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ABSTRACT

The purpose of this paper is to understand how long planetary waves evolve when propagating in a
subtropical gyre. The steady flow of a wind-driven vertically sheared model subtropical gyre is perturbed by
Ekman pumping that is localized within a region of finite lateral extent and oscillates periodically at about
the annual frequency after sudden initiation. Both the background flow and the infinitesimal perturbations
are solutions of a 21⁄2-layer model. The region of forcing is located in the eastern part of the gyre where the
steady flow is confined to the uppermost layer (shadow zone). The lateral scales of the forcing and of the
response are supposed to be small enough with respect to the overall gyre scale that the background flow
may be idealized as horizontally uniform, yet large enough (greater than the baroclinic Rossby radii) that
the long-wave approximation may be made. The latter approximation limits the length of time over which
the solutions remain valid. The solutions consist of (i) a forced response oscillating at the forcing frequency
in which both stable (real) and zonally growing (complex) meridional wavenumbers are excited plus (ii) a
localized transient structure that grows as it propagates away from the region of forcing. Application of the
method of stationary phase provides analytical solutions that permit clear separation of the directly forced
part of the solution and the transient as well as estimation of the temporal growth rate of the transient,
which proves to be convectively unstable. The solutions presented here are relevant to understanding the
instability of periodic (including annual period) perturbations of oceanic subtropical gyres on scales larger
than the baroclinic Rossby radii of deformation.

1. Introduction

a. Background and principal results

Chelton et al. (2004) analyzed four-year averages of
25-km-resolution measurements of near-surface wind
speed and direction and showed that they reveal the
surprisingly persistent small-scale features in ocean
winds. Superimposed on these persistent wind patterns
are temporally varying perturbations with magnitudes
comparable to the mean winds. The strongest of these
perturbations is the annual cycle. Chelton and Schlax
(1996) correspondingly documented energetic annual-

period Rossby wave sea surface elevation perturba-
tions.

Motivated by these observations, the goal of this pa-
per is to explain in detail how perturbations of a par-
ticular background subtropical gyre flow develop in
space and in time when forced by winds characterized
by scales much smaller than the gyre scale but much
larger than the baroclinic Rossby radii of deformation
that are started up at some initial instant and are
thereafter periodic in time.

The solutions found here thus consist of a transient
component and a component harmonic in time at the
forcing frequency. Within the confines of the approxi-
mations and restrictions noted below, it is found that
both the initial transient and the co-oscillating periodic
response to spatially localized, suddenly initiated peri-
odic Ekman pumping may be completely described by
approximate analytical techniques.

The most important results are as follows. The per-
turbations excited by a patch of Ekman pumping that is
localized within the eastern region of a subtropical gyre
and oscillates periodically after being suddenly initiated
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consist (i) of a directly forced solution that includes a
well-defined beam of waves oscillating at the forcing
frequency and radiating westward away from the forc-
ing region without spatial growth plus a further har-
monically oscillating part growing spatially toward the
southwest as well as (ii) of a localized transient struc-
ture that grows as it propagates away from the region of
forcing. Analytical approximate solutions permit clear
separation of the forced and the transient solution as
well as estimation of the growth rate of the transient,
which proves to be convectively rather than absolutely
unstable (Huerre and Monkewitz 1990), meaning that
growth occurs only for certain ranges of x/t, y/t as |x|, |y|,
|t| → �, rather than for all x/t, /y/t.

b. Previous studies

Chelton and Schlax (1996) suggested that purely pe-
riodic (annual period) wind-driven long planetary
waves can become energized in the western part of
ocean basins. Explanations of this in the literature in-
volve either (i) modification by midocean ridge topog-
raphy of long waves radiated from the eastern bound-
ary (Barnier 1988; Tailleux and McWilliams 2002) or
else (ii) baroclinic instability (Liu 1999a; Dewar and
Huang 2001; Kubokawa and Nagakura 2002). This pa-
per further explores (ii) the instability. Previous studies
in the literature that analyzed stability of long baro-
clinic waves in the subtropical gyre are as follows. Liu
(1999a) found a linearized planetary wave instability in
the southwestern part of a subtropical gyre that was
associated with coupling, by the background subtropi-
cal gyre flow, of the fast and slow modes of a 21⁄2 layer
QG model. Liu (1999a) perturbed the steady flow of an
eddy-resolving 3-layer QG ocean model with spatially
uniform 3-yr period Ekman pumping and correspond-
ingly found the 3-yr period ocean response to be “al-
most unchanged in longitude until it enters the south-
western part of the subtropical gyre, where linear
eigenvalue calculations show the strongest planetary
wave instability.” He suggested that this response was
related to the possibility that “the temporal instability
of an eigenmode (complex frequency with real wave-
number) may correspond to a spatially unstable radiat-
ing mode that is forced by a given frequency (real fre-
quency with a complex wavenumber).” Liu (1999b) as
well as Dewar and Huang (2001) carried out similar
model perturbation experiments but with a more com-
plex and partially ventilated subtropical gyre flow.
Dewar (1998) analyzed the effect of the mean flow on
the phase speed of long baroclinic waves in a subtropi-
cal gyre. Kubokawa and Nagakura (2002) studied the
evolution, in both ventilated and unventilated regions,
of disturbances generated by more localized initial dis-

turbances and/or regions of Ekman pumping, both by
the Fourier method and numerically. Even in the
present idealized case, with no horizontal current shear,
Walker and Pedlosky (2002) showed that, with nonzero
purely meridional background flow confined to the up-
per layer of a 2-layer QG model, there was no minimum
vertical shear required for instability so that instability
need not be confined to any particular region of the
subtropical gyre.

c. Restrictions and approximations

Ocean circulation varies over a range of time scales
from days to many years. Motivated by a desire to un-
derstand the effects of periodic forcing on the underly-
ing and much more slowly varying circulation, the nu-
merical model studies quoted above have typically been
carried out by generating a numerical solution retaining
all terms including nonlinear ones, first with steady
forcing and then additionally imposing the periodic
forcing (e.g., Liu 1999b; Dewar and Huang 2001). In
contrast, the accompanying supporting and interpretive
analytical studies linearize the periodic flow about a
background flow that is assumed steady [Liu 1999a,b;
Dewar and Huang 2001: the single nonlinear analytical
exception known to us is Dewar (1989)]. The solutions
of this paper are likewise linearized, about the particu-
larly simple background flow described below.

The overriding motivation for linearization is, of
course, the resulting great simplification of analysis.
Linearization generally fails when the amplitude of the
periodic forcing/flow becomes large, yet often provides
insight into the structure of more complete solutions.
Thus in the model studies quoted above, the authors
show that linearized solutions are very useful in under-
standing the spatial propagation and evolution of the—
in principle nonlinear—perturbations of model solu-
tions that are excited by spatially localized periodic
forcing. Note however that it is difficult to assess from
these studies the limits of validity of the linearized so-
lutions for the ocean, partly because these model stud-
ies do not attempt to closely match the strength of the
periodic forcing to that acting on the real ocean.

Investigation of the linearized solutions obtained be-
low was initially motivated by the observation of per-
sistent patterns in wind forcing on scales smaller then
the gyre scales (Chelton et al. 2004), and furthermore
we focus on the annual period signal. However, it is
important to note that the annual period solutions pre-
sented here are readily scaled to different periods, as
explained in section 3, and the effects on the sympa-
thetic part of the solution of changing the forcing pe-
riod are discussed in section 4.

Because the annual frequency is one of the most
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strongly energized frequencies in the ocean, lineariza-
tion may be less appropriate than at other frequencies.
In defense of linearization at the annual period, it is
appropriate to cite the qualitative correspondence be-
tween simple linear Rossby wave models driven by an-
nual winds and the sea level signal documented by
Chelton and Schlax (1996) and by Wang et al. (2001) in
the Indian Ocean. In the final analysis however, par-
ticularly for the annual period in the present baroclini-
cally unstable case, linearization must be viewed as a
preparation for more complete analysis rather than as
definitive.

In this paper, attention is restricted to unventilated
background flows. Kubokawa and Nagakura (2002)
compare free and forced solutions in the ventilated and
unventilated regions of a 21⁄2 layer model subtropical
gyre and find that the stability properties of the linear-
ized long-wave solutions are very different between the
two regions. This makes it difficult to simply anticipate
the results of extension of the present analysis to ven-
tilated regions; such an analysis must be left for a sub-
sequent study.

The most important remaining approximations are
(i) the assumption that the dominant scales of the so-
lutions are much smaller than the lateral scales of the
subtropical gyre so that the gyre flow may be idealized
as spatially constant and (ii) the long-wave approxima-
tion. It is important to note that i precludes exploration
of the effects associated with lateral variation in the
vertical structure of the modes. The long-wave approxi-
mation ii restricts the analysis to scales substantially
larger than the largest baroclinic Rossby radius of de-
formation. To simultaneously satisfy both i and ii, the
initial scales are chosen to be a good deal smaller (hun-
dreds of kilometers) than the scales characterizing the
gyre (thousands of kilometers) yet a good deal larger
than the baroclinic Rossby radii (tens of kilometers)
and solutions are presented only for times sufficiently
small that scales on the order of Rossby radii are not
yet strongly energized. While it is difficult to rigorously
satisfy these two requirements in a realistic subtropical
gyre, it is meaningful to investigate the solution dynam-
ics in detail since, on one hand, the long-wave model is
widely used to discuss basic ocean dynamics and, on the
other hand, there exist persistent wind features on
scales of several hundred kilometers (Chelton et al.
2004).

It has been shown that the fastest-growing waves in
the subtropical gyre flow are at the scales of the Rossby
radius of deformation (e.g., Spall 1994). This study pro-
vides detailed analysis of baroclinic instability acting on
larger scales at which the planetary geostrophic ap-
proximation is valid. A subsequent and more complete

analysis would include both the gyre scale and the
Rossby radius of deformation scales simultaneously.
Because of the complexity of this problem, it would
have to be addressed numerically. The present detailed
analytical study should thus be viewed as necessary
preparation for a more complete study that also in-
cludes smaller scales.

2. Dynamics

Theories of large-scale ocean flow commonly make
use of the planetary geostrophic (PG) approximation in
which the open ocean flow is geostrophic except for a
surface Ekman layer. A 21⁄2-layer PG model (appendix
A) is here supposed to govern the wind-driven steady
circulation of a subtropical gyre in a rectangular mid-
latitude basin. In this paper we consider small ampli-
tude time-dependent perturbations of such a steady
flow that are driven by specified time-dependent sur-
face Ekman pumping w�E(x, y, t). An important feature
of the steady solutions considered here is that, since the
deeper layers do not surface to be exposed to the wind,
the steady flow is confined to the upper layer. The 21⁄2-
layer equations for time-dependent perturbations �1

and �2 of the upper and lower interfaces between the
three layers of the background flow are (appendix A)

�2t � UR�2x � VR�2y � �1t and

�2t � c�2x � �C�1�x � w�E. �1�

In these equations and subsequently, subscripts x, y,
and t denote differentiation. For notational simplicity
we have introduced the abbreviations

C�x, y� 	
��1H1

0

f2 and c�y� 	
��2H20

f2 �2�

in which H0
j is the unperturbed depth of the base of

layer j (indices j � 1, 2, 3 correspond to the upper,
middle, and lower layer), the notation H20 	 H0

2 em-
phasizes that the depth of the bottom of the unper-
turbed stagnant middle layer is constant, f(y) is the
Coriolis parameter, the 
j are reduced-gravity param-
eters defined in appendix A, and

UR 	
�2

�1
�ug � cR� and VR 	

�2

�1
�g, �3�

where ug and �g are the mean upper layer geostrophic
velocity components �
1H0

1y/f and 
1H0
1x/f in the zonal

x and meridional y directions and cR � C � (
1/
2)c.

3. The initially forced problem

Suppose that both interfacial displacement perturba-
tions �1 and �2 are initially zero. Spatially localized
Ekman pumping w�E is turned on at the initial time t �
0 and thereafter oscillates at the fixed frequency �0. We
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call this the initially forced problem. The resulting so-
lution consists of a transient part that satisfies a homo-
geneous initial value problem and a sympathetic part
that oscillates at the frequency of the forcing.

We assume that the gyre scale over which the steady
background flow varies horizontally is substantially
greater than the horizontal scale of the perturbations.
Under this assumption c, C, UR, and VR are taken to be
constant. For validity of the underlying PG approxima-
tion, the horizontal scale of the perturbations must re-
main larger than the baroclinic Rossby radii character-
izing the stratification. This requirement ultimately lim-
its the length of time over which our solutions remain
valid approximations.

The governing equation for the time-dependent in-
terface displacement of the middle layer �2 is then,
from (1),

CUR�2xx � CVR�2xy � �c � C��2xt � �2tt � ��w�E�t,

t � 0 �4�

and �1 is given in terms of �2 by either of (1). We
ultimately consider a Gaussian patch of Ekman forcing
of width L

w�E � E�x, y�e�i�0t and E�x, y� �W0e��x
2�y2��L2

.

�5�

The initial conditions are

�1�x, y, 0� � 0 and �2�x, y, 0� � 0. �6�
Note that solutions �2(x, y, t) of (4), (5), and (6) are also
solutions �2(sx, sy, st), where s is any real scale factor,
provided that �0, W0, and L are scaled by �0/s, W0/s, and
sL. The solutions presented subsequently are thus
readily scaled up or down in space and time without
change of form (providing the scales remain larger than
the Rossby radii).

We Fourier transform (4) in space using the conven-
tions

�̂2�k, l, t� � �
�	

	

�
�	

	

�2�x, y, t�e�i�kx�ly� dx dy �7�

and

�2�x, y, t� �
1

4
2 �
�	

	

�
�	

	

�̂2�x, y, t�ei�kx�ly� dk dl �8�

to obtain

�CURk2 � CVRkl � �c � C�ik�t � �tt��̂2

� i�0Ê�k, l�e�i�0t, �9�

where Ê(k, l) is the Fourier transform of the Gaussian
disturbance (5)

Ê�k, l� �W0L2
e�L
2�k2�l2���4. �10�

The solutions for �̂1 and �̂2 with Fourier transformed
initial conditions (6) consist of a transient (T) part and
a sympathetic (S) part that oscillates at the forcing fre-
quency �0:

�̂1 � �̂1T � �̂1S and �̂2 � �̂2T � �̂2S. �11�

The sympathetic solution is given by the Fourier trans-
form of the first of (1) with harmonic time dependence
and by (9) as, respectively,

�̂1S � �0�̂2S and �̂2S �
i�0Ê�k, l�e�i�0t

��0 � �����0 � ���
,

�12�

where ��(k, l) and �� (k, l) are the two solutions of the
dispersion relation for plane wave solutions of the ho-
mogeneous version of (9),

�2 � ��c � C�k � CURk2 � CVRkl � 0, �13�

and, from (1), �0 is

�0 � ��0 � kUR � lVR���0. �14�

The properties of free solutions with dispersion relation
(13) have already been discussed by Liu (1999a,b) and
by Kubokawa and Nagakura (2002). The two roots of
(13) correspond to the fast and slow baroclinic mode, or
the “Non Doppler Shift” (N) and the “Advective” (A)
modes of Liu (1999a), which reduce to the first and the
second internal baroclinic mode in the case of no back-
ground flow. When the solutions become unstable,
their vertical profiles are no longer necessarily orthogo-
nal, but the decomposition into fast and slow modes
implicit in the present method of solution remains
unique. The wavenumber dependence of the fast root is
summarized in Fig. 1. The properties of the solutions
necessary for understanding the evolution of the solu-
tions of the initially forced problem will be invoked as
needed in the subsequent text.

The transient solution �̂2T satisfies the homogeneous
version of (9), so that �̂1T and �̂2T can be written in the
form:

�̂1T�k, l, t� � ��Ae�i��t � ��Be�i��t and

�̂2T�k, l, t� � Ae�i��t � Be�i��t �15�

in which �� and �� are given, from (1), by

�� � ��� � kUR � lVR���
� and

�� � ��� � kUR � lVR���
�. �16�

The coefficients A and B are obtained from the initial
conditions.

The corresponding transient and sympathetic solu-
tions for �2 in physical space are finally given by
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�2T�x, y, t� � Re� �
�	

	

�
�	

	

Ê�k, l�

��� � ���
ei�kx�ly�� �i��

�0 � ��
e�i��t �

i��

�0 � ��
e�i��t�dk

2


dl

2
� �17�

and

�2S�x, y, t� � Re�e�i�0t�
�	

	 �
�	

	

Ê�k, l�ei�kx�ly�
i�0

��0 � �����0 � ���

dk

2


dl

2
�. �18�

Similar expressions for �1T and �1S are readily obtained from these:

�1T�x, y, t� � Re� �
�	

	

�
�	

	

Ê�k, l�

��� � ���
ei�kx�ly���i����

�0 � ��
e�i��t �

i����

�0 � ��
e�i��t�dk

2


dl

2
� �19�

and

�1S�x, y, t� � Re�e�i�0t�
�	

	

�
�	

	

Ê�k, l�ei�kx�ly�
i�0�0

��0 � �����0 � ���

dk

2


dl

2
�. �20�

FIG. 1. The dispersion relation (13) for the �� (fast) mode in the presence of the southwestward
background flow: contours of (left) Re(��) (yr�1) and (right) Im(��) vs horizontal wavenumber com-
ponents k and l (cycles km�1). Elliptical lines show contours in wavenumber space of the amplitude of
the Gaussian forcing (physical space width 500 km) relative to the amplitude at k � 0, l � 0. See text for
parameters.
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4. Solution of the initially forced problem

a. Numerical solution for transient and sympathetic
components

This section discusses solutions �1(x, y, t) and �2(x, y,
t) of (1) initiated from rest by Ekman pumping of the
Gaussian form (5) initiated at time zero and subse-
quently periodic with annual frequency �0. These have
been evaluated both by summation of Fourier compo-
nents in a periodic domain whose lateral extent is much
greater than that of the forcing and by time stepping the
finite difference versions of (1) forward in the same
domain. In the Fourier method, the initial conditions
and forcing are decomposed into Fourier components
ei(kx�ly), each Fourier component is independently ad-
vanced in time according to its dispersion relation � �
�(k, l) by multiplication by e�i�(k,l)t, and the Fourier
components are then recombined as in (17) through
(20) to give the solutions at time t.

The background flow is that prevailing in the eastern
part of a steady and unventilated subtropical gyre oc-
cupying a midlatitude basin of meridional extent 3000
km and zonal extent 10 000 km, driven by steady Ek-
man pumping of the form (52). The resting depths (be-
fore application of the steady Ekman pumping) of the
base of two upper layers of the model H10 and H20 are
chosen to be 500 and 1000 m with reduced-gravity pa-
rameters (appendix A) 
1� 0.0245 and 
2� 0.01 m s�2.
At the location at which the time-dependent perturba-
tion wind patch (5) is centered (1000 km west of the
eastern boundary of the basin and 1000 km north of its
southern boundary), the corresponding wave scale
speeds C and c [(2)] are, respectively C � 4.60 and c �
3.23 cm s�1. For the particular example shown here, the
coefficients UR and VR appearing in (1) have the values
UR � �2.3 cm s�1 and VR � �1.9 cm s�1. The zonal
component of the geostrophic velocity at this location is
ug � �2.8 cm s�1 and the meridional component of the
geostrophic velocity �g � �4.7 cm s�1, so the angle be-
tween the mean flow and the zonal direction is 239°.
Figure 1 shows that the direction of the wave vector k,
l associated with the fastest temporal growth Im(��(k,
l)) for the root ��(��) of (13) is 59° (239°) so that the
mean flow direction determines the direction along
which the fastest-growing Fourier component wave-
numbers lie. The direction of the wavenumber vector of
the fastest-growing modes is determined by the compe-
tition between maximal energy release for a wave vec-
tor oriented parallel to the mean flow and the � effect,
which stabilizes the flow for the perturbations across
the mean potential vorticity gradient (Pedlosky 1987).
The fact that the direction of the wavenumber vector of

the fastest-growing mode is almost parallel to the di-
rection of the mean flow suggest that the vertical shear
is strong enough to overcome the stabilizing effect of �.
The Rossby radii are 41 and 17 km, values comparable
to those in the related work of de Szoeke and Chelton
[1999, (2.11)].

Figure 2 shows the Fourier summation solution for �1

and �2 at 500, 900, and 1200 days after the initiation of
forcing. The solutions after 2000 days are shown in the
upper panels of Fig. 4. The origin of coordinates x � 0,
y � 0 in the figure is the center of the region of forcing.
The background flow and forcing parameters are those
of Fig. 1. After 900 days a well defined beam of stable
waves is directed slightly toward the north of west away
from the region of forcing, but the full Fourier solution
contains an additional transient feature (17) and (19)
that travels westward and clearly grows substantially
from 900 days to 2000 days. Careful examination of Fig.
2 shows that the in-phase nature of the fluctuations of
�1 and �2 that prevails in the beam of the sympathetic
solution is replaced by an order 90° phase shift in the
growing region. The growth is clearly the result of baro-
clinic instability of the background steady flow, already
noted by Liu (1999a), Dewar and Huang (2001), and
Kubokawa and Nagakura (2002).

Numerical evaluations (not shown) of the Fourier
solution for the beam indicate that, as the frequency of
Ekman pumping is increased, the distance between ex-
trema in the beam decreases and the amplitude of the
beam also decreases, but the direction of the beam is
not visibly frequency dependent. For the present pa-
rameters, radiation in the beam is virtually extinguished
for forcing frequencies of 0.5 cpy or higher. It is clear
from the dispersion relation (13) that increasing the
frequency decreases the wavelength of the sympathetic
solution, but simple arguments do not predict the di-
rection of the beam nor do they explain the decrease in
beam intensity at high frequencies.

The Fourier summation and finite difference meth-
ods are very flexible but, on account of necessarily lim-
ited spatial resolution and “wrap around” in the peri-
odic spatial domain, they are not well suited to answer
a number of questions raised by the solutions of Fig. 2.
Those questions are:

(i) Is the beam appearing in Fig. 2 the entire sympa-
thetic solution?

(ii) Why is the beam so strongly directional?
(iii) Why is radiation at the forcing frequency strongly

inhibited at higher frequencies?
(iv) What is the long-time structure of the transient

solution?
(v) Is the instability of the transient solution convec-
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tive in the manner defined by Huerre and Monke-
witz (1990)?

To answer these questions it is necessary to develop
solutions free of the shortcomings of the Fourier
method. We therefore next work out analytical ap-
proximations to the solutions valid for long times after
the initiation of forcing.

b. The sympathetic solution

The foregoing Fourier component summation solu-
tion of the initially forced problem consists of a tran-
sient, (17) and (19), and a sympathetic, (18) and (20),
part. It was seen in Fig. 2 that this transient solution
may become unstable. The fact that the plane wave
dispersion relation (13) may have complex wavenum-
bers k and l for real frequencies � suggests, as noted by
Liu (1999a), that the sympathetic solution might grow
spatially. Does it do so?

The full sympathetic solution, with allowance for
possible spatial growth, may be found by a highly sim-
plified version of the method of Briggs (1964, chapter 2:
8–46). If we rewrite the Fourier transform (10) of the
Gaussian disturbance (5) as Ê(k, l) � Ê(k)Ê(l) with
Ê(k) � L��W0e�k2L2/4, and so on, then the sympa-
thetic solution (18) may be rewritten as

�2S�x, y, t� � Re� �
�	

	

Ê�l�eily�2S
x �x, l�

dl

2
�, �21�

where

�2S
x �x, l� 	 � �

�	

	

i�0

��0 � �+���0 − �−�
Ê�k�ei�kx−�0t�

dk

2
�.

�22�

FIG. 2. A snapshot of the upper- and the middle-layer Fourier summation interface displacement (�1, �2: m) for the total
solution (sympathetic plus transient) at times 500, 900, and 1200 days after initiation of forcing. The parameters describing
the background flow are those of Fig. 1. Contour levels are 80, 50, 25, 15, 10, 5, 2, 1, 0.5, and 0.25 m.
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Here �x
2S(x, l) may be written in terms of a Green’s

function G2 as

�2S
x �x, l� � �

�	

	

G2�x � x��e�x�2�L2
dx� �23�

with similar expressions for �x
1S(x, l) and G1. From (1),

G1 and G2 obey the coupled equations

�i�0G2 � URG2x � ilVRG2 � �i�0G1 and

� i�0G2 � cG2x � CG1x � �x�. �24�

Here G2 is continuous across the origin x � 0 but G1

jumps discontinously in the amount�1/C as x increases
across the origin: G1 and G2 are of the form Aeik�x �
Beik�x away from the origin, where A and B are con-
stants and k� and k� are the solutions of the quadratic
equation in (13) with real l and with frequency �0 (the
superscript signs correspond to the sign choice in the
quadratic formula in solving for k). Once A and B have
been chosen, then the integrations in (21) and (23) may
be done numerically.

The solutions k� and k� are plotted in Fig. 3 for real
l and for the annual frequency �0. They are complex

when l lies between two critical meridional wavenum-
bers lup and llo (where lup � llo). We thus consider the
three separate cases l � lup, l � llo, and lup � l � llo. For
l � lup both k� and k� are real, and may be shown to
correspond to free waves with westward group velocity.
The radiation condition thus requires that

G2�x� � Aeik�x � Beik�x,

G1�x� � ��Aeik�x � ��Beik�x, x � 0, and

G2�x� � G1�x� � 0, x � 0. �25�

The constants A and B are fixed by the continuity of G2

and the jump of G1 across the origin noted above. For
l � llo both k� and k� are again real and may be shown
to correspond to free waves with eastward group veloc-
ity for k� and westward group velocity for k�. The
radiation condition thus requires that

G2�x� � Aeik�x, G1�x� � ��Aeik�x, x � 0,

and

G2�x� � Beik�x, G1�x� � ��Beik�x, x � 0. �26�

Again the constants A and B are fixed by the continuity
of G2 and the jump of G1 across the origin noted above.

FIG. 3. For the parameters of Fig. 1, the dispersion relation (13) is solved for zonal wave-
number k assuming that the meridional wavenumber l and the frequency �0 are real, and the
results are plotted in the k, l plane (km�1). The hyperbolic lines show the real part of k, and
the vertical line with circle shows the imaginary part of k. For llo � l � lup, k is complex. As
noted by Liu (1999a), complex values of k may correspond to spatial growth.
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For the particular parameters of the solutions of this
paper, very little energy appears in meridional wave-
numbers l� llo on account of the small amplitude of the
Gaussian forcing at meridional wavenumbers l � llo in
wavenumber space.

For llo � l � lup both k� and k� are complex, and the
radiation condition no longer determines the form of
the solution on either side of the origin. Pedlosky (2005,
personal communication) has pointed out that, in this
case, a heuristic version of the procedure of Briggs
(1964) may be used to obtain the form of the solution
away from the origin. The procedure is to add artifi-
cially large damping (�i�0 → �i�0 � �, � large) and to
determine the form of the solution (the constants A and
B) on either side of the origin by retaining only those
terms that correspond to dissipatively dominated decay
away from the origin. Once this has been done, let the
damping decrease to zero without changing A or B. If a
solution that decays away from the origin when domi-
nated by large dissipation grows in the same direction
when the dissipation is sufficiently reduced toward
zero, then that solution is spatially unstable and must be
retained. This is the frictional equivalent of the causal-
ity condition enforced by requiring the radiation con-
dition in the case where k� and k� were real. In the
present case, when the substitution, �i�0 → �i�0 � �,
is made in the dispersion relation (13), then for large �
both k� and k� correspond to westward decay but as �
→ 0, k� switches to westward growth. Consequently,
for llo � l � lup,

G2�x� � Aeik�x � Beik�x,

G1�x� � ��Aeik�x � ��Beik�x, x � 0, and

G2�x� � G1�x� � 0, x � 0, �27�

and the constants A and B are fixed by the continuity of
G2 and the jump of G1 across the origin noted above.
The result is that the sympathetic solution is spatially
unstable and grows westward.

Because meridional wavenumbers for which l � llo
make effectively no contribution to the present solu-
tion, that solution may also be obtained by making a
finite difference approximation to the y derivative in
(1) and then integrating the resulting equations with
harmonic time dependance westward from the eastern
boundary. Parameters such as domain size, etc. enter
the finite difference code in a simpler manner than the
code that evaluates (21)–(27) so that the solutions for
�1(x, y) and �2(x, y) shown in the lower panels of Fig.
4 for the parameters and domain of Fig. 2 were actually
obtained by the finite difference method.

Figures 2 and 4 make clear that, as the full solution

evolves, ever higher amplitudes are found ever farther
west and south of the initially forced region. Compari-
son of the full solution (Fig. 4, upper panels) after 2000
days with the sympathetic solution (Fig. 4, lower pan-
els) shows that, as the most rapidly growing region
moves westward, it “leaves behind” the sympathetic
solution, first the narrow stable beam (composed of
Fourier components with meridional wavenumbers l �
lup) and then the westward growing part (composed of
Fourier components with meridional wavenumbers
llo � l � lup). The latter is just beginning to be clearly
visible by day 2000.

The sympathetic solution �2(x, y) given by (21)–(27)
may be thought of as a Green’s function convolved in x
and y with the Gaussian forcing. In the course of solving
(21)–(27) when l � lup, that Green’s function (not
shown) could be constructed by letting the factors Ê(l)
and Ê(k) in (21) and (22) be constant; it was a compli-
cated function of position characterized by very differ-
ent local wavelengths at different locations. When con-
volved in x and y with the Gaussian forcing, this com-
plicated pattern became the simple beam pattern of
Fig. 4 because the very anisotropic dispersion relation
(13) forces the longest waves to be found in only one
particular direction, that of the beam, and it is only
those largest-scale waves that survive the smoothing
associated with the convolution. As the frequency is
increased, the dispersion relation (13) indicates that the
waves become shorter and are consequently more
strongly attenuated by the convolution; that is why in-
creasing the frequency ultimately extinguishes the
beam.

c. Stationary phase approximation to the transient
solution

To be able to answer the questions posed when ana-
lyzing the numerical solution at the end of section 1, in
particular the question of whether the instability ob-
served in the solution is absolute or convective, we next
construct an analytical approximation to the transient
solution.

The initial conditions satisfied by the transient solu-
tion (17) must cancel the sympathetic solution (18)
evaluated at the initial time. But, the sympathetic solu-
tion evaluated at the initial time is a complicated and
spatially extended function of x and y. To more clearly
understand the evolution of the transient solution, we
instead consider more compact initial conditions

�2�x, y, 0� � �20�x, y� and �1�x, y, 0� � �10�x, y� �28�

in which both �10(x, y) and �20(x, y) are taken propor-
tional to the Gaussian e�(x2�y2)/L2

of (5). The solution
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for �̂2T(k, l, t) is still of the form (15) in which the
coefficients A and B are given by

�A

B	 � ��� ��

1 1
	�1��̂10

�̂20
	. �29�

Inverse Fourier transformation of (15) then furnishes
�1T and �2T.

We solve the homogeneous initial value problem as-
ymptotically for large time using the method of steepest
descents. The classical asymptotic inverse Fourier
transformation (8) for the initial value problem as t →
� is given by a sum of terms each one of the form

�2 �

exp�i�k0

x

t
� l0

y

t
� �0	t�

t
det� �2�

�ki�kj
	

G�k0, l0� �30�

where �0 � �(k0, l0) denotes the dispersion relation
(13), �k�0 � (x/t, y/t) defines the stationary phase
points (e.g., Carrier et al. 1966), and G(k, l) gathers
together all the remaining k and l dependence of the
integrand. It can easily be shown from (13) that

det� �2�

�ki�kj
	 � 0

everywhere in wavenumber space and the form (30)
fails in general. (This comes about because the long
wave assumption has been made.) Nevertheless, there
is an orientation of coordinates that makes the matrix

� �2�

�ki�kj
	

diagonal and one of the eigenvalues is nonzero; we thus
may integrate in the direction of the nonzero eigen-

FIG. 4. (top) Snapshot of the upper- and middle-layer Fourier summation interface displacement (�1, �2: m) for the total solution
(sympathetic plus transient) at time 2000 days after initiation of forcing. (bottom) As in top but for the sympathetic solution. The
parameters describing the background flow are those of Fig. 1. Contour levels are 4000, 3000, 1000, 300, 100, 30, 10, 5, and 1.0 m;
amplitudes at the far western edge of the bottom panels are on the order of 1010 m.
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value. We accordingly work in cylindrical polar coordi-
nates; the wavenumber vector components k and l are
then described in terms of the magnitude of the wave-
number vector � and the angle � that the wavenumber
vector makes with the zonal direction. We first perform
the integration over the angle � by the method of steep-
est descents. Thereafter, for the present special case of
a Gaussian initial disturbance we may perform the in-
tegration over the wavenumber magnitude � again by
the method of steepest descents. The radial profile of
the cylindrically symmetric initial disturbance thus in-
fluences only the result of the last integration.

The middle layer interface displacement �2T (x, y, t)
is then a sum of terms of the form

�L2
�
�	

	

�
�	

	

e��k
2 � l2�L2�4ei�kx�ly��t�G�k, l�

dk

2


dl

2
�
�31�

in which � is either �� or ��. In polar coordinates �, �
this term becomes

Re�L2
�
0

	

�e��2L2�4ei�Ct����G��, ��
� d�

2


d�

2
�, �32�

where � is the phase given by

� � � cos��� � � sin��� � H cos��� �33�

and we have introduced

� �
x

Ct
�

a

2
, � �

y

Ct
, and H �

�

C� cos�
�

a

2
�34�

with a � 1 � c/C. Here � and � are scaled horizontal
coordinates that move westward with the frontal fea-
ture of the disturbance (defined below).

The � integration in (32) may be carried out using the
method of steepest descents for large time t. The sta-
tionary phase points �0(�, �) are solutions of

�� � ���� � � � H� � H�� cos��� � 0 �35�

in which � 	 tan(�). To solve this transcendental equa-
tion for �0(�, �), make use of the dispersion relation
(13) written in terms of H,

H2 � b � �� �36�

in which

b 	
a2

4
� u, u 	

UR

C
, and � 	

VR

C
. �37�

Eliminating reference to � and H between (35) and
(36) yields a quartic whose coefficients have no explicit
dependence on �,

H4 � 2H3� � 2H�b� � ��� � �b2 � �2� � 0. �38�

Solutions of this are the quantity

H0 �
�

C� cos��0�
�

a

2

evaluated at the stationary phase points � � �0. The
value of �0 itself then readily follows from (36). The
stationary phase values �0 may be complex, corre-
sponding to growth or decay of their contribution to the
solution. The term (32) thus becomes

Re�L2
�
0

	

e��2L2�4ei�Ct�0ei���0�
G��, ��

�|�Ct�0��|

� d�

2
 �,

�39�

where �0 denotes �(�0), �(�0) � �/4 � arg(�0��)/2,
and the phase of �0�� is chosen so that ��/2 � �0�� �
3�/2. The � integration is now readily carried out by
stationary phase when t is large to finally obtain

�2T�x, y, t�

� Re�
�0

�L�2
4

ei���0�

e�
C2t2�0

2

L2 �0G��0, �0�

�|�0Ct�0��|
�. . .

�40�

in which �0 is the stationary phase point

�0 �
2itC�0

L2 �41�

and in which the sum reminds us that there are gen-
erally several stationary phase points for each field
point �, �.

1) FRONT

Expression (40) shows that the maximum value of
the solution, initially the peak of the initial Gaussian,
remains very near the curve in the �, � plane defined by

�0 � � cos��0� � � sin��0� � H0 cos��0� � 0, �42�

for times sufficiently short that the solution is not domi-
nated by growth associated with complex stationary
phase values �0. We call this curve the front (Fig. 5). To
obtain an equation for the front whose coefficients are
not functions of �0(�, �), use (36) to eliminate H�(�0)
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from (35) and combine with (42) in the form � � ��0 �
H0 � 0 to find � � �/(2H0). Now use this and (36) to
eliminate reference to �0 and to H0 from (42) to finally
obtain the equation for the front as

� �
�

4�
�

�b

�
�43�

in which � is defined in (36). For large |�|, the front
asymptotes to � � � b/� and to � � 0. It has focii at
� �  ���2b/4, � � 0. Since the coordinates � and �
move westward at speed (c � C)/2, the frontal pattern
of Fig. 5 also propagates westward without change at
this speed, even though the full solution changes form
as it evolves in the moving coordinates.

2) CAUSTICS

The solution (40) displays caustics, shown in Fig. 5.
They represent a boundary between a region with a
complicated wave pattern where groups of waves inter-
fere and a neighboring region where two fewer groups
of waves (possibly none) interfere (Lighthill 1978). At a
caustic the first and the second derivatives of the phase
vanish:

����� � 0 and ����� � 0, �44�

causing the stationary phase solutions to break down at
the caustics. In principle this local difficulty may be
overcome by using the Airy integral to produce a

FIG. 5. (top) Snapshot of the time-dependent interface displacement of the middle layer (�2T; m) for the transient
solution obtained by stationary phase after 500 days for the Gaussian initial conditions �20(x, y) � e�(x2�y2)/L2

and �10(x,
y) � 0 with L � 500 km. The largest amplitude occurs approximately at the zonal position where the slow mode
contribution to the solution would have been centered without background flow, with a strong secondary maximum
further to the west at the zonal position where the fast mode contribution to the solution would have been centered
without background flow. The maximum amplitude of �2 is about 1.1 m, whereas the maximum initial amplitude of �2 was
1.0 m. The light solid line is the front (43). Contour intervals are from 0.1 to 1.0 m with an increment of 0.1 m. (bottom)
Same as top but for 900 days. The light solid line is the caustic (46); the solution grows in the region between the caustics.
In the middle of the group, the gradient of elevation is nearly parallel to the central axis of the wedge of unstable
wavenumbers of Fig. 1. The maximum amplitude of �2 is about 1.8 m; contour intervals are from �0.6 to 1.8 m with an
increment of 0.2 m. In both panels solid contours are positive; dashed contours are negative.
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“healed” version (Lighthill 1978). That has, however,
not been done for the solutions discussed below (Fig. 5).

The first of the equations in (44) may be solved to
find the stationary phase values �0 of � as in the pre-
vious section yielding (35). For each stationary phase
value of �0, (44) constitute two equations for � and �
whose solutions define the caustic curves. Insert � ob-
tained from the first of the expressions (44) into the
second one to obtain � as

� �
3�2�0 � �2�0

3 � 2�b

4H0
3 , �45�

where H0 is defined by the dispersion relation in the
form (36) with � � �0. From (45) and (44) we get

� �
�2�1 � �0

2�2

4H0
3 � H0 � ��0. �46�

The caustics, asymptote at large distances �, � to �/2
and arctan(�b/�). The caustics meet in cusps at points
of the �, � plane where the first three derivatives of
phase with respect to the wavenumber vector direction
� are zero:

����� � 0, ����� � 0, and ����� � 0. �47�

There are two such points, given by � � �b  
(b2 � �2)1/2/�; � and � are given by (46) and (45).

Between the caustic curves of Fig. 5 the parts of the
solution corresponding to the complex stationary phase
points grow in time for the present baroclinically un-
stable case. In the remainder of the domain however,
outside of the caustic curves, all the stationary phase
points the contribute to the solution are real and do not
result in growth. In this manner, the confinement of
complex stationary phase points to just a part of the �,
� plane causes the growing part of the solution to be
restricted to just a part of the x, y plane at any time so
that the instability is convective in the manner defined
by Huerre and Monkewitz (1990) rather than absolute.

3) DISCUSSION OF STATIONARY PHASE SOLUTION

The initial conditions are of the form (28) with the
particular choice �20(x, y) � e�(x2�y2)/L2

and �10(x, y) �
0. This choice insures that both fast and slow modes are
strongly energized in the solution. The choice of sta-
tionary phase points is discussed in appendix B. As
noted above, the Gaussian scale is chosen to be L� 500
km, whereas the Rossby radii are 41 and 17 km.

The stationary phase solutions (40) for �2 are dis-
played in Fig. 5 in the coordinates �, � at two different
times. A point fixed in those coordinates moves west-
ward with speed (c � C)/2 and radially outward at
speed C in the physical space coordinates x, y. Conse-

quently much (but not all) of the evolution of the so-
lution in physical space coordinates x, y is just westward
drift at speed (c� C)/2 and radial expansion at speed C.
These stationary phase solutions are in good agreement
with their less well resolved Fourier counterparts ex-
cept in the vicinity of the caustics. We may now answer
a number of questions about the transient solution. 1)
Why does the dominant part of the transient solution
quickly elongate itself north-of-west to south-of-east?
2) Why does the solution evolve from the initial Gaus-
sian to a pattern with two distinct maxima (Fig. 5a) to
a pattern with a single central maximum (Fig. 5b)?

In answer to question 1, initially the distribution of
energy in wavenumber space is isotropic and so is the
solution. As Fourier components whose wavenumbers
lie in the unstable wedges of Fig. 1 grow, however, the
solution increasingly consists of waves whose crests and
troughs are oriented north-of-west to south-of-east at
right angles to the axis of the wedge of unstable wave-
numbers of Fig. 1 and its counterpart for �� (not
shown). For question 2, as the solution initially evolves
(Fig. 5a) the largest amplitude for �2 occurs approxi-
mately at that zonal position in the basin where the
slow mode contribution to the solution would have
been centered in the absence of background flow, but
there is a strong secondary maximum farther to the
west at which the fast mode contribution to the solution
would have been centered in the absence of back-
ground flow. The same two extrema appear in �1 (not
shown) but with different relative amplitudes.
Kubokawa and Nagakura (2002) obtained a similar pat-
tern by summing Fourier modes; whereas they discuss
the solution in different parts of the ocean, we focus on
a more complete description of the space and time
variation of the solution. The maximum amplitude of �2

for the solution of Fig. 5a is about 1.1m whereas the
maximum initial amplitude of �2 was 1.0 m; it is thus
clear that baroclinic instability is not yet an important
factor in the evolution of the solution.

At some time, when solving by summing Fourier
modes, the smallest-scale resolved components are en-
ergized. At that point they can no longer interfere with
yet-smaller-scale components in the same manner as
they do in the fully resolved solution so that the short-
est resolved components spuriously dominate the nu-
merical solution, giving it a “checkerboard” texture.
The stationary phase solution does not have such a
short wave resolution limit. Figure 5b thus shows the
stationary phase solution at a time appreciably later
than that of Fig. 5a. Now the maximum amplitude is
significantly greater than that of the initial condition,
indicating that baroclinic instability has become a more
important factor in the evolution of the solution.
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By whatever method they have been obtained, the
solutions remain valid providing that the dominant
horizontal scale are larger than the baroclinic Rossby
radii. The limiting time scale at which this ceases to be
true has not yet been reached in the solutions of Fig. 5.

What is the nature of the different wave groups that
interfere to produce the full transient solution? The
stationary phase angles �0(�, �) may be deduced from
the quantity H defined in (35). Figure 6 shows H ob-
tained by solving the quartic (38) for �, � lying on two
circles (of radius R � 10 and R � 1.5) centered at the
origin of coordinates in the �, � plane as a function of
the angle ! � tan�1(�/�). The four angles associated
with the two caustics shown in Fig. 5 are clearly visible.
Also shown are large R approximations to the locations
of the caustics (appendix C).

At large R (Fig. 6a), there are four real stationary
phase points �(�, �) for the largest values of !. As !
decreases through successive caustic angles, one pair of
these coalesces into a complex conjugate pair at the
first (largest) caustic angle, that pair divides into two
real values at the second caustic angle, the other real
pair coalesces into a complex conjugate pair at the third
caustic angle, and that pair finally divides into two real
values at the fourth (smallest) caustic angle. In this way,

the caustics divide the �, � plane into two sectors
(roughly vertically above and below the dominant re-
gion of the transient solution) in which some local
wavenumber components grow exponentially, and two
sectors (roughly east and west of the dominant part of
the transient solution) in which all local wavenumber
components propagate without growth.

At small R (Fig. 6b), the range of ! for which all
stationary phase points are real is much smaller than for
larger R, and correspondingly the region of the �, �
plane in which all local wavenumber components
propagate without growth is much smaller for radii near
the central region of the solution than for radii further
away.

Is the transient solution absolutely or convectively
unstable? This question cannot be definitively an-
swered using the method of Fourier summation be-
cause both limited resolution and “wrap around” make
it difficult to examine the long time behavior of the
solution at a fixed point. With the stationary phase so-
lution, however, it is relatively easy to evaluate, for
example, �2(x, y, t) either at fixed x, y as t increases or
else at fixed x/t, y/t as t increases. Figure 7 shows the
result at a number of different times.

The growth following the disturbance is clearly some-

FIG. 6. Four roots H0i of the quartic equation (38) for the quantity H0 � [�/C� cos(�0i)] �
(a/2) in which the �0i are the stationary phase points of the � integration of (32) along two
circles of radius R [(top) large R � 10 and (bottom) small R � 1.5] in the �, � plane as a
function of angle ! � tan�1(�/�). The real and imaginary part of H0 are shown as black and
gray solid lines, respectively.
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what more rapid than a simple exponential in time. This
reflects the successive instantaneous dominance of ever
shorter, and hence (Fig. 1) more unstable, Fourier com-
ponents. As noted above, the present solutions will no
longer be valid when Fourier components whose scales
approach the baroclinic Rossby radii are excited. That
limit has not been reached in any of the solutions pre-
sented here but it ultimately limits their validity.

Since the solution at the origin ultimately tends to-
ward zero even though the solution following the dis-
turbance clearly grows without limit, we may say that
the PG solution is convectively unstable, but the PG
approximation precludes literally taking t → �.

5. Discussion and conclusions

The purpose of this paper is to study the nature of
long baroclinic wave propagation and instability in an
idealized unventilated subtropical gyre flow with verti-
cal shear. The new results are a detailed analytical de-
scription of the spatial structure of the long planetary
wave disturbance that results when the flow in the east-
ern part of an unventilated steady subtropical gyre is
perturbed by a region of spatially localized Ekman
pumping initiated at some initial time and thereafter
oscillating at a frequency on the order of a cycle per
year. Both the background flow and the perturbations
are solutions of a 21⁄2-layer model, the region of forcing
is located in the eastern part of the gyre where the
steady flow is confined to the uppermost layer.

Besides linearization and restriction to unventilated
background flows, the most important approximations
are (i) neglect of relative vorticity so that only long
(PG) planetary waves are considered and (ii) neglect of
the spatial variation of the background flow so that
phenomena such as refraction are neglected. The first
approximation is not violated provided that the hori-
zontal scale of the forcing is initially chosen to be sig-
nificantly larger than the baroclinic Rossby radii char-
acterizing the background flow. Chelton et al. (2004)
showed that persistent wind features exist on scales of
several hundred kilometers. The solutions studied in
this paper are all for times shorter than the time at
which the horizontal scales of the disturbance have de-
creased to the Rossby radii characterizing the back-
ground flow. The second approximation requires that
the horizontal scales of the gyre be substantially greater
than the horizontal scale of the forcing. Both approxi-
mations are reasonably well satisfied for long waves
propagating through a background flow with weak spa-
tial variations over sufficiently short times.

The most important results of the analysis are as fol-
lows.

1. The result of spatially localized surface Ekman
pumping initiated at some initial time and thereafter
oscillating at a frequency on the order of a cycle per
year is (i) a directly forced part of the solution whose
stable wavenumber contributions form a well-
defined and narrow beam of stable waves emanating
from the forcing region (Fig. 4), co-oscillating at the
forcing frequency and not growing spatially plus an
unstable contribution that grows spatially toward the
southwest, and (ii) an accompanying transient (Figs.
2 and 5) that emanates from the forcing region with
a westward component of velocity and grows in time
as it propagates.

2. The direction of the co-oscillating beam is fixed (to
be slightly north of westward) by the dispersion re-
lation for free waves and by the degree of spatial
localization of the forcing region (forcing regions of
large lateral extent radiate much longer waves than
those of small lateral extent). For the particular pa-
rameters of the examples of this paper, a Gaussian
forcing region of lateral scale 500 km and frequency
1 cpy radiates strongly but, if the frequency is in-
creased to several cycles per year the wavelengths
allowed by the dispersion relation are not efficiently
radiated from the forcing, and the radiation is
strongly attenuated.

3. The structure of the transient is somewhat similar to
that found by Kubokawa and Nagakura (2002) in the
unventilated part of their subtropical gyre, but the

FIG. 7. (top) The natural logarithm of the maximum amplitude
of the middle layer interface displacement �2(x, y, t), moving in
physical space with the disturbance, grows more rapidly than lin-
early as the time increases. (bottom) The amplitude of �2(x, y, t)
at the origin decays with time. The parameters used here are the
same as in Figs. 1, 2, 4, and 5.
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method of solution (stationary phase) yields a more
complete description of the space and time variation
of the solution—for example identifying the frontal
feature (43) and the caustics that propagate west-
ward without change of form even though the form
of the full solution evolves as it propagates west-
ward—and also (always within the limitations of the
PG approximation) allows a clear determination
that the transient is convectively—but not globally—
unstable.

Spall (1994) made use of QG theory in a case in
which the mean flow was only a function of depth to
study possibly unstable perturbations of the back-
ground state representative of the real ocean, and
found the fastest growing perturbations to be at scales
not greatly larger than the largest baroclinic Rossby
radius O(100 km). The purpose of the present study is
to provide detailed analysis of baroclinic instability act-
ing on the larger scales at which the planetary geo-
strophic approximation is valid. To generalize these re-
sults to more realistic ocean subtropical gyre flows, it
would be necessary to allow for the presence of smaller
scales and horizontal variation of the background flow.
Further analysis is thus required to determine how the
horizontal spatial variation of the background flow, not
allowed for in this paper, affects these solutions. It
would be of particular interest to determine whether
the baroclinic instability mechanism identified in this
paper at larger PG scales would still play a significant
role when dynamics important at scales of the order of
baroclinic Rossby radius of deformation are included.
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APPENDIX A

The Dynamical Model

The steady flow is modeled as in Luyten et al. (1983).
Three layers (upper, middle, and lower, labeled 1, 2,
and 3) are considered. The depth of the lower layer will
ultimately be allowed to become very large. The mo-
mentum balance is geostrophic,

�f�j � �Pjx and fuj � �Pjy, �A1�

where subscripts x and y denote differentiation, uj and
�j are horizontal fluid velocities in the zonal (x) and
meridional (y) directions within layer j, and the Coriolis
parameter f is linear in y, f(y) � f0 � �y. Pj � (pj �
"jgz)/"0 is the Montgomery function, whose gradient
depends only on the lateral position (x, y) within each
layer; pj is the true dynamic pressure in j layer, "j is the
(constant) density in the layer, and "0 is a reference
density. The vertical coordinate z is positive upward.

If Hj is the depth of the base of layer j, then the
hydrostatic assumption causes the Montgomery func-
tion in layer j to be related to that in layer j � 1 by

Pj � �jHj � Pj�1, j � 1, 2 �A2�

in which 
j � g("j�1 � "j)/"0 are reduced-gravity pa-
rameters. In terms of the layer thickness hj � Hj �
Hj�1, the mass conservation equation for layer j is

hjt � J�Pj,
hj

f 	 � ��wE for j � 1

0 for j � 2, 3
�A3�

in which subscript t denotes the time derivative, J de-
notes the Jacobian J(a, b)��aybx� axby, and wE is the
wind-induced vertical velocity at the base of the surface
Ekman layer. The sum of (A3) with constant H3 gives
the Sverdrup transport relation

�
�

f2 �H3P3 �
1
2

�1H1
2 �

1
2

�2H2
2	

x
� �wE. �A4�

The steady flow occupies a midlatitude basin of zonal
extent a and meridional extent # with meridional
boundaries at y � b � # and y � b and is driven by
Ekman pumping of amplitude W0 having the form

wE
�0��y� � �W0�f0

f 	2

sin��y � b�


� � �A5�

in which f0 is the Coriolis parameter at the central lati-
tude of the basin. The steady Ekman pumping is chosen
to be sufficiently weak that the deeper layers of the
model never surface so that the steady flow occupies
only the uppermost layer.

We study time-dependent perturbations linearized
about the steady flow that are excited by harmonic forc-
ing turned on at some initial time or by initial pertur-
bations. We separate the variables into steady part and
time-dependent part as

Pj � Pj
0 � P�j, wE � wE

0 � w�E,

H1 � H1
0 � �1, and H2 � H2

0 � �2. �A6�
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The perturbation mass conservation equations (A3) for
the middle and the lower layer become

�1t � �2t � J�P�3 � �2�2,
H20 � H1

0

f 	 � 0 �A7�

and

�2t � J�P�3,
H30 � H20

f 	 � 0 �A8�

where H0
2 � H20 is the depth of the bottom of the

middle layer (constant when the steady flow in that
layer is stagnant) and H30 is the flat bottom of the basin.
The perturbation Sverdrup equation, obtained by inte-
grating (A4) westward from the eastern boundary x �
a and linearizing about the steady flow, is

�
�

f2 H30P�3x � �1�H1
0�1�x � �2H20�2x� � �wE.

�A9�

We next reduce the model to two layers lying over an
infinitely deep quiescent third layer to obtain the so-
called 21⁄2-layer model. From (A8), P�3 → 0 as H30 → �
so that (A7) becomes

�1t � �2t � J��2, �2

H20 � H1
0

f 	 � 0. �A10�

We then solve the Sverdrup equation (A9) for P�3, insert
into (A8), and let the total depth H30 → �, to obtain

�2t �
��2H20

f 2 �2x �
��1

f 2 �H1
0�1�x � wE. �A11�

Equations (A10) and (A11) constitute the 21⁄2-layer
model of the time-dependent perturbations �1 and �2 of
nonzonal background flow.

APPENDIX B

Stationary Phase Points

To determine the set of stationary phase points in the
complex � plane over which to sum in (40), it is neces-
sary to deform the integration path � � (0, 2�) of (32)
into an integration path that passes through each sta-
tionary phase point along that point’s path of steepest
descent. This must be done separately for the inte-
grands involving �� and those involving ��.

The only singularities of the integrands of the terms
(32) in the complex � plane are at the simple zeros of
H2 (36), whose square root appears in the phase (33).
These zeros occur in real pairs, the location of the sec-
ond pair being the location of the first pair plus � ra-
dians. In deforming the � contour of integration the two
branch cuts joining the members of each pair separately

must not be crossed. It is convenient to choose the
branch cuts to lie along the real axis between the two
members of each individual pair.

Once H has been determined, solution of (36) for the
stationary phase values of � yields four stationary phase
points whose real parts lie between (0, �) and another
four stationary phase points whose real parts in (�, 2�)
are the real parts of the first four plus �. For every
physical space point (�, �), the interval (0, �) contains
three stationary phase points (either three real points
or one real point and one complex conjugate pair) as-
sociated with �� and one (real) point associated with
�� or vice versa. A similar statement holds for the sta-
tionary phase points whose real parts lie in (�, 2�).

When all stationary phase points are real, no defor-
mation of the integration path � � (0, 2�) is needed,
and the sum in (40) must include contributions from all
stationary phase points. When the integrand of (32)
under consideration has one real stationary phase point
and a complex conjugate pair whose real parts is in (0,
�) with corresponding points in (�, 2�), it is not pos-
sible to deform the contour � � (0, 2�) to lie entirely
along the steepest descent paths threading one or more
of the stationary phase points without crossing the
branch cuts joining the simple zeros of H2 (36). If how-
ever the deformed contour is made to parallel the
branch cuts where it meets them, then along those cuts
the imaginary part of the phase in the integrand is posi-
tive and large so that as t → � the contributions to the
integral from these portions of the deformed path will
be exponentially smaller than those from the stationary
phase points. Because the complex stationary phase
points come in complex conjugate pairs, the sum over
all stationary phase points threaded by the deformed
contour is the same as the sum over all the real station-
ary phase points plus one-half times the sum over all
the complex stationary phase points. This then is the
general rule for each integrand of (32).

APPENDIX C

Approximate Stationary Phase Solutions Valid at
Large Distances away from the Center of

the Disturbance

We seek approximate analytic solutions, valid at
large distances away from the center of the disturbance,
of the quartic equation (38) for H as defined in (34),
which yield the four values of the stationary phase
angle �0.

Introduce the nondimensional variables as

H� |�|1�2H�, b� |�|b�, �� |�|1�2��, and �� |�|1�2��

�C1�
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and transform to cylindrical polar coordinates to write

� � R cos� and � � R sin�. �C2�

In terms of (C1) and (C2) (where we have dropped the
primes for the convenience) (38) becomes

HH2 � �b � � tan��� �
H4 � �b2 � 1�
�2R cos�

� 0. �C3�

We seek approximate solutions of this equation for
large R.

First seek O(1) solution by neglecting much smaller
terms of the order R�1; one iteration on the two roots
thus obtained yields

H1,2 �  �b � � tan� �
�b � � tan��2 � �b2 � 1�

 2R cos��b � � tan��1�2�1�2

.

�C4�

From the dispersion relation (36)

tan�01,2 � tan� �
1
� � �b � � tan��2 � �b2 � 1�

 2R cos��b � � tan��1�2�,

�C5�

and the two values of �0 are given by

�01,2 � �  O�R�1�. �C6�

They are two O(1) solutions for which �0 is close to !,
but the correction term in (C5) diverges at ! � �/2 and
! � arctan(�b/�).

An O(R) solution is obtained from the two highest-
order terms in (C3), which are O(R3), and give H4 �
2H3R cos! � 0, whose solution is H � 2R cos!. In
terms of the angle !0 defined by

sin�0 �
b

�b2 � 1
and cos�0 � �

�

�b2 � 1
,

�C7�

the once iterated O(R) solution becomes

H3 � 2R cos� �
�b2 � 1

2R cos2�
sin�� � �0� �C8�

and yields �0:

�03 �



2
. �C9�

The correction of this root blows up at ! � �/2.
An O(R�1) solution is approximated by

H4 �
�b2 � 1

2R sin��0 � ��
. �C10�

It becomes, after one iterative correction,

H4 � �
�b2 � 1

2R sin�� � �0�
�
�b2 � 1�3�2 cos�

�2R�3 sin4��0 � ��
�C11�

and yields �0

�04 � �0. �C12�

This correction blows up for ! � !0. The four roots of
�0 given by (C6), (C9), and (C12) are the approxima-
tions to the angle which makes the phase stationary and
over which (40) must be summed. When they are in-
serted in (40), the result shows that the asymptotic so-
lutions for large R decay transcendentally away from
the center of the front. Solutions (C6), (C9), and (C12)
are crude approximations, and the correction terms di-
verge at ! � �/2 and ! � !0� arctan(�b/�). The more
accurate expressions for the position of the caustics at
large distances from the center of the disturbance, as
well as approximate solutions for large distances that
are uniformly valid across the caustics, can be obtained
by keeping all the terms of the quartic equation in (38)
that interact at the caustic considered.
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