fluctuations, through nonlinear interactions. The large scale zonal flow 
is forced by the topographic drag acting on the mesoscale steady circulation, and 
thus draws its energy from it. 

Because of forcing and dissipation, the steady flow in our experiments differs 
from the inviscid statistical equilibrium solution, especially when f l  is non zero. 
However, the steady flows still exhibit the qualitative features of the theoretical 
inviscid solution: the correlation of streamfunction and topography at large scales, 
the anticorrelation of relative vorticity and topography at small scales, and the 
linear shape of the zonally averaged steady streamfunction when f l  is non zero. 

The present set of simulations provides a comprehensive picture of the behavior 
of steady currents in parameter space. In the quasi-linear regime studied by 
Samelson and Allen (1987), the percentage of steady currents grows with the 
energy level, while it decreases in the nonlinear regime studied by Herring (1977) 
and Holloway (1978). Our simulations show the continuity between those two 
regimes, and show that the dependence on the rms topographic height or slope is 
similarly non-monotonic. In the ,B-plane case the westward flow 0 depends 
essentially on the parameters S=,BH/foa which is the ratio of the large scale slope 
p H / f o  and the mesoscale slope a. 0 is maximum for Sxl. In that case the large 
scale and mesoscale steady flows are of the same order of magnitude, and since 
they are coupled it is the situation most favorable for steady flow generation. 

These barotropic simulations have been performed to clarify the dynamics of 
steady currents in the simplest case possible. The results will help design baroclinic 
experiments, which will provide more quantitative results and allow the exam- 
ination of the vertical structure of steady currents. 
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