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Abstract

In a number of flows that support coupled free waves, instability results when free-wave

dispersion relations calculated neglecting the coupling cross or approach one another. The

propagation of long planetary wave perturbations of a two-and-a-half layer model subtropi-

cal gyre is one such oceanographically important instance. This note points out that, for a

baroclinically unstable two-and-a-half layer model subtropical gyre, numerically aliased long

wave dispersion relation plots display extra crossings that are artifacts of the discretization,

and these may lead both to spurious numerical instabilities and to numerical misrepresen-

tation of actual instabilities. Paradoxically, the numerical instability may in some instances

manifest itself more strongly as the numerical resolution is improved. The aliasing mecha-

nism may be related to the zone of small scale activity found in the southwestern corner of a

time dependent model subtropical gyre in the numerical perturbation experiments of Dewar

and Huang (2001).

Keywords: Spurious instabilities; Long planetary waves.

1 Introduction

Pichevin (1998) points out that if each layer of a three layer quasigeostrophic flow is dy-

namically isolated from its neighbors so that Rossby waves propagate independently in each

layer, then restoring the dynamical coupling between the layers leads to instabilties when

the waves propagate at the same speed. Sakai (1999) finds a similar result in a different

dynamical context. Cerovečki and de Szoeke (2005ab) found that for time periodic pertur-

bations of a two-and-a-half layer model subtropical gyre, spatial instability results when the

two branches of the free wave dispersion relation approach one another. This instability is

similar to those found by Liu (1999a,b), who perturbed the steady flow of an eddy resolving

three layer quasigeostrophic unventilated ocean model with Ekman pumping harmonic at pe-

riods of several years, and by Dewar and Huang (2001), who carried out similar experiments
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with a partially ventilated subtropical gyre flow.

This note points out that, in the numerical solution of the two-and-a-half layer model

subtropical gyre perturbation problem, the numerically aliased long wave dispersion relations

have extra crossings that are artifacts of the discretization, and that these as well as the

usual truncation error may lead both to spurious numerical instabilities and to numerical

misrepresentation of actual instabilities. The numerical instability may in some instances

manifest itself more strongly as the numerical resolution is improved.

2 Model Equations

The time periodic (radian frequency σ) perturbations ξ1 and ξ2 of the upper and lower

interfaces of the shadow zone of a two-and-a-half layer ventilated thermocline model (Luyten

et. al, 1983) associated with linear free planetary waves are governed by

φx = iσξ2x, URξ2x + VRξ2y = iσ[(1 + c/C)ξ2 + φ/C] (1)

(the beta plane version of eq. 2.4 of Kubokawa and Nagakura, 2002) in which φ ≡ −cξ2−Cξ1.

In these equations and subsequently, subscripts x and y denote differentiation. For notational

simplicity we employ the abbreviations

C(x, y) ≡ βγ1H
0
1

f 2
, c(y) ≡ βγ2H

0
2

f 2
(2)

where f is the usual Coriolis parameter with meridional derivative β, H0
j is the unperturbed

depth of the base of layer j (indices j = 1, 2 correspond to the upper and middle layer), the

γj are reduced gravity parameters γj = g(ρj+1− ρj)/ρ0 with ρj the density of layer j, ρ0 the

mean density and g the acceleration of gravity. In terms of these

UR ≡
γ2

γ1

(ug + cR) VR ≡
γ2

γ1

vg, (3)

where ug, vg are the mean upper layer geostrophic velocity components −γ1H
0
1y/f and

γ1H
0
1x/f in the zonal x and meridional y directions and cR = C − γ1

γ2
c.
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The WKB dispersion relation for free plane wave solutions e−i(σt−kx−ly) of (1) is

σ2 + σ(c+ C)k − CUR k2 − CVRkl = 0. (4)

The properties of free solutions with dispersion relation (4) have already been discussed

by Liu (1999a,b) and by Kubokawa and Nagakura (2002). Figure 1 shows this dispersion

relation for annual period waves at a particular location in the shadow zone of the mean

flow. For sufficiently small meridional scales (large |l|), there are two distinct dispersion

curves. These correspond to the Non-Doppler-shift mode N and advective mode A of Liu

(1999a), which reduce to the first (fast) and second (slow) baroclinic mode in the case of

no background flow. These curves approach one another over a limited range of values of l,

negative in the particular case of Figure (1) and generally negative over most of the model

subtropical gyre where VR < 0, within which spatial instability (complex zonal wavenumber

k) occurs.

3 Solution by Integration Along Characteristics

Using the Runge Kutta method, the governing equations (1) can be integrated westward

along the two sets of the characteristics defined by

∂xy =

{
0

VR/UR
(5)

and shown in Figure 2a. We denote the set of characteristics obeying dy/dx = 0 by y(x; y0)

where y(a; y0) ≡ y0, and the set obeying dy/dx = VR/UR by Y (x; y0) where Y (a; y0) = y0

(in both of which y0 is the originating latitude of a characteristic at the eastern boundary

x = a). At each Runge-Kutta step, the variables ξ2 and φ must be interpolated from one set

of the characteristics to the other. We notate these variables in lower case along dy/dx = 0

as ξ (hereafter dropping the subscript 2) and φ, and in upper case along dy/dx = VR/UR as

Ξ and Φ (Figure 2a). The two sets of the equations (1) can be schematically written as

d

dx
φn(x)

∣∣∣∣
y

= iσξn(x) n = 1, 2, . . . N (6)
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d

dx
Ξn(x)

∣∣∣∣
Y

= iσ
[
d̂ Ξn(x) + ĉ Φn(x)

]
n = 1, 2, . . . N (7)

Here, d̂ = (c+C)/(CUR) and ĉ = 1/(CUR), and the dependent variables have been discretized

in the y direction so that the subscripts n index the respective characteristics. For simplicity

of exposition only, the numbers N of zonal and tilted characteristics have been taken equal

here and subsequently.

The westernmost characteristic satisfying ∂xy = VR/UR is the western boundary x =

XB(y) of the shadow zone of the mean flow. It is convenient in numerical integration to

introduce a stretched meridional coordinate χ ≡ a log((XB(y) − x)/(XB(y) − a)) that

removes the western boundary x = XB(y) of the shadow zone to χ = −∞. All the results

that follow have been obtained in χ, y coordinates but are presented in the corresponding

x, y coordinates.

4 Stability Analysis

To examine the properties of this discrete numerical scheme, an extension of the classical von

Neumann analysis of the numerical scheme was performed for free waves. The coefficients c,

C, UR, VR are assumed locally constant, so that each set of characteristics is a set of parallel

straight lines, one zonal and one with slope VR/UR. For simplicity we assume that the

number N of both types of characteristics is the same and that both sets of characteristics

are meridionally equally spaced with the increment ∆y. The coefficients d̂ and ĉ appearing

in (7) are thus constant. Ultimately, the numerical dispersion relation for free waves will be

compared to the WKB dispersion relation (4).

The two sets of characteristics divide the x, y plane into a periodically repeating pattern

of identical cells (Figure 2b). The x coordinates of the southeast and southwest corners of

the jth cell are denoted by xj and xj+1, respectively with j = 0 at the eastern boundary

(though x increases towards the east, the indices of the cells increase westward, since that

is the sense of propagation of long PG waves and therefore of the numerical integration.)
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The zonal width of the cell is given by ∆x = xj − xj+1. When working within cell j it is

convenient to define τj = (xj − x)/∆x. Each Runge-Kutta step yields Ξ on the set of Y

characteristics (tilted lines) and φ on the set of y characteristics (zonal lines). To again step

equation (6) forward, values of ξ must be obtained by interpolating values of Ξ from the

tilted characteristics to the zonal ones, while to again step equation (7) forward, values of

Φ must be obtained by interpolating values of φ from the zonal characteristics to the tilted

ones. For example, if linear interpolation among nearest neighbors is used, then within the

jth cell,

ξn = (1− τj)Ξn+j + τjΞn+j+1 (8)

Φn = (1− τj)φn−j + τjφn−j−1. (9)

Higher order interpolation, involving more points than nearest neighbors, and therefore

nonlinear (e.g., cubic) dependence on τj can be readily handled.

In the spirit of the von Neumann analysis, we seek discrete solutions trigonometric in y

and Y . Consider one Fourier constituent (meridional wavenumber l) at a time

Ξn = Ξ̃(j)(x, l)eil(n+j)∆y, φn = φ̃(x, l)eiln∆y. (10)

Use the interpolation formulae (8) and (9) to write the system defined by (6) and (7) in

terms of Ξ̃(j) and φ̃ only, to obtain

d

dx
φ̃(x, l)

∣∣∣∣
y

= iσf(τj)Ξ̃
(j)(x, l) (11)

d

dx
Ξ̃(j)(x, l)

∣∣∣∣
Y

= iσ
[
d̂ Ξ̃(j)(x, l) + ĉ f∗(τj)φ̃(x, l)

]
. (12)

Here f(τ) = (1 − τ) + τeil∆y denotes the interpolation function, and f ∗(τ) its complex

conjugate. Since dτj = −dx/∆x, (11), (12) become (dropping the j labels)
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1

∆x

d

dτ

(
φ̃

Ξ̃

)
= −iσ

(
0

ĉf ∗
f

d̂

)(
φ̃

Ξ̃

)
, 0 ≤ τ ≤ 1. (13)

Concentrating on one cell at a time, we seek to express the solution at the western edge

of the cell (τ = 1), as a function of the solution at the eastern edge of the cell (τ = 0).

Because the coordinate τj = (xj−x)

∆x
appears in the elements of the right hand side of (13),

the integration across a cell must be performed numerically. The solution φ̃(τ), Ξ̃(τ) is

expressed as a linear combination of two independent solutions ϕ1, ξ1 and ϕ2, ξ2 of (13)

(
φ̃

Ξ̃

) ∣∣∣∣
τ

= A

(
ϕ1(τ)

ζ1(τ)

)
+B

(
ϕ2(τ)

ζ2(τ)

)
. (14)

If the boundary conditions at the eastern edge of the cell are ϕ1(0) = 1, ζ1(0) = 0, ϕ2(0) = 0,

ζ2(0) = 1, then

(
φ̃

Ξ̃

) ∣∣∣∣
τ=1

=

(
ϕ1(1)

ζ1(1)

ϕ2(1)

ζ2(1)

)(
φ̃

Ξ̃

)∣∣∣∣
τ=0

. (15)

When the boundary between the two cells is crossed, both φ and Ξ must be continuous. The

latter requirement applied to (10) shows that

Ξ̃(j+1) = Ξ̃(j)eil∆y (16)

at τj = 1 + ε, τj+1 = 0− ε which gives the matching condition

(
φ̃

Ξ̃

) ∣∣∣
τj+1=0−ε

=
(

1

0

0

eil∆y

)(
φ̃

Ξ̃

) ∣∣∣
τj=1+ε

. (17)

A propagation matrix, relating the solution an infinitesimal distance to the west of one edge

of the cell to the solution an infinitesimal distance to the west of the edge of the next cell,

is then obtained by combining (15) and (17) to give(
φ̃

Ξ

) ∣∣∣∣
τ=1−ε

=

(
ϕ1(1)

eil∆yζ1(1)

ϕ2(1)

eil∆yζ2(1)

)(
φ̃

Ξ

)∣∣∣∣
τ=0−ε

. (18)

Denote the propagation matrix in (18) as N , and diagonalize it to obtain
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N = H
(
K1

0

0

K2

)
H−1, (19)

where K1, K2 are its eigenvalues. Integration over each cell corresponds to multiplying once

by the matrix N . Eigenvalues of the propagation matrix can be written as Km = eik̂m∆x,

m=1,2, where k̂m is the zonal wavenumber component. From these eigenvalues Km, zonal

wavenumbers k̂m are estimated as

k̂m =
ln(Km)

i∆x
+

2nπ

∆x
n = 0, 1, 2... (20)

The numerical dispersion relation thus has many branches; as ∆x→ 0, the n = 0 branch

gives the WKB dispersion relation (4). In order to obtain the numerical equivalent of the

WKB dispersion relation at fixed frequency, the foregoing procedure is repeated for a range

of specified real values of the meridional wavenumber vector component l.

Figure 3 shows examples of the numerical dispersion relation so obtained (with cubic

interpolation) and the corresponding analytical WKB dispersion relation obtained by solving

equation (4). The lowest branch of the numerical dispersion relation (20) encompasses

the range of wavenumbers |l| < π
∆y
, |k| < π

∆x
. These limits are set, respectively, by the

meridional spacing and the slope of the characteristics. Beyond these bounds, the numerical

dispersion relation would be periodic in l and k. The meridional resolution of a Runge

Kutta solution of (6), (7) is indeed limited by the meridional spacing of the characteristics.

The zonal resolution of such a solution is however not restricted to the lowest branch of

the numerical dispersion relation, but may be much finer because the integration along the

characteristics was performed by using an adaptive-step Runge-Kutta method. This enables

resolution of waves whose zonal wavenumbers lie outside the zonal limits of the numerical

box characterizing the lowest branch of the dispersion relation. In Figure 3 the higher zonal

aliases of the numerical dispersion relation, although resolved in the Runge Kutta calculation,

are plotted folded back into the range |k| < π
∆x

.

Figure 3 illustrates the most important features of the numerical dispersion relation: (i)

good agreement with the analytical dispersion relation for small k, l, (ii) preservation of
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the baroclinic instability which is evident in the analytical dispersion relation at the longer

wavelengths, although generally with substantial shrinkage of the most negative part of the

range of meridional wavenumbers l over which instability occurs, and (iii) the possible occur-

rence of new, numerical, small scale instability at the meridional wavenumbers corresponding

either to the alias of the numerical reminant of the range of meridional wavenumbers l over

which true instability occurs and/or to intersections of the numerically aliased dispersion

curves.

5 Conclusions

For model flows typical of the shadow zone of a two-and-a-half layer model subtropical

gyre, annual period long wave perturbations are generally baroclinically unstable for a range

of meridional wavenumbers l (Walker and Pedlosky, 2002, elucidated the important desta-

bilizing effect of non-zonal background flow; Cerovečki and de Szoeke, 2005ab, explicitly

considered subtropical gyre background flow). Outside this range there are two indepen-

dently propagating long Rossby waves (the A and N modes of Liu, 1999a) whose dispersion

plots in the zonal-meridional k, l wavenumber plane approach one another as the meridional

wavenumber approaches the unstable range.

Cerovečki and de Szoeke (2005b) show that for annual period perturbations in a rectan-

gular basin that are generated by an annual period wind stress that is smooth at basin scales,

the instability manifests itself in the far southwestern region of the subtropical gyre in the

following way. As long waves propagate westward in the shadow zone of the model subtrop-

ical gyre, they tend to refract so that the meridional wavenumber increases towards more

positive values (the line of crests tends from being nearly meridional near the eastern bound-

ary to trending southwest-to-northeast near the western boundary of the shadow zone), but

the upper bound of the range of meridional wavenumbers for which annual period solutions

are unstable (Figure 1) rises towards positive values as the location at which the dispersion

relation is evaluated is moved towards the southwest: the refraction is sufficiently slow that
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westward propagating waves eventually enter a region in which their meridional wavenum-

ber lies within the unstable range of meridional wave numbers, and westward growth of the

solution occurs.

As noted above and as illistrated in Figure 3, when solving the perturbation problem

numerically, numerical deformation of the dispersion plots of these long Rossby waves in

the k, l plane results (i) in appreciable truncation of the range of meridional wavenumbers

corresponding to the true instability, so that the range of meridional wavenumbers for which

instability occurs does not extend to values as negative as for the true instability, (ii) in

aliasing of the the most negative portion of the numerically truncated range of instability

into a generally positive range of meridional wavenumbers which gives rise to a numerical

instability characterized by meridional wavenumbers generally corresponding to much smaller

meridional scales than those of the true instability, and sometimes (iii) in aliasing of the wave

dispersion plots in such a way that additional regions of close approach in addition to the

one corresponding to the true instability occur.

These effects can give rise to the seemingly paradoxical situation illustrated in Figure

4. The top panel of this figure shows the numerical solution of (6) and (7) with an eastern

boundary condition that makes the eastern boundary ratio of ξ1 to ξ2 such as to give rise to

long waves. The numerical resolution is coarse, the total number of N of zonal and of tilted

characteristics is 30, but the solution correctly restricts the region of westward growth to

the far southwestern corner of the shadow zone of the subtropical gyre. Increasing N should

improve the resolution and lead to a more accurate solution, but instead for N=100 (bottom

panel, Figure 4), an incipient numerical instability at much shorter meridional scales than

those of the unstable region of the top panel is clearly visible. The manner in which this

comes about may be understood by examining the manner in which changing the resolution

changes the numerical dispersion relation; this is illustrated in Figure 4.

If the meridional resolution is rather coarse (Figure 4a), then the range of meridional

wavenumbers corresponding to the true instability is so severely truncated that this trun-
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cated range is not aliased into a range of positive meridional wavenumbers corresponding

to numerical instability. Only a very small region of numerical instability resulting from

crossing of the aliased dispersion curves is present. The result is that the coarse resolution

numerical solution displays the true instability in the southwestern part of the subtropical

gyre with moderate distortion corresponding to truncation error. As the meridional res-

olution is increased (Figure 4b), the numerical truncation of the true instability range is

decreased so that the range of wavenumbers into which that range is aliased is increased; the

result is the seemingly paradoxical appearance of spurious small scale numerical instabilities

in the far southwestern part of the subtropical gyre as the resolution is increased.

At more northerly and easterly locations in the subtropical gyre, refraction causes the

meridional wavenumber to take on large positive values, so that the small scale numerical

instability appears in the region near the western boundary of the shadow zone for all but

the most coarsely resolved numerical solutions.

Finally, it is important to note that many of the numerical phenomena noted above

also may occur with other finite difference numerical procedures. Thus, for example, if the

solutions of (1) are made discrete on a rectangular ”x,y” grid, and the single y derivative in (1)

is replaced by a finite difference approximation, then (1) become a set of coupled equations

that may be integrated westward in x using, for example, the Runge Kutta procedure. If

the meridional gridspacing is ∆y, then the numerical equivalent of (4) is simply

σ2 + σ(c+ C)k − CUR k2 − CVRksin(2l∆y)/(2∆y) = 0. (21)

It is immediately clear that the entire dispersion plot is periodic in l with period π/∆y, so

that there will be an alias into positive l of the numerically modified region of true instability

that is usually confined to a negative range of l for VR < 0.
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Figures
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Figure 1: The dispersion relation (4) for parameters c, C, UR and VR at a location
x=9000 km, y=2500 km in the steady subtropical gyre flow that is driven by steady Ekman

pumping of amplitude W0 having the form w
(0)
E (y) = −W0

(
f0

f

)2

sin
[

(y−b)π
∆

]
in which f0 is the

Coriolis parameter at the central latitude y = b of a basin of meridional extent ∆ = 3000 km
whose eastern boundary is at x = a (10000 km). The dispersion relation is obtained by
assuming real meridional wavenumber l and solving (4) for the zonal wavenumber k (real
values plotted as heavy lines, imaginary values plotted as light lines). Note that k is real
except over a restricted range of meridional wavenumber l. For this range of l, corresponding
solutions of (1) grow zonally. Numerical values of parameters are UR = -0.014 m/s, VR = -
00009.96 m/s, c = 0.0243 m/s, C = 0.0243 m/s, a = 10000 km, and the strength of the
Ekman pumping W0 is chosen so that the total transport in the model subtropical gyre is
22 Sv.
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Figure 2: Top panel: The two sets of shadow zone characteristics dy(x; y0)/dx = 0 where
y(a; y0)n = y0n, and dY (x; y0)/dx = VR/UR where Y (a; y0)n = y0n (y0n is the meridional
location at which a characteristic labeled n strikes the basin eastern boundary at x = a). The
westernmost characteristic Y (x; b+ ∆/2) that strikes the eastern boundary at the northeast
corner of the basin is the western boundary x = XB(y) of the shadow zone. The variables ξ
and φ are notated ξn and φn on the yn and Ξn and Φn on the Yn. Bottom panel: The shadow
zone characteristics y(x; y0) and Y (x; y0), idealized as straight lines for the von Neumann
stability analysis. (Note that as explained in text, actual computations were carried out
using the stretched coordinate χ rather than x).

13



Figure 3: Left panel: Numerical dispersion relation at x=585 km, y=2171 km for the solution
of Figure (3). The numerical dispersion relation is obtained by assuming real meridional
wavenumber l and evaluating the zonal wavenumber k from (20). the true dispersion relation
similarly obtained from (4) is also shown. For the true dispersion relation, real values of k are
plotted as broad and light solid lines, imaginary values are plotted as broad and heavy solid
lines. For the numerical dispersion relation, real values of k are plotted as heavy dashed
lines, imaginary values are plotted as heavy and narrow solid lines. Numerical values of
parameters are UR = -0.0235 m/s, VR = -.0000712 m/s, c = 0.0284 m/s, C = 0.0321 m/s.
At this location, with N=50 computational characteristics, the meridional spacing of Y
characteristics at the point at which the dispersion relation is constructed is 28 km. Right
panel: Numerical dispersion relation at the same location as that of the bottom panel,
except with N=100 computational characteristics; the meridional spacing of characteristics
at the point at which the dispersion relation is constructed is 14 km. Note the much better
numerical resolution of the region of true instability (along most of the negative l axis) in
the high resolution bottom panel than in the low resolution top panel. Note also however
the much more extensive aliasing of the numerically resolved region of true instability in the
high resolution bottom panel than in the low resolution top panel.
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Figure 4: Top panel: Snapshot of the annual period interfacial displacement ξ2 of the base
of the middle layer obtained by solving (1) with no forcing but with an eastern boundary
condition that sets the meridional wavenumber at π/∆ and sets the ratio of ξ1 to ξ2 at the
eastern boundary to generate only the long wave free solution. The background steady flow is
specified by the parameters H10 =300 m, H20 =750 m (undisturbed interfacial depths at the
eastern boundary), γ1 =0.0245 m/s2, γ1 =0.01 m/s2 (see text) and is driven by the steady
Ekman pumping described in the caption of Figure (1). The numerical integration is carried
out along N=30 y and Y characteristics. Note unstable westward growth of the solution in
the far southwestern part of the basin. Contour interval is 0.25 m from -1.3 m to 3.4 m.
Light (dark) contours indicate negative (positive) displacements. Bottom panel: The same,
except that the numerical integration is carried out along N=100 y and Y characteristics.
Although the numerical resolution of the bottom panel is substantially improved relative to
that of the upper panel, incipient instability in the southwestern part of the domain is more
evident in the more highly resolved solution of the bottom panel than in the relatively poorly
resolved solution of the top panel. Contour interval is 0.25 m from -2.6 m to 4 m.
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