Fast Chemical Reactions in Chaotic Flows: Predicting the Product Growth Rate

Yue-Kin Tsang

Scripps Institution of Oceanography
University of California, San Diego
Advanced Oxidation Processes

water treatment process to remove pharmaceutical contaminants using ozone and other reagents

Fluid flow (mixing) affects progress of reactions
Irreversible Bimolecular Reactions

\[A + B \rightarrow P \]

Example: acid-base reaction (neutralization)

\[\text{HCl}(aq) + \text{NaOH}(aq) \rightarrow \text{NaCl}(aq) + \text{H}_2\text{O}(l) \]
Irreversible Bimolecular Reactions

\[A + B \rightarrow P \]

Example: acid-base reaction (neutralization)

\[\text{HCl(aq)} + \text{NaOH(aq)} \rightarrow \text{NaCl(aq)} + \text{H}_2\text{O(ℓ)} \]

Advection-Diffusion-Reaction Equation

Concentration fields: $a(x, t)$, $b(x, t)$ and $p(x, t)$

\[
\frac{\partial a}{\partial t} + u \cdot \nabla a = \kappa \nabla^2 a - \gamma ab
\]

\[
\frac{\partial b}{\partial t} + u \cdot \nabla b = \kappa \nabla^2 b - \gamma ab
\]

\[
\frac{\partial p}{\partial t} + u \cdot \nabla p = \kappa \nabla^2 p + \gamma ab
\]

\[\langle a(x, 0) \rangle = \langle b(x, 0) \rangle = 1\]
Advection-Diffusion-Reaction Equation

Concentration fields: $a(x, t)$, $b(x, t)$ and $p(x, t)$

\[
\frac{\partial a}{\partial t} + u \cdot \nabla a = \kappa \nabla^2 a - \gamma ab
\]

\[
\frac{\partial b}{\partial t} + u \cdot \nabla b = \kappa \nabla^2 b - \gamma ab
\]

\[
\frac{\partial p}{\partial t} + u \cdot \nabla p = \kappa \nabla^2 p + \gamma ab
\]

⟨$a(x, 0)$⟩ = ⟨$b(x, 0)$⟩ = 1

Fast reactions:

reaction time \ll advection time \ll diffusion time

Goal: time dependence of mean product concentration

⟨p⟩ = 1 − ⟨a⟩
Flow Model and Simulations

\[u(x, t) = \begin{cases}
\sqrt{2} U \cos[k_f y + \theta_1(n)] \hat{i}, & n\tau < t \leq (n + \frac{1}{2})\tau \\
\sqrt{2} U \cos[k_f x + \theta_2(n)] \hat{j}, & (n + \frac{1}{2})\tau < t \leq (n + 1)\tau
\end{cases} \]

Domain size: \(2\pi L \times 2\pi L \) (scale separation \(\sim k_f L \))
Progress of Reaction

\[\langle a \rangle = 1 - \langle p \rangle \]

\[U = 0.22, \ k_fL = 1 \]

\[\frac{1}{D_a} = 0.13 \]

\[U = 0.17 \]

\[\frac{1}{D_a} = 0.22 \]

\[\frac{1}{D_a} = 0.50 \]
Progress of Reaction

\[U = 0.22 \, , \, k_fL = 1 \]

\[\langle a \rangle = 1 - \langle p \rangle \]

\[\exp(-\lambda t) \]
\[U = 0.22, \; k_f L = 1 \]

\[
\langle a \rangle = 1 - \langle p \rangle = \exp(-\lambda t)
\]

\[
\partial_t a = -\gamma a b \\
\partial_t b = -\gamma a b
\]
Relation to Decaying Passive Scalar

\[\frac{\partial a}{\partial t} + u \cdot \nabla a = \kappa \nabla^2 a - \gamma ab \]

\[\frac{\partial b}{\partial t} + u \cdot \nabla b = \kappa \nabla^2 b - \gamma ab \]

\[\phi \equiv a - b \]

\[\Rightarrow \quad \frac{\partial \phi}{\partial t} + u \cdot \nabla \phi = \kappa \nabla^2 \phi \]

For \textit{infinitely} fast reactions: \(a(x, t) \) and \(b(x, t) \) never overlap

\[|\phi| = |a - b| = a + b \quad (a \geq 0, b \geq 0) \]

\[\langle a \rangle = \langle b \rangle = \frac{\langle |\phi| \rangle}{2} \]
Verifying the Passive Scalar Approximation

$\frac{1}{D_a} = 0.13$
$U = 0.17$
$\frac{1}{D_a} = 0.22$
$\frac{1}{D_a} = 0.50$

$U = 0.22, k_fL = 1$

$\langle a \rangle = 1 - \langle p \rangle$

$\langle |\phi| \rangle = \frac{1}{2}$
Literature on Decaying Passive Scalar

“Strange eigenmode”
- B. J. Bayly, in *Nonlinear Phenomena in Atmospheric and Oceanic Sciences* (1992)

Variance decay rate from finite-time Lyapunov exponent (local stretching)

Validity of local stretching theory, decay rate based on effective diffusivity

Experimental studies

Other: KAM surface, Kraichnan model, forced scalar, boundary effects,...etc
Finite-time Lyapunov Exponent

Finite-time Lyapunov exponent, h

$$h(x, t) = \frac{1}{t} \log \left(\frac{\left| \delta x(t) \right|}{\left| \delta x(0) \right|} \right)$$

$$\bar{h} = \lim_{t \to \infty} h(x, t)$$

probability density function of h, $\rho(h, t)$ at large time:

$$\rho(h, t) \sim \exp[-tG(h)] \quad \text{as} \quad t \to \infty$$
Theory of Decaying Passive Scalar

Strange eigenmodes:

\[\phi(x, t) = \hat{\phi}(x, t) e^{-(s/2)t} \]

where \(\hat{\phi}(x, t) \) is statistically stationary, hence

\[\langle |\phi|^n \rangle \sim e^{-n(s/2)t} \]

Decay of scalar variance, \(\langle \phi^2 \rangle \sim e^{-st} \) as \(\kappa \to 0 \):

For \(k_f L \approx 1 \),

\[s = \min_h [h + G(h)] \]

For \(k_f L \gg 1 \),

\[s = \frac{\kappa_{\text{eff}}}{L^2} \]

where \(\kappa_{\text{eff}} \gg \kappa \) is the effective (eddy) diffusivity of the flow
Predicting \(\lambda \)

Recall for infinitely fast reactions,

\[
\langle a \rangle = \frac{\langle |\phi| \rangle}{2}
\]

and from the theory of passive scalar decay,

\[
\langle |\phi|^n \rangle \sim e^{-n(s/2)t}
\]

Hence, \(1 - \langle p \rangle = \langle a \rangle \sim e^{-\lambda t} \) gives \(\lambda = s/2 \).

For \(k_fL \approx 1 \),

\[
\lambda \approx \frac{1}{2} \min_h [h + G(h)]
\]

For \(k_fL \gg 1 \),

\[
\lambda \approx \frac{\kappa_{\text{eff}}}{2L^2}
\]
assumptions: (1) infinitely fast reaction
(2) \(\kappa \to 0 \) (more restrictive)

an optimal velocity correlation time, \(\tau \approx \frac{2\pi/k_f}{U} \)
Theory vs. Simulations: $k_fL = 5$

For our flow model, $\kappa_{\text{eff}} = \frac{U^2\tau}{8}$.

So the theoretical prediction is $\lambda = \frac{\kappa_{\text{eff}}}{2L^2} = 0.0031$.
Summary

- investigate the progress of fast bimolecular reactions in chaotic flows
- majority of product is formed during the exponential phase
- make prediction on the reactant decay (product creation) rate using decaying passive scalar theory

\[
\langle a \rangle = 1 - \langle p \rangle
\]

\[
d_t a = -\gamma_{ab}
\]

\[
d_t b = -\gamma_{ab}
\]

\[
\exp(-\lambda t)
\]

\[
U = 0.22, \ k_f L = 1
\]

\[
\frac{1}{Da} = 0.13
\]

\[
\frac{1}{Da} = 0.22
\]

\[
\frac{1}{Da} = 0.50
\]

\[
\tau = 10
\]

\[
\lambda
\]

\[
U
\]