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Eliassen-Palm Flux

For
I β-plane
I Coordinates (y ,p) in northward, vertical directions
I Zonal means

F =


−v ′u′

f (y)
v ′θ′

θp



∇ · F will provide a diagnostic for the eddy-induced forcing of
the mean state.



Transformed QG Equations

Neglect ageostrophic terms

∂u
∂t
− f v∗ − F = ∇ · F

f up − R θy = 0
v∗y + ω∗p = 0

∂θ

∂t
+ θp ω

∗ −Q = 0

F,Q are Eulerian-mean friction and heating
R is the gas constant times (p0/p)1/γp0, γ is specific heat ratio

∇ · F is the ONLY internal forcing to mean state by
disturbances, comprising the total effect of QG eddies,
regardless of other properties (nonlinear, transient, turbulent)



Transformed Velocities

v∗ = v −
∂(v ′θ′/θp)

∂p

ω∗ = ω +
∂(v ′θ′/θp)

∂y

“Residual meridional circulation” associated with adiabatic
processes

Includes heat and momentum transfer that results from
interactions of the disturbances



Residual Circulation Streamfunction

f up − R θy = 0
∂u
∂t
− f v∗ − F = ∇ · F

∂θ

∂t
+ θp ω

∗ −Q = 0

These equations can be combined to eliminate t dependence,
and if we introduce the streamfunction ψ∗ the result is

f 2 ψ
∗
pp + R

(∣∣θp
∣∣ψ∗y)y

= −f (∇ · F)p − f Fp + R Qy

Note that ψ∗ depends on time, but equation has no time
derivatives!



Mean Circulation
Holton (1992)

Right of main cell, circulation appears as though heat travels
from higher to lower latitudes – not physical!



Residual Circulation Holton (1992)

Residual circulation shows us how heat and momentum are
physically transferred



Theorems

The previous equations hold for QG assumptions. The
Eliassen-Palm theorem (1961) was that, for steady,
conservative, wavelike disturbances, ∇ · F = 0.

Charney and Drazin’s “nonacceleration theorem” (1961) noted
that if ∇ · F,F,Q are all zero, there is a steady state solution
where ut , θt , v∗, ω∗ = 0.

The equations show both theorems, but do not depend on how
closely the conditions are met.



Relationship to QG Potential Vorticity

Alternatively, the diagnostic can be written as

∇ · F = v ′q′

for
q′ = v ′x − u′y + f

(
θ′/θp

)
p

The sign of ∇ · F can then be given by the opposite of the QG
PV flux

qy = β − uyy + f
(
θy/θp

)
p

Thus ∇ · F is the northward eddy flux of QG PV



Nonlinear Case

Even for nonlinear QG, under nonacceleration conditions

0 = qt + uqx + vqy

With horizontal incompressibility, this is

0 = ut + (uq)x + (vq)y

Finally, taking zonal means and using definitions of means and
disturbances

qt + (v ′q′)y = 0

Thus, if v ′q′ vanishes somewhere, then

v ′q′ = ∇ · F = 0

Boundary condition of v ′q′ can be avoided with alternative
hypotheses



Wave Theory
Consider a conservation equation

∂A
∂t

+∇ · F = D

For conservative motion, D = 0

A can be called the “EP wave activity,” and in QG is
approximately

A ≈ 1
2

q′2

qy

for weak dissipation and nonlinearity

If qy vanishes somewhere, this should instead be the
disturbance-associated northward displacement

A ≈ 1
2

qyη
′2



Benefit of F

The conservation equation is not unique, but F has two
properties that an arbitrary vector might not have:

I For planetary waves of small latitudinal and vertical
wavelength, the group-velocity concept is applicable
(Lighthill 1978) and it can be shown that

F = cA

where c is group velocity projected onto meridional plane

I F appears to be the most convenient choice to compute
from observations



Direction of F

Thus F represents the net wave activity propagation from one
height and latitude to another

Even when wave propagation is not valid, tilt of arrows still
compares the relative magnitude of eddy heat and momentum
fluxes



Spherical Geometry

Real atmospheric data is given in degrees latitude φ, so we
require a conversion to spherical coordinates.

F =


−r0 cosφv ′u′

f r0 cosφ
v ′θ′

θp


for the radius of the Earth r0 and

f = 2Ω sinφ

for the Earth’s angular velocity Ω



Spherical Geometry

∇ · F = (r0 cosφ)v ′q′

q′ =
v ′λ − (u′ cosφ)φ

r0 cosφ
+ f

(
θ′/θp

)
p

for longitude λ

qφ = 2Ω cosφ−
[

(u cosφ)φ
r0 cosφ

]
φ

+ f
(
θφ/θp

)
p

True derivative only in QG approximation



Data

Oort and Rasmusson (1971)
I Eddy and time-mean statistics for June 1958-May 1963
I Winter: December-February
I Summer: June-August
I Pressure levels 1000, 950, 900, 850, 700, 500, 400, 300,

200, 100, 50 mb
I Latitudes 10◦S-75◦N in 5◦ increments

National Meteorological Center 11-year average
I Twice daily analysis for 1965-1977
I Winter: 120-day period from 15 November
I Summer: 120-day period from 1 June
I Grid of 2.5◦ latitude by 5◦ longitude grid starting at 20◦N



Hadley and Ferrel Cells

Looks similar to Holton



Contribution of Transient Eddies



Compare to Models

Little resemblance



Simulation
Most unstable
baroclinic wave
disturbance to a
jet: zonal
wavelength 6

Linear

Nonlinear/
Time-average



Life Cycle Physics

F =


−r0 cosφ v ′u′

f r0 cosφ
v ′θ′

θp





Comparison



QG PV flux

I Net positive v ′q′ at bottom

I qφ only negative from 60-74◦

I Friction and diabatic effects
must have influence



QG PV flux

Positive ∇ · F at 50◦, 200 mb

“Likely to be indicative of negative qφ [. . . ] consistent with the
fact that stationary disturbances cannot by themselves cause
irreversible air-parcel dispersion”



Contribution of Stationary Eddies



Total Contribution



Conclusions

I Diagnostics F and ∇ · F provide insight into the physics of
eddy/mean flow interaction using Eulerian statistics

I Do not require restrictive assumptions (EP or Charney &
Drazin theorems)

I Transient eddy contribution resembles baroclinic instability
lifecyce

I Stationary eddies do not seem statistically robust, no
model to compare


